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A b s t r a c t - - T h e  order of positive and copositive spline approximation in the Lp-norm, 1 < p < cx~, 
is studied; the main results are 

(1) the error of positive approximation by splines is bounded by Cw2(f, 1/n)p if f has a nonneg- 
ative extension; 

(2) the order deteriorates to wl if f does not have such an extension; 
(3) the error of copositive spline approximation is bounded by Cw(f, 1/n)p; 
(4) if f is also continuous, the error in (3) can be estimated in terms of the third T-modulus 

Ta(f, 1/n)p. 
All constants in the error bounds are absolute. 

K e y w o r d s - - D e g r e e  of copositive approximation, Constrained approximation in Lp space, Spline 
approximation, Polynomial approximation. 

1. I N T R O D U C T I O N  A N D  M A I N  R E S U L T S  

Positive approximation of a positive function f E C[0, 1] has the same order as tha t  of noncon- 
strained approximation. For example, positive approximation by splines of order r with n - 1 
equally spaced knots has the order Wr(f, 1/n)~. When f changes its sign in (0, 1), following the 
sign of f is no so easy and the order of approximation deteriorates. S. P. Zhou [1], Y.-K. Hu, 

D. Leviatan and X. M. Yu [2,3] and Hu and Yu [4] proved that  w3(f, 1/n)~ is the best order of 
copositive approximation by polynomials of degree < n or splines of any order with n - 1 equally 

spaced knots, in the sense that  one can not replace ~3 by w4. In Lp[0, 1], 1 < p < oc, things 

become more complicated and even positive approximation is no longer trivial. Zhou proved 
in [1] tha t  for positive polynomial approximation in Lp, it is impossible to reach w3 if 1 < p < 
or w4 if p = 1, and that  in the copositive case, it is impossible to reach w2 if 1 < p < oc or 0J 3 if 

p = 1. He also conjectures that  the case of p = 1 is no better  than that  of 1 < p < ~ ,  and that  
even w2 is impossible to reach in positive polynomial approximation for all 1 <_ p < oc. Little is 
known for the spline case, the only relevant result we know is one on one-sided approximation by 
A. Andreev, V. A. Popov and B. Sendov [5]: 

THEOREM A. Let f have integrable bounded k th derivative f(k) on the interval [0, 1], and let T 
be a given partition of [0, 1]. Then there exist splines S and s of degree k on the knot sequence 
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K. G. Ivanov for confirming the validity of Theorem 5 and outlining its proof when they were kindly sending 
reprints of their  publications to the author. 
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T such that 
S(x)  >_ f ( x )  > s(x), x • [0, 1], 

(1.1) 
I[S -- Slip ~ 2(k + 1)!(Z~T) k T ( f  (k), Z~T)p, 

where 1 < p <_ co, A T is the mesh size of T ,  and 7" is the average modulus of smoothness (see 
the definition below). 

It is then the purpose of this paper to thoroughly investigate the order of positive and copositive 
spline approximation of functions in Lp, 1 _< p < oo. We should point out here that  the technique 

used in this paper applies to the case of 0 < p < 1 with almost no changes, but the constant C 
will then depend on p. Some changes can be made to cover the case of unequal spacing, which 
will be described in a forthcoming paper by Hu, K. A. Kopotun and Yu [6]. 

We first introduce the notation we will use. We denote by Pro[a, b] the space of all polynomials 
of degree _< m on [a, hi, and by Wpk[a, b] the Sobolev space, the space of functions whose ( k -  1) st 

derivative is absolutely continuous and whose k th derivative lies in Lp, 1 < p < co. We say 
that  f ( x )  changes sign at y • (0,1) if: (1) there exists an el > 0 such that  ~lf(x) >_ 0 for 
any x • [y - ~1, Y), where 7/ = 5=1; (2) there exists an ~2 > 0 such that rlf(x) < O, for any 
x • (y, y + ~2]; (3) the inequalities hold strictly at least at one x in each of the neighborhoods 
above, that  is, f has a true sign change at y. Such a y is called a point of sign change of f .  We 
assume f only has k < cx3 sign changes at 0 < Yl < Y2 < " "  < Yk < 1, and denote Yo := 0 and 
Yk+l :---- 1. A function g is said to be copositive with f if it has the same sign with f on each 
interval [Yi, Yi+l] and changes its sign exactly at each yi, 1 < i < k. We denote the mth modulus 

of smoothness of f • Lp[a, b] by 

Am Wm(f,t)p := sup II h (f,')llp, ta,b-mh], 
O<h<t 

where t > 0 and A~  is the usual mth forward difference operator, and denote the m th average 

modulus, or T-modulus, of smoothness by 

~-m(f,t)p := II~m(f, ",t)llp,[a,b], 

where 

W m ( f , x , t ) : = s u p { [ A ~ ( f , y ) l : y , y + m h e  z - - - ~ , z +  n [a, b]} 

is the m TM local modulus of smoothness of f .  If there is any possible confusion about the in- 
terval over which the modulus is taken, we will indicate the interval in the notation such as 
wm(f ,  1/n,[O, 1])p or r,~(f, t ,[xo, x3])p. From the definitions, it is easy to see (Sendov and 
Popov [7, Theorem 1.4]) that  if f E C[a, b], then 

win(f, t)p <_ Wm(f, t)p < (b - a)l/Pwm(f,  t)c~, 

Win(f, t )~  = Win(f, t )~ ,  
(1.2) 

and that  if t is large, T m can be quite large. As an extreme, we have 

O V m ( f , x , b - a ) = w m ( f , b - a ) o o ,  YxE[a ,b] ,  

Tm(f, b - a)p = (b - a)l/Pwm(f,  b - a)oo. 
(1.3) 

We now state our main results; all the proofs will be given later in Section 3. The first two 
of them deal with the order of positive spline approximation in Lp. Note that an analogue of 
Theorem 1 for polynomials can be readily obtained by using a positive linear operator, but then f 
has to have a nonnegative extension on a much larger interval. 
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THEOREM 1. Let f E Lp[0, 1], 1 < p < oo, be nonnegative, and let n > 0 be an integer. I f  f has 

a nonnegative extension F on [ - (1 /2n) ,  1 + (1/2n)] with 

w2(F,n,-1 [ - 2 ~ ' l ÷ ~ n l ] ) p < - C ° w 2 (  f'l'[O'l])-n p'  (1.4). 

then there exists a nonnegative C 1 quadratic spline s on [0, 1] with the interior knots 

{(2i - 1)/(2n)}p= 1 such that 

Ilf - sllp <_ CCo~2 (f,l,[O, ll)p, (1.5) 

where C is an absolute constant. 

If f fails to have a nonnegative extension satisfying (1.4), then the order deteriorates at the 
ends of the interval, and that  leads to the order of COl. 

THEOREM 2. Let f E Lp[0, 1], 1 ___ p < oo, be nonnegative, and let n > 0 be an integer. Then 

there exists a nonnegative C 1 quadratic spline s on [0, 1] with the interior knots { (2 i -  1 ) / (2n )}n  1 

such that (1) I ol IIf- Slip < C~o f ' n  p '  

where C is an absolute constant. 

Because positive approximation is a special case of copositive approximation, it should not be 
surprising that  the theorem below does not give an order higher than that  in (1.6). We suspect 
that  all these are the highest possible orders, especially for 1 < p < oo, just as the case of 
polynomials, since as far as we know in all known cases, splines with equally spaced knots have 
the same approximation power as polynomials, except that  the latter approximate better  near 
the ends of the interval; see [1-4,8] and the references therein. 

THEOREM 3. Let f C Lp[O, 1], 1 < p < o o ,  change its sign k < oo times at O < yl < y2 < " "  < 

Yk < 1. Denote 6 := min~=0(yj+l - yj), where Yo := 0 and Yk+l := 1. Then for every n >. 6 -1 
there exists a C 1 quadratic spline s with at most 2n + 16k interior knots that is copositive with 

f and satisfies (1) 
II/- Slip <_ Cw f ' n p ' 

where C is an absolute constant. 

Using the average modulus Tin, which is more suitable than Wm in this context, one can get a 
better  estimate than (1.7), as stated in Theorem 4 below. In view of (1.2), this result is consistent 
with those for copositive approximation in C, which say the best order in that  case is ~3; see the 
beginning of this section. 

THEOREM 4. Let f E C[0, 1] change its sign k < oo times at 0 < Yl < Y2 < "'" < Yk < 1. 

Denote 6 := mink=o(yj+l -- yj) ,  where Y0 := 0 and Yk+l := 1. Then, for every n > 6 -1 there 
exists a C 1 quadratic spline s with at most 16n knots that is copositive with f and satisfies 

( 1 ) ,  
IIf- slip _< Cra f ' n  p (1.8) 

where C is an absolute constant. 

REMARK. The requirement of f E C is justified by the facts (1.3), with [a, b] viewed as any 
subinterval of [0, 1]. Also see Theorem 5 in Section 2. 

The corollary below follows directly from the inequality (Sendov and Popov, [7, Theorem 1.5]) 

Tra(f,t)p <_ C m t w m - l ( f ' , t ) p ,  t > O. (1.9) 
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COROLLARY 1. I f  the function f in Theorem 4 is also in Wl[0,  1], then 

I l l - s l i p  ~ Cn-lw2(f,~)p, (1.10) 

where C is an absolute constant. 

2. P R E L I M I N A R I E S  

In the proofs, we will make repeated use of the following relationship between the uniform and 

Lp norms of polynomials as described in [9]. 

LEMMA 1. / / k  ~ 0, q > 0, there is a constant C > 0 depending at most  on q, k and n such that 

for each q <_ p <_ oo, each polynomial P E Pk  and each n-cube Q c R n, 

fQlplq)l/q fQ]p[p)l/p . l/q (2.1) 

When either q or p = oc the corresponding expression is replaced by [[Plloo,O. 

REMARK. If q > 1, the constant C above can be chosen so that  it is independent of q. 

The auxiliary lemma below allows us to blend local overlapping polynomials into a smooth 

spline with the same approximation order. 

LEMMA 2 (BEATSON, [10, LEMMA 3.2]). Let r > 2 be an integer and d = 2(r - 1) 2. Let 
c¢ strictly increasing knot  sequence with to = a and td = b. Let gl, g2 be two T = {t i} i=_~ be a 

polynomials of  degree < r. Then there exists a spline g of  order r with knot  sequence T such 

that 

(1) g(x) is a number between gl(x) and g2(x) for each x • [a, b], 

(2) g = gl 011 (--00, a] and g = g2 Oll [b, oc). 

Although simple and well-known, this fact is useful in our constructions: 

PROPOSITION 1. Let L be a bounded linear operator on Lp[a, b], 1 < p < oc. Then, 

Jlf  - L f l l p  <- Cwr( f ,b  - a)p for some C = C(r) > O, (2.2) 

f f  and only f f  L reproduces ali polynomials of  degree < r. 

We now construct linear operators L by interpolating integral averages of f as follows. Let 
I I , I 2 , . . . , I r  be subintervals of [a, b], and c l , c2 , . . .  ,cr their midpoints. Let zi be the integral 

average of f on/~: 

zi := f ,  i = 1 , 2 , . . . , r .  
i 

Define L : Lp ---, P r - 1  by L f  = PI,  where Pf  is the polynomial of degree < r interpolating 

(c~,zi), i = 1 , 2 , . . . , r .  

LEMMA 3. Let  L be the linear operator defined above. Then 

[If - Lfl[p <- Cw2(f ,b  - a)p, (2.3) 

where the constant C depends on r, and the ratios (b - a)/(ci+l - ci) and (b - a ) / [ / / [ .  

PROOF. It is trivial to see that  L is linear and (only) reproduces all linear polynomials. We only 
need to show I[L[[p is finite. Let f • Lp[a, b] be arbitrary. Since ]llql[[ := maxi ]q(ci)[ defines a 
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norm Ill" Ill for the space P r - l [ a ,  b] which is equivalent to I{" I{oo (with the equivalence constants 
depending on r and the ratios (b - a)/(C~+l - cd). By Lemma 1, we have 

1 
(b a)l/P I{Lf{Ip <- NLfN°° <- CIIIL:III = C m a x l z ~ l  < c~-'~lz~l 

- -  i i 

<}- -~ ]~  Ifl <- b-a  - b_-2-~ll:ll, < (b_a)Vpllfllp, 

where, and throughout this paper, C denotes a constant whose value does not depend on f but 
may vary from one occurrence to another, even in the same line. Therefore, IILIIp is finite. | 

We will also need the following trivial variation in the constructions. 

LEMMA 4. I f  at least one of the midpoints c, is replaced by another point d~ E l i ,  then the 
resulting operator L satisfies 

{{f - L flip < Cw(f,  b - a)p, (2.4) 

with C depending on the same quantities. 

V. H. Hristov and K. G. Ivanov estimated the error of one-sided approximation by polynomials 

Em(f)p := i n f { l lP -Ql lp :  P,Q E P,~[a, b], P _ f _ Q}; 

see [11,12] and the references therein. They also kindly confirmed to the author the validity of 
the following Whitney-type theorem and sketched the proof in their letter. 

THEOREM 5. Let f E C[a, b]. Then 

E,~_l( f )p , '~Tr( f ,b-a)p ,  r =  1 , 2 , . . . ,  (2.5) 

with the constants of equivalence depending only on r. 

PROOF. Denote by P ,  Q, _p and ~) best one-sided approximations of f by polynomials of degree 
< r from above and below in the spaces Lp and C, respectively. Then by the definitions and 
Lemma 1 

g r - l ( f ) p  - -  I{P - QIIp ~- II ~ - Q l lp  ~_ (b - a)I/P{IP - QIIoo = (b - a)l/PE,~_l(f)oo 

and 

( b  - a)I/PlI_P - (211~ <- ( b  - a ) l / P l l P  - QII~ -< c l i P  - QIIp.  

These give the equivalence o f / ~ r - l ( f ) p  and (b - a)l/PEr_l(f)oo. Now denote by P* the best 
unconstrained polynomial approximant of f of degree < r in C, that  is, E := E ~ - t ( f ) ~  = 
[ I f  - P * l l o ~ .  By the definitions and Lemma 1 again, we have 

-Er-l(f)~ = lip - Qli~ ~ [{f - Pl[oo ~ {If - P * t l o o  = E 

and 

/ ~ - l ( f ) o ~  = I{- b - ~){i~ <- {1( P* + E) - (P* - E)l{oo = 2E. 

These give the equivalence o f /~r - l ( f )o~  and E,- l ( f )oo ,  and now (2.5) follows from Whitney's 
Theorem and (1.3). II 

Let subintervals Ji form a partition of the interval J ,  then from the definition of the ~--modulus 
it is obvious that  

E Tin(f, t, Ji) p < ~-m(f, t, J)Pp. 
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If  Ji's intersect  each other,  but  each x C J is contained in at  most  k such subintervals,  then  this 
still holds t rue  wi th  the constant  k added to the right hand side: 

~-~ Tm(f,t, Ji) p <_ krm(f,t, J)P. (2.6) 
i 

Similarly, but  not  trivially, we have [13] 

Wm(f, t, Ji) p <_ Cwm(f, t, J)P, (2.7) 
i 

where C depends  on m. Inequali t ies (2.6) and (2.7) will be used in es t imat ing  the error  of  spline 
a p p r o x i m a n t  from the informat ion abou t  its polynomial  pieces. 

3.  P R O O F S  O F  M A I N  T H E O R E M S  

PROOF OF THEOREM 1. For the sake of simplicity, we still use the lower case let ter  f for the  
extension F .  Fix n > 0. Let  xi := (i/n), ti := (2i - 1)//(2n) and 

: t ~ + l  

Z i : ~  n f ,  i=O, 1,...,n. 

Let  li be the  line th rough  the  two points  P~(x~, zi) and Pi+l(Xi+l ,  z i+l) ,  i = 0, 1 , . . . ,  n - 1, and 
the  broken line with vertices P~, i = 0, 1 , . . .  ,n .  By  L e m m a  3, 

1,[t~,ti+2]) • I I f  - ~ l lp , [= , ,= ,+ , ]  = I l f  - Z, l l p , [ = .= ,+ , l  ___ I I f  - Z, l lp,[~,,, ,+=] _< c~= f ' n  p (3.1) 

By (2.7), we have 

llf - - p ~I p < C" ~.:2 f, , [t. t~+2] sl ip,[o, 1] - -  ~ I I f -  . , [= , ,= ,+1]  - 
i=O i=O P 

( [ 1 ,  l J )  p ( 1 ,  ) :  <_CPw2 f, 1 -~n l + ~ n  <-CPC~w2 f ' -  [0, 1] . 
n p n 

(3.2) 

T h a t  is, 

Ilf-~llp,[o,1] <CCoaJ2(f,l,[o, 1]) . 
P 

(3.3) 

T h e  spline $ is nonnegat ive  and has the desired order of approximat ion ,  but  is merely  in C °. 
We now smoo th  it into a C 1 spline with the same order of approximat ion .  Denote  the  midpoin t  

(ti, (zi-1 + z i ) / 2 )  of the  line segment  P~-IP~ by Q~, i = 1 , . . . ,  n. I t  is readily seen t h a t  there  exists 
a quadra t ic  polynomial  s~ on [ti, t~+l] tha t  is tangent  to  1~-1 and li at  Q~ and Qi+l ,  respectively, 
and has its g raph  inside the  t r iangle QiPiQi+l. This  si cuts off the corner of  the  broken line 
Pi-lPiPi+l and s tays  nonnegative.  Therefore,  the spline s defined by 

/0(x), z e [0, t~] 

S(X) := Si(X), X e [ti, t i+l],  

ln-l(X), X e [tn, 1] 

i = 1 . . . . .  n -  1 (3.4) 

has a cont inuous derivative and n simple knots  ti, i = 1 , . . . ,  n. 
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To show (1.5), we need an estimate of Ils - gllp,[0, 11. Denote by [i the straight line through the 
two points Qi and Qi+l. For i = 1 , . . . , n -  1 we have 

( 1, ) p  ( 1 ) v  
CVw2 -- [ti--1, tiq-2] ~ ~d2 S,-- [Xi--X, ti+l ] f ' n  p n p 

>_ ~ x +  - 2 ~  X + ~ n  +g(x )  
~-.1 

-~fxit~l (X 1)lz__l (XZr. 1)_~_li__l (X_{__ 1)21i__l ( x _~.~n) .q__li__l(X) li + - _ + 1 P 

f '  ( 1 )  ( 1 )  p 1 t l i xq-  ~ li-1 x +  Ills P . . . .  l~-lllp,[x,t,+l] ~ ~nllli - l~-1 P~,[~,t +11 

1 2 p 
= ~nn I/~(ti+l) - l~_ l ( t~+~) l  p = ~nn [/~(x~) - [~ (xd l  p, 

where we have used (3.1) in the first step, the fact that A~(l, x) = 0 for any linear function l and 
any h in the fourth step, Lemma 1 in the sixth and a property of similar triangles in the last. 
This is equivalent to 

[li(xi) - [i(x~), <_ C(2n)X/Pw2 ( f ,  l ,  [ti-l ,  ti+2]) . .13.5) 

Basic analytic geometry on linear and quadratic polynomials gives 

( 2 n ) I / P l l  s - gllp,[~,,.+,l = (2n)l/pllsi - gllp,tt~,.+l] = ( 2 . 2 n ) l / V l l s i  - gllp,[~,, ~.+~t 

---- ( 2 "  2n)l/Pllsi -/~ll~,t~,~,+~] ~ I1~ -/~]l~,tx~,.+~l = I s ~ ( x d  - l~(xz) l  

= ½ IZ-~(x~) -t~(~)l. 

Combining this and (3.5) yields 

( 1,[t~-1, ti+2]) I l s -  Sllp, tt,,t~,+xl <- Cw2 f ' n  

The same argument as that in (3.2) produces 

( IIs allp, tO, ll -< CCow2 f ' n  

and (1.5) now follows from this and (3.3). II 

PROOF OF THEOREM 2. We change the definition of z0 and Zn in the proof of Theorem 1 by 

£1 
z0 := 2n f and Zn := 2n , 

J t , ,  

and notice that 
w2( f , t , I )p  < 2w( f , t , I ) v ,  

then an almost identical proof gives (1.6). II 

Because the proof of Theorem 3 is a modification of that of Theorem 4, we need to prove 
Theorem 4 first. 

PROOF OF THEOREM 4. Fix n > 5 -1. Let x.i := i /2n.  We call the interval It := [x~, x~+l] 
contaminated if x~ < yj < xi+l for some point yj of sign change of f ,  1 < j < k. Since ~ > I /n ,  
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there is exactly one yj in each of the contaminated intervals Imj, j = 1 , . . . ,  k. For convenience 
we also denote mo := -1 ,  and mk+l := 2n, then 

m j < m j + 2 < _ m j + l ,  j = 0 , 1 , . . . , k ,  (3.6) 

that  is, between Imj and /mj+i for any 0 _< j _< k there is at least one interval I~ that  is not 
contaminated. Note that  f does not change sign between Im~ and Im~+~. 

If mj+l > mj + 2, that  is, there are at least two noncontaminated intervals between Imj and 
Imj+~, we apply Theorem 5 with r = 3 on each of the intervals [xi, xi+2], i = mj + 1, mj + 
2 . . . . .  mj+l - 2 and obtain two quadratic polynomials Pi and Qi such that  

p~(z) > f (x)  > Q~(x), Vx ~ [x.  x~+21, 

IIPi - Q~llp,[x~,~,+~l -< cv3 f ' n  p 
(3.7) 

Set qi := P~ if f > 0; qi := Qi if f < 0. Hence, qi is copositive with f and satisfies 

1 [xi, x,+2]) . Ill - qillp,[z~,z~+2] -< liP, - Q~llp, lx.x~.2l ~ c~-a f,-~ p (3.8) 

Near each point of sign change of f ,  we construct a local quadratic polynomial by interpola- 
tion. More precisely, on each [Xmj-1, Xm¢+2], j = 1 , . . . ,k ,  we interpolate f at xmj-1,  yj and 
xmj+2 by a quadratic polynomial qmj-1. It is obvious that  this parabola is copositive with f on 
[Xmi-1, xmj+2]. For its approximation error, we consider the two quadratics Pm~-i and Qmj-1 
guaranteed to exist by Theorem 5. Since 

Pmj-l(x) >_ f(x)  > Qmj-l(x), Vx E [Xmj-1, Xm~+2], (3.9) 

it holds true at xmj-1, Yj and Xmj +2 in particular. Because the distance between any two of these 
points is no less than 1/2n = (Xm~+2 - Xmj-1)/3, the norm II1" III for the space P2[xmj-1, Xmj+2] 
defined by 

]llqll] := max{lq(xmj-1)l, {q(yj)l, Iq(xmj+2)l} 

is equivalent to i1" i1~ with equivalence constants being absolute ones. Therefore, it is also 
equivalent to (2n/3)l/pll. Itp by Lemma 1. From (3.9), we have 

1[[ Pmj - 1 - qmj - 111[ ~ 1[I Pr~j - 1 - Qm¢ - 1[1[, 

hence, 

II1)m~_l -- qrn3-111p < C!lPm3-1- Qmj_lllp ~_ CT3 ( f ,  l ,  [Xmj-1, X m j + 2 ] )  , n p 

and finally 
]If - qmj-lllp <- I l I -  Pmj-l[lp + [[P,~,-t - qm~-ll[p 

<_ Cra ( f, nl ,[xmj-,,  Xmj+2]) P" (3.10) 

Having constructed the overlapping local quadratics which are copositive with f and have 
approximation order 7"3, we now blend them for a smooth spline approximant s with the same 
approximation order. If Ii_ 1 is a noncontaminated interval and qi- 1 and qi overlap on Ii, then Ii 
must be noncontaminated, too, or there would be no qi at all. We insert d -  1 = 2(3 - 1) 2 - 1 = 7 
equally spaced interior knots in (xi, Xi+l). By Lemma 2, there exists a spline s~ on I~ on these 



Spline Approximat ion in Lp[0, 1] 145 

knots that  connects with qi-1 and qi in a e 1 manner at x~ and xi+l, respectively. Moreover, the 
graph of si lies between those of qi-1 and qi, hence si is also copositive with f and satisfies 

f i  If - sdP  ~ f i  [f -q~-llP + fz If -q~lP, 

o r  

( ( 1 )P  ( 1, ) i )  IIf s p r < _ C P  - . - illp,i~ T3 f, n'  [xi-1, Xi+l] ~- T3 f, [Xi, Xi+2] (3.11) p n 

If Ii-1 is a contaminated interval, then Ii is noncontaminated by (3.6), and this time it is qi-2 
and qi that  overlap on Ii. We construct si the same way as above and, noticing that  qi-2 is an 
approximation of f on [xi-2, Xi+l], have 

[[f s ; C p ( f ,  1 [xi-2, Xi+l] +v3 f, 1,[xi, xi+2] (3.12) 
- ~ l l p , 1 , - <  r z  \ n '  p n ' 

In both (3.11) and (3.12), the interval in the second r-modulus will be [x~, x~+3] instead of 
[xi, xi+2] if Ii+l is contaminated, but this makes no difference in the rest of the proof. 

We define the final spline approximant s on each Ii as follows: if there is only one local quadratic 
polynomial over Ii, set s to this quadratic; if there are two quadratics overlapping on Ii, then 
there must be a blending local spline si, we set s to s~. It is clear from its construction that  s 
is copositive with f on the whole interval [0, 1], that it lies in C ~ [0, 1] and has no more than 
d(2n-  1) < 16n single interior knots. Using the fact that  each s~ is determined by the behavior of 
f on no more than four (consecutive) intervals of the form I~, we obtain from (3.8), (3.10)-(3.12) 
and (2.6) 

2n-1 ) i  
" f - s  pP[o, 1] = E f l  , f - s ' p < - C p T 3 (  f '1 ' [0 '1]  ' (3.13) 

i=0 

which is (1.8). | 

PROOF OF THEOREM 3. We use all the notation defined in the first paragraph in the proof of 
Theorem 4. If mj+l > mj -b 2, w e  apply Theorem 2 with [0, 1] replaced by [xm~+l, xmj+~] and 
n by mj+l - mj - 1, and obtain a C 1 quadratic spline smj on this interval with interior knots 
( 2 k -  1)/(4n), k = my + 2, rod q - 3  . . . .  ,mj+l ,  and 

I l f  - s m j l l p , [ ~ , ~ j + l , ~ m j ÷ i l  ~ C~ (f,l,[Xmj+l, Xmj+X])p • (3.14) 

Near each of the points yj of sign change of f ,  we construct a quadratic polynomial qr~j on [xmj - 
1/4n, Xmj+l + 1/4n], j = 1 , . . . ,  k, as follows. Suppose at yj, f changes sign from nonpositive to 

2 t nonnegative for certainty. Let h(t) := n ft-u2nf,  then h is continuous with h(yj + 1/2n) > 0 
and h(yj) < O. Therefore, there exists a tj E [yj, yj + 1/2n] such that  h(tj) --= 0. Let zjl := 
h(xmj) <_ 0 and zj3 := h(xm~+2) >_ O. Let qmj be the quadratic polynomial that  interpolates 
(Xmj - 1/4n, Zjl), (yj, O) and (Xmj+l + 1/4n, zj3). Then it is copositive with f .  Since the 
x-coordinates of these points are at least 1/4n away from one another, it has approximation 
order aJ1 by Lamina 4: 

1,[xm,_l, xmj+2]) (3.15) 

Inserting 7 equally spaced interior knots into each of the intervals [Xm~ - 1/4n, Xmj] and 
[Xm~+l, Xmj+l + 1/4n], j = 1 . . . .  , k, we can blend all of Smj and qmj into a C 1 quadratic spline 
s that  is copositive with f and satisfies (1.7) in the same way as in the proof of Theorem 4. II 

30:316-K 
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