estimates were based on results of clinical studies and on information from the list of medicines and medical care products of the Republic of Kazakhstan (2009) and the retail price of pharmacies in Karaganda. Data sources: PubMed, the Cochrane library, Internet search was performed to analyze the results of clinical studies of treat-
ment patients with breast cancer. RESULTS: One-year survival rate was higher by 21% in patients receiving “Arglabin” chemotherapy compared with patients receiving chemotherapy alone. Indicator “cost-effectiveness” for the scheme with 
Arglabin was 281.8 (the cost of one course of treatment is 281.8 $ on one survivor patient). Indicator “cost-effectiveness” for the standard scheme CM-913 (7 of the cost of one course of treatment is 367.5 $ on one survivor patient). CONCLUSIONS: The study was identified efficiency and economic benefit of therapy with “Arglabin”. Arglabin is effective and safety as additional agent to standard treatment and the implementation of this standard to therapy of breast cancer will improve the outcomes and reduce the costs.

PCN11 TREATMENT COSTS FOR BREAST CANCER IN JAPAN: LARGE CLAIM DATABASE ANALYSIS

Shinoya T1, Bhimzumua K2, Fukuda T3
1Okayama University Hospital, Okayama, Japan, 2Ritsumeikan University, Kusatsu, Japan. 3National Institute of Public Health, Saitama, Japan

OBJECTIVES: Number of expensive anti-cancer drugs is increasing. It is important to assess the cost-effectiveness of such high-cost drugs. However cost data, which is applicable to economic evaluation, are not accumulated enough in Japan. Therefore we analyzed large claim database to obtain treatment costs for breast cancer. METHODS: We used JMDC(Japan Medical Data Center) claims database, in which claims data of approximately 1.5 million insured people are collected from January 2005 to September 2013. We analyzed treatment costs of (a) adjuvant chemother-
apy, (b) hormone therapy and (c) chemotherapy for metastasis. Breast cancer was defined by disease name including claim code (C50 of ICD-10). Since no ICD-10 code directly indicates metastatic breast cancer, combination of codes such as C780 (metastasis to lung), C78 (to liver) and C739 (to brain) was used to extract meta-
static breast cancer. We defined monthly average cost for treatment of the patients at the time of first diagnosis. RESULTS: Approximately 400 patients receiving adjuvant chemotherapy were identified. Use of taxane (+ JPY 450,000 [USD 4,500, USD1 = JPY100]), trastu-
zumab (+ JPY 2.2 million [USD 22,000]) and hormone therapy (+ JPY 300,000 [USD 3,000]) significantly influenced on the treatment costs per patient. Most frequently used drugs were taxane, letrozole, anastrozole and exemestane. Average cost of chemotherapy was JPY 180,000 [USD 1,800] per month for patients without receiving molecular targeting therapy. It increased to JPY 360,000 [USD 3,600] per month if molecular targeting drugs were used. CONCLUSIONS: We can estimate treatment costs of breast cancer from the large Japanese claim database. These data are useful when cost-effectiveness analysis is performed.

PCN12 ANNUAL HEALTH INSURANCE COST OFBreast CANCER TREATMENT IN HUAR

Banci L1, Endres D2, Ágoston I3, Kovács G2, Vajda R1, Csikvári T1, Szabolcs Z1
1University of Pécs, Pécs, Hungary, 2Széchenyi István University, Győr, Hungary, 3University of Pécs, Pécs, Hungary

OBJECTIVES: Aim of this study was to investigate the annual health care costs of breast cancer patients. METHODS: The annual health insurance costs of the total annual health insurance cost of the National Health Insurance Fund Administration in Hungary was estimated 12.09 billion Hungarian Forint (HUF) or 58.09 million dollar (USD). Most of them (61.0 %) related to the cost of medical services. The most frequently used drugs were taxane, letrozole, anastrozole and exemestane. Average cost of chemotherapy was JPY 180,000 [USD 1,800] per month for patients without receiving molecular targeting therapy. It increased to JPY 360,000 [USD 3,600] per month if molecular targeting drugs were used. CONCLUSIONS: We can estimate treatment costs of breast cancer from the large Japanese claim database. These data are useful when cost-effectiveness analysis is performed.

PCN13 ANALYSING THE EFFECTS OF A DISINVESTMENT DECISION IN BREAST CANCER SCREENING PROGRAMMES IN ASIA-PACIFIC COUNTRIES: A MODELING APPROACH

Agrawal P1, Bunting C2, Brooks-Roney C2
1Costello Medical Consulting, Cambridge, UK, 2Costello Medical Consulting Ltd., Cambridge, UK

OBJECTIVES: Disinvestment decisions are becoming increasingly common. Existing health technology assessments do not fulfill criteria such as efficacy, effectiveness or safety. Breast cancer screening (BCS) using mammography is widely implemented; yet many studies show that a significant number of women are overdiagnosed and overtreated. The objective of this study is to analyse the effects of a BCS disinvestment decision in Asia-Pacific countries, and to explain any differences between countries. METHODS: A mathemati-
cal model was developed to analyse population outcomes and costs associ-
ated with breast cancer (BC) from 2014 to 2050 in Australia and Korea. Population outcomes were measured as number of women diagnosed with BC, number of women overdiagnosed and number of deaths associated with BC. The model allowed the analysis of these outcomes with and without a BCS programme in place, as a proxy to evaluate the effects of disinvestment. RESULTS: Results varied between countries, particularly depending on ethnicity and level of participation in the BCS program. A significant increase in the number of deaths was associated with BC in Korea; a disinvestment decision, however, would not have a large impact on the number of deaths, due to currently high levels of overdiagno-
sis, and overall costs would be significantly reduced. A disinvestment decision in Australia would reduce the number of overdiagnosed women throughout, with the potential mortality due to BC would be higher. CONCLUSIONS: This analysis has shown that the cost-effectiveness of BCS programmes should be evaluated over the long-term in order to take into account the consequence of overdiagnosis. Disinvestment decisions are complex and must be made locally, taking into consideration specific characteristics of the population under study.

PCN16 COST-EFFECTIVENESS ANALYSIS OF 1-YEAR ADJUVANT TRASTUZUMAB THERAPY OF EARLY-STAGE HER2-POSITIVE BREAST CANCER

Nguyen TT1, Nguyen TT2
1University of Medicine and Pharmacy in HCMC, HCMC, Vietnam, 2University of Medicine and Pharmacy in HCMC, Ho Chi Minh City, Vietnam

OBJECTIVES: Trastuzumab, a monoclonal antibody, has been widely used in treat-
ment of HER2-positive breast cancer because of its proved effectiveness and safety. However because of the high price, the cost-effectiveness of trastuzumab should be evaluated especially in such low-income country as Vietnam. This is also the aim of this study. METHODS: A Markov model has been constructed with 5 health states (disease-free survival, local recurrence, regional recurrence, metastatic, death) with 1-year cycle length and lifetime horizon. The transition rates between states have been retrieved from relevant epidemiological studies, clinical trials and expert opinions. A population of 1000 50-year-old women with average weight of 60 kg has been included in model. Lists of medical services and drugs were derived from NCCN guideline 2014. The prices of drugs and medical services have been over sensationalized. After that situation, these medication have the best outcome. The costs related to breast cancer. There is no doubt that depression is a serious issue for patient with breast cancer. Antidepressants and tamoxifen reduces the effect of tamoxifen, and complicates the decision-making. This cost-effectiveness study tries to use Markov model to investigate the best strategy that gives to high-risk breast cancer patients after genetic test and diagnosed with breast cancer. METHODS: A cost-effectiveness study using Markov model will be conducted from a third payer perspective. Both time and different antidepressants from desipramine, fluoxetine, paroxetine, mirta-
in, melatonin to escitalopram will be included in this study as different expo-
sure. Life-long quality of life will be calculated as outcome. In order to investigate the extent of accuracy, one way sensitivity analyses and probabilistic sensitivity analysis will be conducted. RESULTS: Mirtainin, melatonin does not interfere with tamoxifen treatment, under that situation, these medicine has the best outcome. The time period from diagnosed with breast cancer till 1 year is the best timing to give antidepressants, which may significantly improve the quality of life of breast cancer patients. CONCLUSIONS: Even though, sometimes patients with breast cancer may not realize they already threaten by depression, the antidepressant still significantly important to breast cancer population to prevent the progression of depression with better outcome.

PCN17 COST-EFFECTIVENESS ANALYSIS OF ANTIDEPRESSANTS ON BREAST CANCER PATIENTS: A MARKOV MODEL STUDY

Lee ET
University of Utah, Salt Lake City, UT, USA

OBJECTIVES: With the developing of new technology for genetic test, the accuracy of predicting the risk that a patient may diagnose with breast cancer in future was increased dramatically. But considering that after diagnosis with breast cancer, those patients were diagnosed with breast cancer in average age 65 years old, the affects of breast cancer on general female population, and the anxiety patient suffered after realized taking antidepressants and tamoxifen to escitalopram will be included in this study as different expo-
sure. Life-long quality of life will be calculated as outcome. In order to investigate the extent of accuracy, one way sensitivity analyses and probabilistic sensitivity analysis will be conducted. RESULTS: Mirtainin, melatonin does not interfere with tamoxifen treatment, under that situation, these medicine has the best outcome. The time period from diagnosed with breast cancer till 1 year is the best timing to give antidepressants, which may significantly improve the quality of life of breast cancer patients. CONCLUSIONS: Even though, sometimes patients with breast cancer may not realize they already threaten by depression, the antidepressant still significantly important to breast cancer population to prevent the progression of depression with better outcome.
and varying survival rates according to radiation field. RESULTS: We compared two two-drug regimens: CAR-T and RT alone. Improved CRT when PALM metastasis is found; otherwise, pelvic CRT. ICER for strategy 2 compared to strategy 1 was $19,505 per quality-adjusted life year (QALY). Nodal staging surgery was cost-effective at the $50,000 willingness-to-pay threshold for health care. In patients resulting in survival benefit, survival benefit is derived from radical surgery in patients who underwent only pelvic CRT despite occult PALM metastasis. The model was insensitive to change in performance of PET/CT and postoperative complication rates and represented the Chinese disease stage NSCLC by direct comparison of two EGFR-TKIs and cisplatin/pemetrexed. From erlotinib, patients treated with afatinib have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$112,936.09, yielding an ICER of NT$5,628,016.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained. Compared to gefitinib, patients treated with afatinib in the 1st line setting have an increase of 0.02 QALYs with less cost NT$21,350.59, yielding an ICER of NT$457,768.67 per QALY gained.