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This paper is concerned with a result of homogenization of an
integro-differential equation describing dislocation dynamics. Our
model involves both an anisotropic Lévy operator of order 1 and
a potential depending periodically on u/ε. The limit equation is a
non-local Hamilton–Jacobi equation, which is an effective plastic
law for densities of dislocations moving in a single slip plane.
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1. Introduction

In this paper we are interested in homogenization of the Peierls–Nabarro model, which is a phase
field model describing dislocations. In this model a dislocation is described by a phase transition.
Dislocations are moving defects in crystals that can be described at several scales by different models:

• atomic scale (Frenkel–Kontorova model),
• microscopic scale (Peierls–Nabarro model),
• mesoscopic scale (discrete dislocation dynamics),
• macroscopic scale (elasto-visco-plasticity with density of dislocations).

Several changes of scales already exist in the literature: see for instance [12] for a presentation of rig-
orous passages from atomic scale to microscopic scale, from microscopic scale to mesoscopic scale and
from mesoscopic scale to macroscopic scale. Notice that the passage from Peierls–Nabarro model to
the Discrete dislocation dynamics is only done in dimension 1 (see [12] and [19]). On the contrary in
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higher dimensions, the large scale limit of a single phase transition described by the Peierls–Nabarro
model shows that the line tension effect is the much stronger term. The limit model appears to be
the mean curvature motion (see [25]).

Our goal in this paper is to understand the large scale limit of the Peierls–Nabarro model in the
case of a large number of phase transitions (i.e. of dislocations), recovering at the limit a model with
evolution of dislocation densities. In other words, we want to perform a direct passage in any dimen-
sions from the microscopic scale (Peierls–Nabarro model) to the macroscopic scale (elasto-visco-plasticity with
density of dislocations). In physics and mechanics, it is a great challenge to try to predict macroscopic
elasto-visco-plasticity properties of materials (like metals), based on microscopic properties like dis-
locations. In our work, we try to tackle this question in a very simplified geometry where all the
dislocations are contained in the same slip plane with the same Burgers vector. For a physical in-
troduction to the Peierls–Nabarro model, see for instance [20]; for a recent reference, see [38]; we
also refer the reader to the paper of Nabarro [35] which presents an historical tour on the Peierls–
Nabarro model. See also Section 2 for a more physical presentation of the Peierls–Nabarro model and
an interpretation of our results.

1.1. Setting of the problem

The Peierls–Nabarro model has been originally introduced as a variational (stationary) model (see
[35]). The time evolution Peierls–Nabarro model as a gradient flow dynamics has only been introduced
quite recently, see for instance [33] and [10]. In the present paper we consider such a time evolution
Peierls–Nabarro model that can be written at the microscopic scale for the parameter ε = 1 as the
following equation

⎧⎨⎩ ∂t uε = I1
[
uε(t, ·)]− W ′

(
uε

ε

)
+ σ

(
t

ε
,

x

ε

)
in R+ ×RN ,

uε(0, x) = u0(x) on RN .

(1.1)

For the physical application that we have in mind, we consider a three-dimensional crystal which
contains a crystallographic plane RN with N = 2. This plane contains the dislocations that are rep-
resented by transitions of the phase function uε . Here uε solves the non-local (and non-linear) heat
equation (1.1). Indeed I1 stands here for an anisotropic half Laplacian (whose expression will be pre-
cised below). Here the anisotropy comes both from the possible anisotropy of the elasticity of the
crystal and from the fact that the Burgers vector is assumed to be contained in the slip plane RN

which creates a preferable direction. The dynamics is assumed to be fully overdamped and then the
right hand side of the equation is the sum of three force terms: I1[uε ] is the elastic stress created
by the dislocation themselves, −W ′ is the force deriving from the potential W describing the misfit
between the two half crystals separated by the plane RN , and σ is a stress created by the obstacles
in the crystal or/and an applied exterior stress. For simplicity σ is assumed to be periodic in order to
analyze by homogenization the effect on the dynamics of periodic obstacles everywhere in the crys-
tal. We consider time periodicity for two reasons: one in order to take into account exterior periodic
loads, and the second for generality. Indeed, if σ(t/ε, x/ε) is replaced by an oscillation at a different
scale like σ(t/εγ , x/εγ ) with γ �= 1, then we expect (but it is not proven) that there is a two-scales
homogenization effect. If γ > 1, then we expect that there is first homogenization of σ , where only
its mean value will be taken into account at the microscopic scale, and in a second step, we get the
macroscopic model by homogenization of the Peierls–Nabarro model with constant σ . If γ < 1, we
expect first to freeze σ and get the macroscopic model by homogenization of the Peierls–Nabarro
model for constant σ , and in a second step we remind us that σ is slowly oscillating, and there is a
second homogenization of the macroscopic model.

Here ε describes the ratio between the microscopic scale and the macroscopic scale, and then
is a small parameter. After a suitable rescaling at the macroscopic scale, the Peierls–Nabarro model
becomes (1.1). In this paper we investigate the limit as ε → 0 of the viscosity solution uε of (1.1).
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We give the precise definitions and assumptions on the terms involved in (1.1). Here I1 is an
anisotropic Lévy operator of order 1, defined on bounded C2-functions for r > 0 by

I1[U ](x) =
∫

|z|�r

(
U (x + z) − U (x) − ∇U (x) · z

) 1

|z|N+1
g

(
z

|z|
)

dz

+
∫

|z|>r

(
U (x + z) − U (x)

) 1

|z|N+1
g

(
z

|z|
)

dz, (1.2)

where the function g satisfies

(H1) g ∈ C(SN−1), g > 0, g even.

On the functions W , σ and u0 we assume:

(H2) W ∈ C1,1(R) and W (v + 1) = W (v) for any v ∈R;
(H3) σ ∈ C0,1(R+ × RN ) and σ(t + 1, x) = σ(t, x), σ(t, x + k) = σ(t, x) for any k ∈ ZN and (t, x) ∈

R+ ×RN ;
(H4) u0 ∈ W 2,∞(RN ).

When g ≡ CN , with CN a suitable constant depending on the dimension N , then (1.2) is the in-

tegral representation of −(−�)
1
2 for bounded real smooth functions defined on RN (see Theorem 1

in [11]). We recall that (−�)
1
2 is the fractional operator defined for instance on the Schwartz class

S(RN ) by

̂
(−�)

1
2 v(ξ) = |ξ |̂v(ξ), (1.3)

where ŵ is the Fourier transform of w .
We prove that the limit u0 of uε as ε → 0 exists and is the unique solution of the homogenized

problem {
∂t u = H

(∇xu,I1
[
u(t, ·)]) in R+ ×RN ,

u(0, x) = u0(x) on RN ,
(1.4)

for some continuous function H usually called effective Hamiltonian. The function u0 will be inter-
preted later as a macroscopic plastic strain satisfying the macroscopic plastic flow rule (1.4). Moreover
I1[u0] will be the stress created by the macroscopic density of dislocations.

1.2. Main results

As usual in periodic homogenization, the limit equation is determined by a cell problem. In our
case, such a problem is for any p ∈ RN and L ∈ R the following:{

λ + ∂τ v = I1
[
v(τ , ·)]+ L − W ′(v + λτ + p · y) + σ(τ , y) in R+ ×RN ,

v(0, y) = 0 on RN ,
(1.5)

where λ = λ(p, L) is the unique number for which there exists a solution v of (1.5) which is bounded
on R+ × RN . In order to solve (1.5), we show for any p ∈ RN and L ∈ R the existence of a unique
solution of
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{
∂τ w = I1

[
w(τ , ·)]+ L − W ′(w + p · y) + σ(τ , y) in R+ ×RN ,

w(0, y) = 0 on RN ,
(1.6)

and we look for some λ ∈R for which w − λτ is bounded. Precisely we have:

Theorem 1.1 (Ergodicity). Assume (H1)–(H4). For L ∈ R and p ∈ RN , there exists a unique viscosity solution
w ∈ Cb(R

+ × RN ) of (1.6) and there exists a unique λ ∈ R such that w satisfies: w(τ ,y)
τ converges towards

λ as τ → +∞, locally uniformly in y. The real number λ is denoted by H(p, L). The function H(p, L) is
continuous on RN ×R and non-decreasing in L.

Unfortunately, we cannot directly use the bounded solution of (1.5), usually called corrector, in
order to prove the convergence of the sequence uε to the solution of (1.4). Nevertheless we have the
following result:

Theorem 1.2 (Convergence). Assume (H1)–(H4). The solution uε of (1.1) converges towards the solution u0

of (1.4) locally uniformly in (t, x), where H is defined in Theorem 1.1.

Let us mention that in a companion paper [32], we show that we can recover Orowan’s law in
dimension N = 1 for σ = 0, i.e.

H(δp, δL) 
 c0δ
2|p|L as δ → 0

i.e. the plastic strain velocity is asymptotically proportional to the product of dislocation density |p|
by the effective stress L.

1.3. Brief review of the literature

This non-local equation (1.1) is related to the local equation⎧⎨⎩ ∂t uε = F

(
x

ε
,

uε

ε
,∇uε

)
in R+ ×RN ,

uε(0, x) = u0(x) on RN ,

(1.7)

that was studied in [23] under the assumption that F (x, u, p) is periodic in (x, u) and coercive in p.
The homogenization problem (1.7) when F does not depend on u, has been completely solved by
Lions Papanicolaou and Varadhan [31]. After this seminal paper, homogenization of Hamilton–Jacobi
equations for coercive Hamiltonians has been treated for a wider class of periodic situations, cf. Ishii
[27], for problems set on bounded domains, cf. Alvarez [1], Horie and Ishii [21], for equations with
different structures, cf. Alvarez and Ishii [4], for deterministic control problems in L∞ , cf. Alvarez
and Barron [2], for almost periodic Hamiltonians, cf. Ishii [26], and for Hamiltonians with stochastic
dependence, cf. Souganidis [37]. More recently, inspired by [23], Barles [6] gave an homogenization
result for non-coercive Hamiltonians and, as a by-product, obtained a simpler proof of the results [23]
of Imbert and Monneau but under slightly more restrictive assumptions on the Hamiltonians. We can
also mention the work of Imbert, Monneau and Rouy [24] where the authors studied homogenization
of certain integro-differential equations depending explicitly on uε/ε . Notice that in the present paper,
the operator I1 involves a singular kernel which creates some additional difficulties that were not
present for instance in [24].

Notice also that the model studied in [24] was introduced to approximate a level set model like
in [14]. The phase field model in [24] was therefore closer in the spirit to a model for discrete
dislocation dynamics at the mesoscopic scale. On the contrary, the Peierls–Nabarro model (1.1) is
a well-established physical model which is really devoted to the description of dislocations at the
microscopic scale.
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1.4. Organization of the paper

The paper is organized as follows. In Section 2, we give more details about the Peierls–Nabarro
model yielding to the study of (1.1) and the mechanical interpretation of the homogenization results.
In Section 3 we present briefly the strategies of the main proofs. In Section 4, we state various compa-
rison principles, existence and regularity results for solutions of non-local Hamilton–Jacobi equations.
In Section 5, we prove the convergence result (Theorem 1.2) by assuming the existence of smooth
approximate sub and supercorrectors (Proposition 3.1). In order to show their existence, in Section 6,
we first construct Lipschitz continuous sub and supercorrectors (Proposition 6.1). As a byproduct, we
prove the ergodicity of the problem (Theorem 1.1) and some properties of the effective Hamiltonian
(Proposition 5.4). Proposition 3.1 is then proved in Section 7. The proofs of Lemma 4.7 and of Propo-
sition 6.2 are done in Appendix A.

1.5. Notations

We denote by Br(x) the ball of radius r centered at x. The cylinder (t − τ , t + τ )× Br(x) is denoted
by Q τ ,r(t, x).

�x� and x� denote respectively the floor and the ceil integer parts of a real number x.
It is convenient to introduce the singular measure defined on RN \ {0} by

μ(dz) = 1

|z|N+1
g

(
z

|z|
)

dz = μ0(z)dz,

and to denote

I1,r
1 [U , x] =

∫
|z|�r

(
U (x + z) − U (x) − ∇U (x) · z

)
μ(dz),

I2,r
1 [U , x] =

∫
|z|>r

(
U (x + z) − U (x)

)
μ(dz).

Sometimes when r = 1 we will omit r and we will write simply I1
1 and I2

1 .
For a function u defined on (0, T ) × RN , 0 < T � +∞, for 0 < α < 1 we denote by 〈u〉αx the

seminorm defined by

〈u〉αx := sup
(t,x),(t,x′)∈(0,T )×R

N

x�=x′

|u(t, x) − u(t, x′)|
|x − x′|α

and by Cα
x ((0, T ) × RN ) the space of continuous functions defined on (0, T ) × RN that are bounded

and with bounded seminorm 〈u〉αx .
Finally, we denote by USCb(R

+ ×RN ) (resp., LSCb(R
+ ×RN )) the set of upper (resp., lower) semi-

continuous functions on R+ × RN which are bounded on (0, T ) × RN for any T > 0 and we set
Cb(R

+ ×RN ) := USCb(R
+ ×RN ) ∩ LSCb(R

+ ×RN ).

2. Physical modeling and mechanical interpretation of the homogenization results

2.1. The Peierls–Nabarro model

Dislocations are line defects in crystals. Their typical length is of the order of 10−6m and their
thickness of order of 10−9m. When the material is submitted to shear stress, these lines can move in
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the crystallographic planes and their dynamics is one of the main explanation of the plastic behavior
of metals.

The Peierls–Nabarro model is a phase field model for dislocation dynamics incorporating atomic
features into continuum framework. In a phase field approach, the dislocations are represented by
transition of a continuous field.

We briefly review the model (see [20] for a detailed presentation). As an example, consider an
edge dislocation in a crystal with simple cubic lattice. In a Cartesian system of coordinates x1x2x3,
we assume that the dislocation is located in the slip plane x1x2 (where the dislocation can move)
and that the Burgers’ vector (i.e. a fixed vector associated to the dislocation) is in the direction of
the x1 axis. We write this Burgers’ vector as be1 for a real b. The disregistry of the upper half crystal
{x3 > 0} relative to the lower half {x3 < 0} in the direction of the Burgers’ vector is φ(x1, x2), where φ

is a phase parameter between 0 and b. Then the dislocation loop can be for instance localized by the
level set φ = b/2. For a closed loop, we expect to have φ 
 b inside the loop and φ 
 0 far outside
the loop.

In the Peierls–Nabarro model, the total energy is given by

E = Eel + Emis. (2.1)

In (2.1), Emis is the so called misfit energy due to the non-linear atomic interaction across the slip
plane

Emis(φ) =
∫
R2

W
(
φ(x)

)
dx with x = (x1, x2),

where W (φ) is the interplanar potential. In the classical Peierls–Nabarro model [36,34], W (φ) is
approximated by the sinusoidal potential

W (φ) = μb2

4π2d

(
1 − cos

(
2πφ

b

))
,

where d is the lattice spacing perpendicular to the slip plane.
The elastic energy Eel induced by the dislocation is (for X = (x, x3) with x = (x1, x2))

Eel(φ, U ) = 1

2

∫
R3

e : Λ : e dX with e = e(U ) − φ(x)δ0(x3)e0 and

⎧⎪⎨⎪⎩
e(U ) = 1

2

(∇U + (∇U )T ),
e0 = 1

2
(e1 ⊗ e3 + e3 ⊗ e1),

where U : R3 →R3 is the displacement and Λ = {Λi jkl} are the elastic coefficients.
Given the field φ, we minimize the energy Eel(φ, U ) with respect to the displacement U and

define

Eel(φ) = inf
U

Eel(φ, U ).

Following the proof of Proposition 6.1 (iii) in [3], we can see that (at least formally)

Eel(φ) = −1

2

∫
2

(c0 � φ)φ
R
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where c0 is a certain kernel. In the case of isotropic elasticity, we have

Λi jkl = λδi jδkl + μ(δikδ jl + δilδ jk)

where λ,μ are the Lamé coefficients. Then the kernel c0 can be written (see Proposition 6.2 in [3],
translated in our framework):

c0(x) = μ

4π

(
∂22

1

|x| + γ ∂11
1

|x|
)

with γ = 1

1 − ν
and ν = λ

2(λ + μ)

where ν ∈ (−1,1/2) is called the Poisson ratio.
The equilibrium configuration of straight dislocations is obtained by minimizing the total energy

with respect to φ, under the constraint that far from the dislocation core, the function φ tends to 0 in
one half plane and to b in the other half plane. In particular, the phase transition φ is then solution
of the following equation

I1[φ] = W ′(φ) on R2, (2.2)

where formally I1[φ] = c0 � φ, which is the anisotropic Lévy operator defined in (1.2) for N = 2 and
g(z1, z2) = μ

4π ((2γ − 1)z2
1 + (2 − γ )z2

2). Let us now recall the expression of the kernel after a Fourier
transform (see Paragraph 6.2.2.2 in [3])

ĉ0(ξ) = − μ

2|ξ |
(
ξ2

2 + γ ξ2
1

)
.

Then for γ = 1 and μ = 2, we see that I1 = −(−�)
1
2 . In that special case, we recall that the solution

φ of (2.2) satisfies φ(x) = φ̃(x,0) where φ̃(X) is the solution of (see [30,19])⎧⎪⎨⎪⎩
�φ̃ = 0 in {x3 > 0},
∂φ̃

∂x3
= W ′(φ̃) on {x3 = 0}.

Moreover, we have in particular an explicit solution for b = 1, d = 2 (with W ′(φ̃) = 1
2π sin(2πφ̃))

φ̃(X) = 1

2
+ 1

π
arctan

(
x1

x3 + 1

)
.

Then by rescaling, it is easy to check that we can recover the explicit solution found in
Nabarro [34]

⎧⎪⎪⎨⎪⎪⎩
φ(x) = b

2
+ b

π
arctan

(
2(1 − ν)x1

d

)
(edge dislocation),

φ(x) = b

2
+ b

π
arctan

(
2x2

d

)
(screw dislocation).

In a more general model, one can consider a potential W satisfying

(i) W (v + b) = W (u) for all v ∈R;
(ii) W (bZ) = 0 < W (a) for all a ∈ R \ bZ.
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The periodicity of W reflects the periodicity of the crystal, while the minimum property is consistent
with the fact that the perfect crystal is assumed to minimize the energy.

In the face cubic structured (FCC) observed in many metals and alloys, dislocations move at low
temperature on the slip plane. In the present paper we are interested in describing the effective
dynamics for a collection of dislocations curves with the same Burgers’ vector and all contained in a
single slip plane x1x2, and moving in a landscape with periodic obstacles (that can be for instance pre-
cipitates in the material). These dislocations are represented by a single phase parameter u(t, x1, x2)

defined on the slip plane x1x2. The dynamic of dislocations is then described by the evolutive version
of the Peierls–Nabarro model (see for instance [33] and [10]):

∂t u = I1
[
u(t, ·)]− W ′(u) + σ obst

13 (t, x) in R+ ×RN (2.3)

for x ∈ RN with the physical dimension N = 2. In the model, the component σ obst
13 of the stress

(evaluated on the slip plane) has been introduced to take into account the shear stress not created by
the dislocations themselves. This shear stress is created by the presence of the periodic obstacles and
the possible external applied stress on the material.

We want to identify at large scale an evolution model for the dynamics of a density of dislocations.
We consider the following rescaling

uε(t, x) = εu

(
t

ε
,

x

ε

)
,

where ε is the ratio between the typical length scale for dislocation (of the order of the micrometer)
and the typical macroscopic length scale in mechanics (millimeter or centimeter). With such a rescal-
ing, we see that the number of dislocations is typically of the order of 1/ε per unit of macroscopic
scale. Moreover, assuming suitable initial data

u(0, x) = 1

ε
u0(εx) on RN (2.4)

(where u0 is a regular bounded function), we see that the functions uε are solutions of (1.1). This
indicates that at the limit ε → 0, we will recover a model for the dynamics of (renormalized) densities
of dislocations.

Remark 2.1. Fractional reaction–diffusion equations of the form

∂t u = I1[u] + f (u) in R+ ×RN (2.5)

where N � 2 and f is a bistable nonlinearity have been studied by Imbert and Souganidis [25]. In
this paper the authors show that solutions of (2.5), after properly rescaling them, exhibit the limit
evolution of an interface by (anisotropic) mean curvature motion.

Other results have been obtained by González and Monneau [19] for a rescaling of the evolutive
Peierls–Nabarro model in dimension N = 1. In the one-dimensional space, the limit moving interfaces
are points particles interacting with forces as 1/x. The dynamics of these particles corresponds to
the classical discrete dislocation dynamics, in the particular case of parallel straight edge dislocation
lines in the same slip plane with the same Burgers’ vector. In [14], considering another rescaling
of the model of particles obtained in [19], the authors identify at large scale an evolution model
for the dynamics of a density of dislocations, that is analogous to (1.4). In the present paper, we
directly deduce the model (1.4) at larger scale from the Peierls–Nabarro model at smaller scale in any
dimension N � 1. That way we remove the limitation to the dimension N = 1 that appears in [19].

Finally, let us mention that in [17] and [18] Garroni and Muller study a variational model for
dislocations that is the variational formulation of the stationary Peierls–Nabarro equation, where they
derive a line tension model.
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2.2. Mechanical interpretation of the homogenization

Let us briefly explain the meaning of the homogenization result. In the macroscopic model, the
function u0(t, x) can be interpreted as the plastic strain (localized in the slip plane {x3 = 0}). Then
the three-dimensional displacement U (t, X) is obtained as a minimizer of the elastic energy

U (t, ·) = arg min
Ũ

Eel(u0(t, ·), Ũ
)

and the stress is

σ = Λ : e with e = e(U ) − u0(t, x)δ0(x3)e0.

Then the resolved shear stress is

I1
[
u0] = σ obst

13

The homogenized equation (1.4), i.e.

∂t u0 = H
(∇xu0,I1

[
u0(t, ·)])

which is the evolution equation for u0, can be interpreted as the plastic flow rule in a model for
macroscopic crystal plasticity. This is the law giving the plastic strain velocity ∂t u0 as a function of
the resolved shear stress σ obst

13 and the dislocation density ∇u0.
The typical example of such a plastic flow rule is the Orowan’s law:

H(p, L) 
 |p|L.

This is also the law that we recover in dimension N = 1 in a forthcoming paper [32] in the case
where there are no obstacles (i.e. σ obst

13 ≡ 0) and for small stress L and small density |p|. When
σ obst

13 �≡ 0 with zero mean value (i.e. 〈σ obst
13 〉 = 0), we expect a threshold phenomenon as in [24] (see

also Norton’s law with threshold in [16]), i.e.

H(p, L) = 0 if |L| is small enough.

This means more generally that our homogenization procedure describes correctly the mechanical
behavior of the stress at large scales, but keeps the memory of the microstructure in the plastic law
with possible threshold effects.

3. Strategies of the main proofs

3.1. Strategy for the proof of convergence

3.1.1. The general approach
It has been already noticed that for problems periodic in uε/ε , we have to introduce twisted

correctors (see for instance [23]). It is also known that if we can claim that the limit function satisfies

∂t u0 �= 0 or ∇xu0 �= 0 (3.1)
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then we do not have to introduce an additional dimension to perform the proof of convergence. The
idea (see [23]) is that we can twist the corrector either dividing by pi := ∂xi u0 for some index i, or
by λ := ∂t u0 like considering the ansatz:

uε(t, x) 
 u0(t, x) + εv

(
u0(t, x) − p · x

ελ
,

x

ε

)
.

On the contrary, we do not know how to deal with the case where both quantities in (3.1) vanish,
except adding a dimension and considering twisted correctors in higher dimension. Here we have to
face a similar difficulty in the much more involved framework of non-local equations. Notice also that
it does not seem possible to apply the approach of Barles [6]. Therefore following the idea in [23], we
consider the solution U ε of⎧⎪⎨⎪⎩ ∂t U ε = I1

[
U ε(t, ·, xN+1)

]− W ′
(

U ε

ε

)
+ σ

(
t

ε
,

x

ε

)
in R+ ×RN+1,

U ε(0, x, xN+1) = u0(x) + pN+1xN+1 on RN+1,

(3.2)

where pN+1 �= 0. We then consider the following ansatz:

U ε(t, x, xN+1) 
 U 0(t, x, xN+1) + εV

(
t

ε
,

x

ε
,

U 0(t, x, xN+1) − λt − p · x

εpN+1

)
where U 0(t, x, xN+1) = u0(t, x) + pN+1xN+1. This ansatz turns out to be the good one, and plugging

this expression of U ε into (3.2), we find formally with τ = t
ε , y = x

ε , yN+1 = U 0(t,x,xN+1)−λt−p·x
pN+1ε

:

λ + ∂τ V = L + I1
[
V (τ , ·, yN+1)

]− W ′(V + p · y + pN+1 yN+1 + λτ) + σ(τ , y), (3.3)

where

λ = ∂t U 0(t, x, xN+1) = ∂t u0(t, x), p = ∇xU 0(t, x, xN+1) = ∇xu0(t, x)

and

L = I1
[
U 0(t, ·, xN+1)

] = I1
[
u0(t, ·)].

Then, we expect u0 to be solution of (1.4) with H(p, L) = λ(p, L). This heuristic computation, that
permits first of all to identify the cell problem in the higher dimensional space, can be made rigorous
through the perturbed test function method by Evans [13].

3.1.2. Additional difficulty
Let us enter a bit more in the details of the proof. Fix P0 = (t0, x0, x0

N+1) ∈ R+ ×RN+1 and define

Ũ ε(t, x, xN+1) = U 0(t, x, xN+1) + εV

(
t

ε
,

x

ε
,

U 0(t, x, xN+1) − λt − p · x

εpN+1

)
, (3.4)

where V is solution of (3.3) with λ = ∂t U 0(P0), p = ∇xU 0(P0) and L = I1[U 0(t0, ·, x0
N+1), x0]. Let us

call F (t, x, xN+1) = U 0(t,x,xN+1)−λt−p·x
pN+1

. Here we assume for simplicity that U 0 and V are smooth. The

proof of convergence consists in showing that Ũ ε is a solution of (3.2) in a cylinder (t0 − r, t0 + r) ×
Br(x0, x0

N+1) for r > 0 small enough, up to an error that goes to 0 as r → 0+ . This will allow us to
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compare U ε with Ũ ε and, thanks to the boundedness of V , to conclude that U ε converges to U 0 as
ε → 0.

When we plug Ũ ε into (3.2), we find the equation

λ + ∂τ V = L + I1
[
V (τ , ·, yN+1)

]− W ′(V + p · y + pN+1 yN+1 + λτ) + σ(τ , y) + or(1) + θr,

with τ = t
ε , y = x

ε , yN+1 = F (t,x,xN+1)

ε , where

θr = (
∂t U 0(P0) − ∂t U 0(t, x, xN+1)

)
∂yN+1 V (τ , y, yN+1)

+ I1

[
V

(
τ , ·, F (ετ , ε·, ε yN+1)

ε

)]
− I1

[
V (τ , ·, yN+1)

]
.

Then, Ũ ε will be a solution of (3.2) up to a small error if θr = or(1) as r → 0+. This last property
holds true if the corrector V satisfies: |V |, |∂yN+1 V |� C in R+ ×RN+1 for some C > 0, and

∂yN+1 V (τ , ·,·) is Hölder continuous, uniformly in time. (3.5)

In the case of the local first order equation (1.7) considered in [23], or non-local equations consid-
ered in [24], approximate correctors were only required to be Lipschitz continuous in the additional
variable. Here the additional regularity (3.5) is required because we deal with an operator I1 whose
kernel is singular.

Since in (3.3), the quantity I1[V (τ , ·, yN+1)] is computed only in the y variable, we cannot expect
this kind of regularity for the correctors. Nevertheless, we are able to construct regular approximated
sub and supercorrectors, i.e., sub and supersolutions of approximate N + 1-dimensional cell problems,
and this is enough to conclude. Finally, this construction works for any pN+1 �= 0 and to simplify the
presentation we take pN+1 = 1.

3.2. Strategy for the construction of smooth approximate correctors

As explained in the previous subsection, in the proof of convergence we will need smooth ap-
proximate sub and super-correctors on R+ × RN+1, i.e., for P = (p,1) ∈ RN+1 and L ∈ R, sub and
supersolutions of{

λ + ∂τ V = L + I1
[
V (τ , ·, yN+1)

]− W ′(V + P · Y + λτ) + σ(τ , y) in R+ ×RN+1,

V (0, Y ) = 0 on RN+1.
(3.6)

Here and in what follows, we denote Y = (y, yN+1). More precisely, we will prove the following
proposition.

Proposition 3.1 (Smooth approximate correctors). Let λ be the constant defined by Theorem 1.1. For any fixed
p ∈ RN , P = (p,1), L ∈ R and η > 0 small enough, there exist real numbers λ+

η (p, L), λ−
η (p, L), a constant

C > 0 (independent of η, p and L) and bounded super and subcorrectors V +
η , V −

η , i.e. respectively a super and
a subsolution of⎧⎪⎪⎨⎪⎪⎩

λ±
η + ∂τ V ±

η = L + I1
[
V ±

η (τ , ·, yN+1)
]

− W ′(V ±
η + P · Y + λ±

η τ
)+ σ(τ , y)∓oη(1) in R+ ×RN+1,

V ±
η (0, Y ) = 0 on RN+1,

(3.7)

where 0 � oη(1) → 0 as η → 0+ , such that
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lim
η→0+ λ+

η (p, L) = lim
η→0+ λ−

η (p, L) = λ(p, L), (3.8)

locally uniformly in (p, L), λ±
η satisfy (i) and (ii) of Proposition 5.4 and for any (τ , Y ) ∈R+ ×RN+1

∣∣V ±
η (τ , Y )

∣∣� C . (3.9)

Moreover V ±
η are of class C2 w.r.t. yN+1 , and for any 0 < α < 1

−1 � ∂yN+1 V ±
η � ‖W ′′‖∞

η
, (3.10)∥∥∂2

yN+1 yN+1
V ±

η

∥∥∞ � Cη,
〈
∂yN+1 V ±

η

〉α
y � Cη,α. (3.11)

Here in order to build Lipschitz sub/super correctors, it does not seem easy to apply a kind of
truncation of the Hamiltonian like in [23] or [24]. Therefore we use a different method to build such
approximate correctors (similar to the one in [15]).

The proof of Proposition 3.1 is mainly performed in two steps:

Step 1. Constructions of Lipschitz correctors. Using the modified Cauchy problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂τ U = L + I1

[
U (τ , ·, yN+1)

]− W ′(U + P · Y ) + σ(τ , y)

+ η
{

a0 + inf
Y ′ U

(
τ , Y ′)− U (τ , Y )

}
|∂yN+1 U + 1| in R+ ×RN+1,

U (0, Y ) = 0 on RN+1,

we construct Lipschitz correctors. The Lipschitz bound comes formally from the equation satisfied by
w = ∂yN+1 U :⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂τ w = I1
[

w(τ , ·, yN+1)
]− W ′′(U + P · Y )(w + 1) − ηw(τ , Y )|w + 1|

+ η
{

a0 + inf
Y ′ U

(
τ , Y ′)− U (τ , Y )

}
sign(∂yN+1 U + 1)∂yN+1 w in R+ ×RN+1,

w(0, Y ) = 0 on RN+1

and the comparison principle implies that

−1 � w � |W ′′|∞
η

. (3.12)

On the other hand we are able to show (as in [24]) that infY ′ U (τ , Y ′) − U (τ , Y ) remains bounded
independently on η. Then an appropriate choice of a0 large enough (resp. negative enough) provides
us bounded supercorrectors W +

η (resp. subcorrectors W −
η ). We also show using Proposition 4.7 and

the bound (3.12) that we have the following Hölder estimate:〈
W ±

η

〉α
y � Cα.

Step 2. Constructions of smooth correctors. We make a convolution with respect to yN+1 of the Lipschitz
correctors built in Step 1, with a sequence (ρδ)δ of mollifiers:

V ±
η,δ(t, y, yN+1) := W ±

η (t, y, ·) � ρδ(·).
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Those functions are finally the smooth approximate sub/super correctors of Proposition 3.1 with some
small error term oη(1) on the right hand side of the equation, for a suitable choice δ = δ(η).

4. Results about viscosity solutions for non-local equations

The classical notion of viscosity solution can be adapted for Hamilton–Jacobi equations involving
non-local operators, see for instance [5]. In this section we state comparison principles, existence and
regularity results for viscosity solutions of (1.1) and (1.4), that will be used later in the proofs.

4.1. Definition of viscosity solution

We first recall the definition of viscosity solution for a general first order non-local equation with
associated initial condition: {

ut = F
(
t, x, u, Du,I1[u]) in R+ ×RN ,

u(0, x) = u0(x) on RN ,
(4.1)

where F (t, x, u, p, L) is continuous and non-decreasing in L.

Definition 4.1 (r-Viscosity solution). A function u ∈ USCb(R
+ ×RN ) (resp., u ∈ LSCb(R

+ ×RN )) is an r-
viscosity subsolution (resp., supersolution) of (4.1) if u(0, x) � (u0)

∗(x) (resp., u(0, x) � (u0)∗(x)) and
for any (t0, x0) ∈ R+ × RN , any τ ∈ (0, t0) and any test function φ ∈ C2(R+ × RN) such that u − φ

attains a local maximum (resp., minimum) at the point (t0, x0) on Q (τ ,r)(t0, x0), then we have

∂tφ(t0, x0) − F
(
t0, x0, u(t0, x0),∇xφ(t0, x0),I1,r

1

[
φ(t0, ·), x0

]+ I2,r
1

[
u(t0, ·), x0

])
� 0

(resp., � 0).

A function u ∈ Cb(R
+ × RN ) is an r-viscosity solution of (4.1) if it is an r-viscosity sub and superso-

lution of (4.1).

It is classical that the maximum in the above definition can be supposed to be global and this will
be used later. We have also the following property, see e.g. [5]:

Proposition 4.1 (Equivalence of the definitions). Assume F (t, x, u, p, L) continuous and non-decreasing in L.
Let r > 0 and r′ > 0. A function u ∈ USCb(R

+ ×RN ) (resp., u ∈ LSCb(R
+ ×RN )) is an r-viscosity subsolution

(resp., supersolution) of (4.1) if and only if it is an r′-viscosity subsolution (resp., supersolution) of (4.1).

Because of this proposition, if we do not need to emphasize r, we will omit it when calling vis-
cosity sub and supersolutions.

4.2. Comparison principle and existence results

In this subsection, we successively give comparison principles and existence results for (1.1)
and (1.4). The following comparison theorem is shown in [29] for more general parabolic integro-
PDEs.

Proposition 4.2 (Comparison principle for (1.1)). Consider u ∈ USCb(R
+ × RN) subsolution and v ∈

LSCb(R
+ ×RN ) supersolution of (1.1), then u � v on R+ ×RN .

Following [29] it can also be proved the comparison principle for (1.1) in bounded domains. Since
we deal with a non-local equation, we need to compare the sub and the supersolution everywhere
outside the domain.
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Proposition 4.3 (Comparison principle on bounded domains for (1.1)). Let Ω be a bounded domain of
R+ ×RN and let u ∈ USCb(R

+ ×RN) and v ∈ LSCb(R
+ ×RN ) be respectively a sub and a supersolution of

∂t uε = I1
[
uε(t, ·)]− W ′

(
uε

ε

)
+ σ

(
t

ε
,

x

ε

)
in Ω . If u � v outside Ω , then u � v in Ω .

Proposition 4.4 (Existence for (1.1)). For ε > 0 there exists uε ∈ Cb(R
+ × RN ) (unique) viscosity solution

of (1.1). Moreover, there exists a constant C > 0 independent of ε such that

∣∣uε(t, x) − u0(x)
∣∣� Ct. (4.2)

Proof. Adapting the argument of [22], we can construct a solution by Perron’s method if we con-
struct sub and supersolutions of (1.1). Since u0 ∈ W 2,∞ , the two functions u±(t, x) := u0(x)±Ct are
respectively a super and a subsolution of (1.1) for any ε > 0, if

C � DN‖u0‖2,∞ + ∥∥W ′∥∥∞ + ‖σ‖∞,

with DN depending on the dimension N . By comparison we also get the estimate (4.2). �
We next recall the comparison and the existence results for (1.4).

Proposition 4.5. (See [24], Proposition 3.) Let H : RN × R → R be continuous with H(p, ·) non-decreasing
on R for any p ∈RN . If u ∈ USCb(R

+ ×RN ) and v ∈ LSCb(R
+ ×RN ) are respectively a sub and a supersolu-

tion of (1.4), then u � v on R+ ×RN . Moreover there exists a (unique) viscosity solution of (1.4).

In the next sections, we will embed the problem in the higher dimensional space R+ × RN+1

by adding a new variable xN+1 in the equations. We will need the following proposition showing
that sub and supersolutions of the higher dimensional problem are also sub and supersolutions of
the lower dimensional one. This in particular implies that the comparison principle between sub and
supersolutions remains true increasing the dimension.

Proposition 4.6. Assume F (t, x, xN+1, U , p, L) continuous and non-decreasing in L. Suppose that U ∈
LSCb(R

+ ×RN+1) (resp., U ∈ USCb(R
+ ×RN+1)) is a viscosity supersolution (resp., subsolution) of

Ut = F
(
t, x, xN+1, U , DxU ,I1

[
U (t, ·, xN+1)

])
in R+ ×RN+1, (4.3)

then, for any xN+1 ∈ R, U is a viscosity supersolution (resp., subsolution) of

Ut = F
(
t, x, xN+1, U , DxU ,I1

[
U (t, ·, xN+1)

])
in R+ ×RN .

Proof. Notice that in (4.3), there is no derivative with respect to xN+1 and no integral with respect to
dxN+1. Therefore xN+1 only appears as a parameter that can (at least formally) be frozen.

We now do the (rigorous) proof for supersolutions. Fix x0
N+1 ∈R. Let us consider a point (t0, x0) ∈

R+ ×RN and a smooth function ϕ :R+ ×RN →R such that

U
(
t, x, x0

N+1

)− ϕ(t, x) � U
(
t0, x0, x0

N+1

)− ϕ(t0, x0) = 0 for (t, x) ∈ Q τ ,r(t0, x0),

with r = 1. We have to show that
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∂tϕ(t0, x0) � F
(
t0, x0, x0

N+1, U
(
t0, x0, x0

N+1

)
, Dxϕ(t0, x0),I1

1

[
ϕ(t0, ·), x0

]
+ I2

1

[
U
(
t0, ·, x0

N+1

)
, x0

])
.

Without loss of generality, we can assume that the minimum is strict. For ε > 0 let ϕε : R+ ×RN+1 →
R be defined by

ϕε(t, x, xN+1) = ϕ(t, x) − 1

ε

∣∣xN+1 − x0
N+1

∣∣2.
Let (tε, xε, xε

N+1) be a minimum point of U − ϕε in Q τ ,r(t0, x0, x0
N+1). Standard arguments show that

(tε, xε, xε
N+1) → (t0, x0, x0

N+1) as ε → 0 and that limε→0 U (tε, xε, xε
N+1) = U (t0, x0, x0

N+1). In particu-

lar, (tε, xε, xε
N+1) is internal to Q τ ,r(t0, x0, x0

N+1) for ε small enough, then we get

∂tϕ(tε, xε) � F
(
tε, xε, U

(
tε, xε, xε

N+1

)
, Dxϕ(tε, xε),I1

1

[
ϕ(tε, ·), xε

]
+ I2

1

[
U
(
tε, ·, xε

N+1

)
, xε

])
. (4.4)

By the Dominate Convergence Theorem limε→0 I1
1 [ϕ(tε, ·), xε ] = I1

1 [ϕ(t0, ·), x0]; by Fatou’s Lemma
and the convergence of U (tε, xε, xε

N+1) to U (t0, x0, x0
N+1), we deduce that

I2
1

[
U
(
t0, ·, x0

N+1

)
, x0

]
� lim inf

ε→0
I2

1

[
U
(
tε, ·, xε

N+1

)
, xε

]
.

Then, passing to the limit in (4.4) and using the continuity and monotonicity of F , we get the desired
inequality. �
4.3. Hölder regularity

In this subsection we state a regularity result for sub and supersolutions of semilinear non-local
equations. The proof is postponed in Appendix A.

Proposition 4.7 (Hölder regularity). Assume (H1) and let g1, g2 ∈ R. Suppose that u ∈ C(R+ × RN ) and
bounded on R+ ×RN is a viscosity subsolution of

{
∂t u = I1

[
u(t, ·)]+ g1 in R+ ×RN ,

u(0, x) = 0 on RN ,

and a viscosity supersolution of

{
∂t u = I1

[
u(t, ·)]+ g2 in R+ ×RN ,

u(0, x) = 0 on RN .

Then, for any 0 < α < 1, u ∈ Cα
x (R+ ×RN ) with 〈u〉αx � C, where C depends on ‖u‖∞ , g1 and g2 .

Notice that this regularity result will be used to establish a bound on the Hölder regularity in
y of ∂yN+1 V ±

η for smooth approximate correctors V ±
η that will be used in Step 1.2 of the proof of

Lemma 5.5 used in the proof of the convergence result (Theorem 1.2).
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5. The proof of convergence

This section is dedicated to the proof of Theorem 1.2. As explained in Subsection 1.3, we imbed
our problem in a higher dimensional one. We consider U ε solution of⎧⎪⎨⎪⎩ ∂t U ε = I1

[
U ε(t, ·, xN+1)

]− W ′
(

U ε

ε

)
+ σ

(
t

ε
,

x

ε

)
in R+ ×RN+1,

U ε(0, x, xN+1) = u0(x) + xN+1 on RN+1.

(5.1)

By Proposition 4.6 and Proposition 4.2, the comparison principle holds true for (5.1). Then, as in the
proof of Proposition 4.4, by Perron’s method we have:

Proposition 5.1 (Existence for (5.1)). For ε > 0 there exists U ε ∈ Cb(R
+ ×RN+1) (unique) viscosity solution

of (5.1). Moreover, there exists a constant C > 0 independent of ε such that

∣∣U ε(t, x, xN+1) − u0(x) − xN+1
∣∣� Ct. (5.2)

Let us exhibit the link between the problem in RN and the problem in RN+1.

Lemma 5.2 (Link between the problems on RN and on RN+1). If uε and U ε denote respectively the solution
of (1.1) and (5.1), then we have∣∣∣∣U ε(t, x, xN+1) − uε(t, x) − ε

⌊
xN+1

ε

⌋∣∣∣∣� ε,

U ε

(
t, x, xN+1 + ε

⌊
a

ε

⌋)
= U ε(t, x, xN+1) + ε

⌊
a

ε

⌋
for any a ∈R. (5.3)

This lemma is a consequence of the comparison principle for (5.1), the invariance by ε-translations
w.r.t. xN+1 and the monotonicity of U ε w.r.t. xN+1.

Let us now consider the problem{
∂t U = H

(∇xU ,I1
[
U (t, ·, xN+1)

])
in R+ ×RN+1,

U (0, x, xN+1) = u0(x) + xN+1 on RN+1.
(5.4)

The link between problems (1.4) and (5.4) is given by the following lemma (analogue to Lemma 5.2).

Lemma 5.3. Let u0 and U 0 be respectively the solutions of (1.4) and (5.4). Then, we have

U 0(t, x, xN+1) = u0(t, x) + xN+1.

Lemma 5.3 is a consequence of the comparison principle for (5.4) and the invariance by transla-
tions w.r.t. xN+1.

We need to make more precise the dependence of the real number λ given by Theorem 1.1 on its
variables. The following properties will be shown in the next section.

Proposition 5.4 (Properties of the effective Hamiltonian). Let p ∈ RN and L ∈ R. Let H(p, L) be the constant
defined by Theorem 1.1, then H : RN ×R→ R is a continuous function with the following properties:

(i) H(p, L) → ±∞ as L → ±∞ for any p ∈RN .
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(ii) H(p, ·) is non-decreasing on R for any p ∈ RN .
(iii) If σ(τ , y) = σ(τ ,−y) then

H(p, L) = H(−p, L).

(iv) If W ′(−s) = −W ′(s) and σ(τ ,−y) = −σ(τ , y) then

H(p,−L) = −H(p, L).

5.1. Proof of Theorem 1.2

Step 1. The classical approach. By (5.2), we know that the family of functions {U ε}ε>0 is locally
bounded, then U+ := lim sup∗

ε→0 U ε is everywhere finite. Classically we prove that U+ is a subso-
lution of (5.4).

Similarly, we can prove that U− = lim inf∗ε→0U ε is a supersolution of (5.4). Moreover
U+(0, x, xN+1) = U−(0, x, xN+1) = u0(x) + xN+1. The comparison principle for (5.4), which is an im-
mediate consequence of Propositions 4.5 and 4.6, then implies that U+ � U− . Since the reverse
inequality U− � U+ always holds true, we conclude that the two functions coincide with U 0, the
unique viscosity solution of (5.4).

By Lemmata 5.2 and 5.3, the convergence of U ε to U 0 proves in particular that uε converges
towards u0 viscosity solution of (1.4).

To prove that U+ is a subsolution of (5.4), we argue by contradiction. In what follows we will
use the notation X = (x, xN+1). We consider a test function φ such that U+ − φ attains a zero maxi-
mum at (t0, X0) with t0 > 0 and X0 = (x0, x0

N+1). Without loss of generality we may assume that the
maximum is strict and global. Suppose that there exists θ > 0 such that

∂tφ(t0, X0) = H
(∇xφ(t0, X0), L0

)+ θ,

where

L0 =
∫

|x|�1

(
φ
(
t0, x0 + x, x0

N+1

)− φ(t0, X0) − ∇xφ(t0, X0) · x
)
μ(dx)

+
∫

|x|>1

(
U+(t0, x0 + x, x0

N+1

)− U+(t0, X0)
)
μ(dx). (5.5)

Step 2. Construction of φε . By Proposition 5.4, we know that there exists L1 > 0 (that we take minimal)
such that

H
(∇xφ(t0, X0), L0

)+ θ = H
(∇xφ(t0, X0), L0 + L1

)
.

By Propositions 3.1 and 5.4, we can consider a sequence Lη → L1 as η → 0+ , such that λ+
η (∇xφ(t0, X0),

L0 + Lη) = λ(∇xφ(t0, X0), L0 + L1). We choose η so small that Lη − oη(1) � L1/2 > 0, where oη(1) is
defined in Proposition 3.1. Let V +

η be the approximate supercorrector given by Proposition 3.1 with

p = ∇xφ(t0, X0), L = L0 + Lη

and

λ+
η = λ+

η (p, L0 + Lη) = ∂tφ(t0, X0).



R. Monneau, S. Patrizi / J. Differential Equations 253 (2012) 2064–2105 2081
For simplicity of notations, in the following we denote V = V +
η . We consider the function F (t, X) =

φ(t, X) − p · x − λt , and as in [23] and [24] we introduce the “xN+1-twisted perturbed test function”
φε defined by:

φε(t, X) :=
{

φ(t, X) + εV ( t
ε , x

ε ,
F (t,X)

ε ) + εkε in (
t0
2 ,2t0) × B 1

2
(X0),

U ε(t, X) outside,
(5.6)

where kε ∈ Z will be chosen later.

Step 3. Checking that φε is a supersolution.
Step 3.1. Outside Q r,r(t0, x0). We are going to prove that φε is a supersolution of (5.1) in Q r,r(t0, X0)

for some r < 1
2 properly chosen and such that Q r,r(t0, X0) ⊂ (

t0
2 ,2t0) × B 1

2
(X0). First, remark that

since U+ − φ attains a strict maximum at (t0, X0) with U+ − φ = 0 at (t0, X0) and V is bounded, we
can ensure that there exists ε0 = ε0(r) > 0 such that for ε � ε0

U ε(t, X) � φ(t, X) + εV

(
t

ε
,

x

ε
,

F (t, X)

ε

)
− γr in

(
t0

3
,3t0

)
× B1(x0) \ Q r,r(t0, x0) (5.7)

for some γr = or(1) > 0. Hence choosing kε = −γr
ε � we get U ε � φε outside Q r,r(t0, X0).

Step 3.2. Inside Q r0,r0(t0, x0): φε tested by ψ . Let us next study the equation. From (5.3), we deduce
that U+(t, x, xN+1 +a) = U+(t, x, xN+1)+a for any a ∈R, from which we derive that ∂xN+1 F (t0, X0) =
∂xN+1φ(t0, X0) = 1. Then, there exists r0 > 0 such that the map

Id × F : Q r0,r0(t0, X0) −→ Ur0

(t, x, xN+1) �−→ (
t, x, F (t, x, xN+1)

)
is a C1-diffeomorphism from Q r0,r0(t0, X0) onto its range Ur0 . Let G : Ur0 → R be the map such that

Id × G : Ur0 −→ Q r0,r0(t0, X0)

(t, x, ξN+1) �−→ (
t, x, G(t, x, ξN+1)

)
is the inverse of Id × F . Let us introduce the variables τ = t/ε , Y = (y, yN+1) with y = x/ε and
yN+1 = F (t, X)/ε . Let us consider a test function ψ such that φε − ψ attains a global zero minimum
at (t, X) ∈ Q r0,r0(t0, X0) and define

Γ ε(τ , Y ) = 1

ε

[
ψ
(
ετ , ε y, G(ετ , ε y, ε yN+1)

)− φ
(
ετ , ε y, G(ετ , ε y, ε yN+1)

)]− kε .

Then

ψ(t, X) = φ(t, X) + εΓ ε

(
t

ε
,

x

ε
,

F (t, X)

ε

)
+ εkε

and Γ ε is a test function for V :

Γ ε(τ , Y ) = V (τ , Y ) and Γ ε(τ , Y ) � V (τ , Y ) for all (ετ , εY ) ∈ Q r0,r0(t0, X0), (5.8)

where τ = t/ε , y = x/ε, yN+1 = F (t, X)/ε , Y = (y, yN+1). From Proposition 3.1, we know that V is
Lipschitz continuous w.r.t. yN+1 with Lipschitz constant Mη depending on η. This implies that∣∣∂yN+1Γ

ε(τ , Y )
∣∣� Mη. (5.9)
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Simple computations yield with P = (p,1) ∈ RN+1:

⎧⎨⎩
λ+
η + ∂τΓ ε(τ , Y ) = ∂tψ(t, X) + (

1 + ∂yN+1Γ
ε(τ , Y )

)(
∂tφ(t0, X0) − ∂tφ(t, X)

)
,

λ+
η τ + P · Y + V (τ , Y ) = φε(t, X)

ε
− kε .

(5.10)

Using (5.10) and (5.9), Eq. (3.7) yields for any ρ > 0

∂tψ(t, X) + or(1) � L0 + Lη + I1,ρ
1

[
Γ ε(τ , ·, yN+1), y

]+ I2,ρ
1

[
V (τ , ·, yN+1), y

]
− W ′

(
φε(t, X)

ε

)
+ σ

(
t

ε
,

x

ε

)
− oη(1). (5.11)

With the following lemma (which will be proved in the next subsection), we make rigorous the
heuristic computations done in Subsection 3.1.2 to estimate the error when plugging (3.4) in (3.2).

Lemma 5.5 (Supersolution property for φε ). For ε � ε0(r) < r � r0 , we have

∂tψ(t, X) � I1,1
1

[
ψ(t, ·, xN+1), x

]+ I2,1
1

[
φε(t, ·, xN+1), x

]
− W ′

(
φε(t, X)

ε

)
+ σ

(
t

ε
,

x

ε

)
− oη(1) + or(1) + Lη.

Let r � r0 be so small that or(1) � −L1/4. Then, recalling that Lη − oη(1) � L1/2, for ε � ε0(r) we
have

∂tψ(t, X) � I1,1
1

[
ψ(t, ·, xN+1), x

]+ I2,1
1

[
φε(t, ·, xN+1), x

]
− W ′

(
φε(t, X)

ε

)
+ σ

(
t

ε
,

x

ε

)
+ L1

4
,

and therefore φε is a supersolution of (5.1) in Q r,r(t0, X0).

Step 4. Conclusion. Since U ε � φε outside Q r,r(t0, X0), by the comparison principle, Proposition 4.3,
we conclude that U ε(t, X)� φ(t, X)+εV ( t

ε , x
ε ,

F (t,X)
ε )+εkε in Q r,r(t0, X0) and we obtain the desired

contradiction by passing to the upper limit as ε → 0 at (t0, X0) using the fact that U+(t0, X0) =
φ(t0, X0): 0 � −γr .

This ends the proof of Theorem 1.2.

5.2. Proof of Lemma 5.5

The result will follow from (5.11) and the following inequality

L0 + I1,ρ
1

[
Γ ε(τ , ·, yN+1), y

]+ I2,ρ
1

[
V (τ , ·, yN+1), y

]
� I1,1

1

[
ψ(t, ·, xN+1), x

]+ I2,1
1

[
φε(t, ·, xN+1), x

]+ or(1). (5.12)

To show the result, we proceed in several steps. In what follows, we denote by C various positive
constants independent of ε . We start to call
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L1
0 =

∫
|x|�1

(
φ
(
t0, x0 + x, x0

N+1

)− φ(t0, X0) − ∇φ(t0, X0) · x
)
μ(dx),

L2
0 =

∫
|x|>1

(
U+(t0, x0 + x, x0

N+1

)− U+(t0, X0)
)
μ(dx).

Then, recalling the definition (5.5) of L0, we can write

L0 = L1
0 + L2

0. (5.13)

Keep in mind that yN+1 = F (t,X)
ε . Since ψ(t, X) = φ(t, X) + εΓ ε( t

ε , x
ε ,

F (t,X)
ε ) + εkε , we have

I1,1
1

[
ψ(t, ·, xN+1), x

] = I1 + I2, (5.14)

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
I1 =

∫
|x|�1

ε

(
Γ ε( t

ε , x+x
ε ,

F (t,x+x,xN+1)

ε ) − Γ ε(τ , Y )

−∇yΓ
ε(τ , Y ) · x

ε − ∂yN+1Γ
ε(τ , Y )∇x F (t, X) · x

ε

)
μ(dx),

I2 =
∫

|x|�1

(
φ(t, x + x, xN+1) − φ(t, X) − ∇φ(t, X) · x

)
μ(dx).

In order to show (5.12), we show successively in Steps 1, 2 and 3:⎧⎪⎪⎨⎪⎪⎩
I1 � I1,ρ

1

[
Γ ε(τ , ·, yN+1), y

]+ I2,ρ
1

[
V (τ , ·, yN+1), y

]+ or(1) + Cερ,

I2 � L1
0 + or(1),

I2,1
1

[
φε(t, ·, xN+1), x

]
� L2

0 + or(1).

Because the expressions are non-linear and non-local and with a singular kernel, there is no simple
computation and we have to carefully check those inequalities sometimes splitting terms in easier
parts to estimate.

Step 1. We can choose ε0 so small that for any ε � ε0 and any ρ > 0 small enough

I1 � I1,ρ
1

[
Γ ε(τ , ·, yN+1), y

]+ I2,ρ
1

[
V (τ , ·, yN+1), y

]+ or(1) + Cερ.

Take ρ > 0, δ > ρ small and R > 0 large and such that εR < 1. Since g is even, we can write

I1 = I0
1 + I1

1 + I2
1 + I3

1,

where

I0
1 =

∫
|x|�ερ

ε

(
Γ ε

(
t

ε
,

x + x

ε
,

F (t, x + x, xN+1)

ε

)
− Γ ε(τ , Y ) − ∇yΓ

ε(τ , Y ) · x

ε

− ∂yN+1Γ
ε(τ , Y )∇x F (t, X) · x

ε

)
μ(dx),
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I1
1 =

∫
ερ�|x|�εδ

ε

(
Γ ε

(
t

ε
,

x + x

ε
,

F (t, x + x, xN+1)

ε

)
− Γ ε(τ , Y )

)
μ(dx),

I2
1 =

∫
εδ�|x|�εR

ε

(
Γ ε

(
t

ε
,

x + x

ε
,

F (t, x + x, xN+1)

ε

)
− Γ ε(τ , Y )

)
μ(dx),

I3
1 =

∫
εR�|x|�1

ε

(
Γ ε

(
t

ε
,

x + x

ε
,

F (t, x + x, xN+1)

ε

)
− Γ ε(τ , Y )

)
μ(dx).

Moreover

I2,ρ
1

[
V (τ , ·, yN+1), y

] = J1 + J2 + J3,

where

J1 =
∫

ρ<|z|�δ

(
V (τ , y + z, yN+1) − V (τ , Y )

)
μ(dz),

J2 =
∫

δ<|z|�R

(
V (τ , y + z, yN+1) − V (τ , Y )

)
μ(dz),

J3 =
∫

|z|>R

(
V (τ , y + z, yN+1) − V (τ , Y )

)
μ(dz).

Step 1.1. Estimate of I0
1 and I1,ρ

1 [Γ ε(τ , ·, yN+1), y].
Since Γ ε is of class C2, we have

∣∣I0
1

∣∣, ∣∣I1,ρ
1

[
Γ ε(τ , ·, yN+1), y

]∣∣� Cερ, (5.15)

where Cε depends on the second derivatives of Γ ε . Remark that if we knew that V is smooth in y
too, we could choose ρ = 0.

Step 1.2. Estimate of I1
1 − J1 .

Using (5.8) and the fact that g is even, we can estimate I1
1 − J1 as follows

I1
1 − J1 �

∫
ρ<|z|�δ

[
V

(
τ , y + z,

F (t, x + εz, xN+1)

ε

)
− V

(
τ , y + z,

F (t, x)

ε

)]
μ(dz)

=
∫

ρ<|z|�δ

{[
V

(
τ , y + z,

F (t, x + εz, xN+1)

ε

)
− V

(
τ , y + z,

F (t, x)

ε

)

− ∂yN+1 V

(
τ , y + z,

F (t, X)

ε

)
∇x F (t, X) · z

]
+ [

∂yN+1 V (τ , y + z, yN+1) − ∂yN+1 V (τ , Y )
]∇x F (t, X) · z

}
μ(dz).
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Next, using (3.10) and (3.11), we get

I1
1 − J1 � C

∫
|z|�δ

(|z|2 + |z|1+α
)
μ(dz) � Cδα. (5.16)

Step 1.3. Estimate of I2
1 − J2 .

If Mη is the Lipschitz constant of V w.r.t. yN+1, then

I2
1 − J2 �

∫
δ<|z|�R

(
V

(
τ , y + z,

F (t, x + εz, xN+1)

ε

)
− V

(
τ , y + z,

F (t, X)

ε

))
μ(dz)

� Mη

∫
δ<|z|�R

∣∣∣∣ F (t, x + εz, xN+1)

ε
− F (t, X)

ε

∣∣∣∣μ(dz)

� Mη

∫
δ<|z|�R

sup
|z|�R

∣∣∇x F (t, x + εz, xN+1)
∣∣|z|μ(dz).

Then

I2
1 − J2 � C sup

|z|�R

∣∣∇x F (t, x + εz, xN+1)
∣∣ log(R/δ). (5.17)

Step 1.4. Estimate of I3
1 and J3 .

Since V is uniformly bounded on R+ ×RN+1, we have

I3
1 �

∫
R<|z|� 1

ε

(
V

(
τ , y + z,

F (t, x + εz, xN+1)

ε

)
− V (τ , Y )

)
μ(dz)

�
∫

|z|>R

2‖v‖∞μ(dz) � C

R
. (5.18)

Similarly

| J3|� C

R
. (5.19)

Now, from (5.15)–(5.19), we infer that

I1 � I1,ρ
1

[
Γ ε(τ , ·, yN+1), y

]+ I2,ρ
1

[
V (τ , ·, yN+1), y

]+ 2Cερ + Cδα

+ C sup
|z|�R

∣∣∇x F (t, x + εz, xN+1)
∣∣ log

(
R

δ

)
+ C

R
.
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We choose R = R(r) such R → +∞ as r → 0+ , ε0 = ε0(r) such that Rε0(r) � r and δ = δ(r) > 0
such that δ → 0 as r → 0+ and r log(R/δ) → 0 as r → 0+ . With this choice, for any ε � ε0 and any
ρ < δ

Cδα + C sup
|z|�R

∣∣∇x F (t, x + εz, xN+1)
∣∣ log

(
R

δ

)
+ C

R
= or(1) as r → 0+,

and Step 1 is proved.

Step 2. I2 � L1
0 + or(1). For 0 < ν < 1 we can split I2 and L1

0 as follows

I2 =
∫

|x|�ν

(
φ(t, x + x, xN+1) − φ(t, X) − ∇φ(t, X) · x

)
μ(dx)

+
∫

ν�|x|�1

(
φ(t, x + x, xN+1) − φ(t, X)

)
μ(dx) = I1

2 + I2
2,

L1
0 =

∫
|x|�ν

(
φ
(
t0, x0 + x, x0

N+1

)− φ(t0, X0) − ∇φ(t0, X0) · x
)
μ(dx)

+
∫

ν�|x|�1

(
φ
(
t0, x0 + x, x0

N+1

)− φ(t0, X0)
)
μ(dx) = T1 + T2.

Since φ is of class C2 we have

I1
2, T1 � Cν.

Using the Lipschitz continuity of φ we get

I2
2 − T2 =

∫
ν<|x|�1

Crμ(dx) � C
r

ν
.

Hence, Step 2 follows choosing ν = ν(r) such that ν → 0 and r/ν → 0 as r → 0+ .

Step 3. I2,1
1 [φε(t, ·, xN+1), x] � L2

0 + or(1). Remark that

U ε(t, x + x, xN+1) − φ(t, X) − εV (τ , Y ) − εkε

� U+(t0, x0 + x, x0
N+1

)− φ(t0, X0) + oε(1) + or(1).

Then, recalling that φ(t0, X0) = U+(t0, X0), for ε � ε0 we get

I2,1
1

[
φε(t, ·, xN+1), x

]− L2
0 � or(1)

and Step 3 is proved.
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Finally (5.13), (5.14), Steps 1, 2 and 3 give

I1,1
1

[
ψ(t, ·, xN+1), x

]+ I2,1
1

[
φε(t, ·, xN+1), x

]
� I1,ρ

1

[
Γ ε(τ , ·, yN+1), y

]+ I2,ρ
1

[
V (τ , ·, yN+1), y

]+ L0 + or(1) + Cερ,

from which, using inequality (5.11) and letting ρ → 0+ , we get for ε � ε0

∂tψ(t, X) � I1,1
1

[
ψ(t, ·, xN+1), x

]+ I2,1
1

[
φε(t, ·, xN+1), x

]− W ′
(

φε(t, X)

ε

)
+ σ

(
t

ε
,

x

ε

)
− oη(1) + or(1) + Lη

and this concludes the proof of the lemma. �
6. Building of Lipschitz sub and supercorrectors

In this section we construct bounded sub and supersolutions of (3.6) that are Lipschitz w.r.t. yN+1.
As a byproduct, we will prove Theorem 1.1 and Proposition 5.4.

Proposition 6.1 (Lipschitz continuous sub and supercorrectors). Let λ be the quantity defined by Theorem 1.1.
Then, for any fixed p ∈ RN , P = (p,1), L ∈ R and η > 0 small enough, there exist real numbers λ+

η (p, L),
λ−
η (p, L), a constant C > 0 (independent of η, p and L) and bounded super and subcorrectors W +

η , W −
η i.e.

respectively a super and a subsolution of (3.6) (with respectively λ+
η and λ−

η in place of λ) such that

lim
η→0+ λ+

η (p, L) = lim
η→0+ λ−

η (p, L) = λ(p, L),

λ±
η satisfy (i) and (ii) of Proposition 5.4 and for any (τ , Y ) ∈R+ ×RN+1

∣∣W ±
η (τ , Y )

∣∣� C . (6.1)

Moreover W ±
η are Lipschitz continuous w.r.t. yN+1 and α-Hölder continuous w.r.t. y for any 0 < α < 1, with

−1 � ∂yN+1 W ±
η � ‖W ′′‖∞

η
, (6.2)〈

W ±
η

〉α
y � Cη. (6.3)

In order to prove the proposition, for η � 0, a0, L ∈ R, p ∈ RN and P = (p,1), we introduce the
problem ⎧⎪⎪⎨⎪⎪⎩

∂τ U = L + I1
[
U (τ , ·, yN+1)

]− W ′(U + P · Y ) + σ(τ , y)

+ η
[
a0 + inf

Y ′ U
(
τ , Y ′)− U (τ , Y )

]
|∂yN+1 U + 1| in R+ ×RN+1,

U (0, Y ) = 0 on RN+1.

(6.4)

We have the following result whose proof is postponed to Appendix A.

Proposition 6.2 (Comparison principle for (6.4)). Let U1 ∈ USCb(R
+ × RN+1) and U2 ∈ LSCb(R

+ × RN+1)

be respectively a viscosity subsolution and supersolution of (6.4), then U1 � U2 on R+ ×RN+1 .
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6.1. Lipschitz regularity

Proposition 6.3 (Lipschitz continuity in yN+1). Suppose η > 0. Let Uη ∈ Cb(R
+ × RN+1) be the viscosity

solution of (6.4). Then Uη is Lipschitz continuous w.r.t. yN+1 and for almost every (τ , Y ) ∈R+ ×RN+1

−1 � ∂yN+1 Uη(τ , Y ) � ‖W ′′‖∞
η

. (6.5)

For a formal argument, we refer the reader to Step 1 of Subsection 3.2.

Proof. Let us define Û (τ , Y ) = U (τ , Y ) + yN+1, then Û satisfies

⎧⎪⎪⎨⎪⎪⎩
∂τ Û = L + I1

[
Û (τ , ·, yN+1)

]− W ′(Û + p · y) + σ(τ , y)

+ η
[
a0 + inf

Y ′
(
Û
(
τ , Y ′)− y′

N+1

)− (
Û (τ , Y ) − yN+1

)]|∂yN+1 Û | in R+ ×RN+1,

Û (0, Y ) = yN+1 on RN+1.

(6.6)

We are going to prove that Û is Lipschitz continuous w.r.t. yN+1 with

0 � ∂yN+1 Û (τ , Y ) � 1 + ‖W ′′‖∞
η

.

By comparison, Û (t, y, yN+1) � Û (t, y, yN+1 + h) for h � 0, from which immediately follows that
∂yN+1 Û � 0. In particular we can replace |∂yN+1 Û | by ∂yN+1 Û in (6.6).

Let us now show that ∂yN+1 Û � 1 + ‖W ′′‖∞
η . We argue by contradiction by assuming that for some

T > 0 the supremum of the function Û (τ , y, yN+1)− Û (τ , y, zN+1)− K |yN+1 − zN+1| on [0, T ]×RN+1

is strictly positive as soon as K > 1 + ‖W ′′‖∞
η . Then for δ,β > 0 small enough, M defined by

M = max
(τ ,y)∈[0,T ]×R

N

yN+1,zN+1∈R

(
Û (τ , y, yN+1) − Û (τ , y, zN+1) − K |yN+1 − zN+1| − βψ(Y ) − δ

T − τ

)
,

where ψ is defined as the function ψ2 in the proof of Proposition 4.7, is positive. For j > 0 let

M j = max
τ ,s∈[0,T ],y,z∈RN

yN+1,zN+1∈R

(
Û (τ , y, yN+1) − Û (s, z, zN+1) − K |yN+1 − zN+1| − βψ(Y )

− δ

T − τ
− j|τ − s|2 − j|y − z|2

)
,

and let (τ j, y j, y j
N+1, s j, z j, z j

N+1) ∈ ([0, T ] ×RN+1)2 be a point where M j is attained. Classical argu-

ments show that M j → M , (τ j, y j, y j
N+1, s j, z j, z j

N+1) → (τ , y, yN+1, τ , y, zN+1) as j → +∞, where
(τ , y, yN+1, zN+1) is a point where M is attained.

Remark that 0 < τ < T , moreover, since Û (τ , y, yN+1) > Û (τ , y, zN+1) and Û is non-decreasing in
yN+1, it is

yN+1 > zN+1. (6.7)
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In particular y j
N+1 �= z j

N+1 and 0 < s j , τ j < T for j large enough. Hence, for r > 0, we obtain the
following viscosity inequalities

δ

(T − τ j)
2

+ j(t j − s j)

� L + CN jr + βI1,r
1

[
ψ
(·, y j

N+1

)
, y j]+ I2,r

1

[
Û
(
τ j, ·, y j

N+1

)
, y j]

− W ′(Û
(
τ j, y j, y j

N+1

)+ p · y j)+ σ
(
τ j, y j)+ η

[
a0 + inf

Y ′
(
Û
(
τ j, Y ′)− y′

N+1

)
− (

Û
(
τ j, y j, y j

N+1

)− y j
N+1

)](
K

y j
N+1 − z j

N+1

|y j
N+1 − z j

N+1|
+ β∂yN+1ψ

(
y j, y j

N+1

))
, (6.8)

and

j(t j − s j) � L − CN jr + I2,r
1

[
Û
(
s j, ·, z j

N+1

)
, z j]− W ′(Û

(
s j, z j, z j

N+1

)+ p · z j)+ σ
(
s j, z j)

+ η
[
a0 + inf

Y ′
(
Û
(
s j, Y ′)− y′

N+1

)− (
Û
(
s j, z j, z j

N+1

)− z j
N+1

)]
K

y j
N+1 − z j

N+1

|y j
N+1 − z j

N+1|
,

(6.9)

where CN is a constant depending on N . Since (τ j, y j, y j
N+1, s j, z j, z j

N+1) is a maximum point, we
have

Û
(
τ j, y j + x, y j

N+1

)− Û
(
τ j, y j, y j

N+1

)
� Û

(
s j, z j + x, z j

N+1

)− Û
(
s j, z j, z j

N+1

)
+ β

[
ψ
(

y j + x, y j
N+1

)− ψ
(

y j, y j
N+1

)]
for any x ∈RN , which implies that for any r > 0

I2,r
1

[
Û
(
τ j, ·, y j

N+1

)
, y j]� I2,r

1

[
Û
(
s j, ·, z j

N+1

)
, z j]+ βI2,r

1

[
ψ
(·, y j

N+1

)
, y j].

Hence, subtracting (6.8) with (6.9), sending r → 0+ and then j → +∞, we get

δ

(T − τ )2
� βI1

[
ψ(·, yN+1), y

]+ W ′(Û (τ , y, zN+1) + p · y
)− W ′(Û (τ , y, yN+1) + p · y

)
− η

[
Û (τ , y, yN+1) − Û (τ , y, zN+1) − (yN+1 − zN+1)

]
K

yN+1 − zN+1

|yN+1 − zN+1|
+ β∂yN+1ψ(y, yN+1)η

[
a0 + inf

Y ′
(
Û
(
τ , Y ′)− y′

N+1

)− (
Û (τ , y, yN+1) − yN+1

)]
�

∥∥W ′′∥∥∞|Û (τ , y, yN+1) − Û (τ , y, zN+1)|

− Kη
[
Û (τ , y, yN+1) − Û (τ , y, zN+1) − (yN+1 − zN+1)

] yN+1 − zN+1

|yN+1 − zN+1| + βC .

Then, using (6.7) and that K |yN+1 − zN+1| < Û (τ , y, yN+1) − Û (τ , y, zN+1), for β small enough, we
finally obtain (∥∥W ′′∥∥∞ + η − ηK

)(
Û (τ , y, yN+1) − Û (τ , y, zN+1)

)
� 0,

which is a contradiction for K > 1 + ‖W ′′‖∞
η . �
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6.2. Ergodicity

Proposition 6.4 (Ergodic properties). There exists a unique λη = λη(p, L) such that the viscosity solution
Uη ∈ Cb(R

+ ×RN+1) of (6.4) with η � 0, satisfies:

∣∣Uη(τ , Y ) − λητ
∣∣� C3 for all τ > 0, Y ∈RN+1, (6.10)

with C3 independent of η. Moreover

L − ∥∥W ′∥∥∞ − ‖σ‖∞ + ηa0 � λη � L + ∥∥W ′∥∥∞ + ‖σ‖∞ + ηa0. (6.11)

Proof. For simplicity of notations, in what follows we denote U = Uη and λ = λη .
To prove the proposition we follow the proof of the analogue result in [24]. We proceed in three

steps.

Step 1. Existence. The functions W +(τ , Y ) = C+τ and W −(τ , Y ) = C−τ , where

C± = L ± ∥∥W ′∥∥∞ ± ‖σ‖∞ + ηa0,

are respectively sub and supersolution of (6.4). Then the existence of a unique solution of (6.4) follows
from Perron’s method.

Step 2. Control of the oscillations w.r.t. space. We want to prove that there exists C1 > 0 such that

∣∣U (τ , Y ) − U (τ , Z)
∣∣� C1 for all τ � 0, Y , Z ∈RN+1. (6.12)

Step 2.1. For a given k ∈ ZN+1, we set P ·k = l +α, with l ∈ Z and α ∈ [0,1). The function Ũ (τ , Y ) =
U (τ , Y + k) + α is still a solution of (6.4), with Ũ (0, Y ) = α Moreover

U (0, Y ) = 0 � Ũ (0, Y ) = α � 1 = U (0, Y ) + 1.

Then from the comparison principle for (6.4) and invariance by integer translations we deduce for all
τ � 0:

∣∣U (τ , Y + k) − U (τ , Y )
∣∣� 1. (6.13)

Step 2.2. We proceed as in [24] by considering the functions

M(τ ) := sup
Y ∈RN+1

U (τ , Y ), m(τ ) := inf
Y ∈RN+1

U (τ , Y ),

q(τ ) := M(τ ) − m(τ ) = osc U (τ , ·).

Let us assume that the extrema defining these functions are attained: M(τ ) = U (τ , Y τ ), m(τ ) =
U (τ , Zτ ).

It is easy to see that M(τ ) and m(τ ) satisfy in the viscosity sense

∂τ M � L + I2
1

[
U
(
τ , ·, yτ

N+1

)
, yτ

]− W ′(M + P · Y τ
)+ σ

(
τ , yτ

)+ η
[
a0 + m(τ ) − M(τ )

]
,

∂τm � L + I2
1

[
U
(
τ , ·, zτ

N+1

)
, zτ

]− W ′(m + P · Zτ
)+ σ

(
τ , zτ

)+ ηa0.
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Then q satisfies in the viscosity sense

∂τ q � I2
1

[
U
(
τ , ·, yτ

N+1

)
, yτ

]− I2
1

[
U
(
τ , ·, zτ

N+1

)
, zτ

]− W ′(M + P · Y τ
)

+ W ′(m + P · Zτ
)+ σ

(
τ , yτ

)− σ
(
τ , zτ

)
� I2

1

[
U
(
τ , ·, yτ

N+1

)
, yτ

]− I2
1

[
U
(
τ , ·, zτ

N+1

)
, zτ

]+ 2
∥∥W ′∥∥∞ + 2‖σ‖∞.

Let us estimate the quantity L(τ ) := I2
1 [U (τ , ·, yτ

N+1), yτ ] − I2
1 [U (τ , ·, zτ

N+1), zτ ] from above by a
function of q. Let us define kτ ∈ ZN+1 such that Y τ − (Zτ + kτ ) ∈ [0,1)N+1 and let Z̃τ := Zτ + kτ .
Using successively (6.13) and the first inequality in (6.5), we obtain:

L(τ ) �
∫

|z|>1

(
U
(
τ , yτ + z, yτ

N+1

)− U
(
τ , Y τ

))
μ(dz)

−
∫

|z|>1

(
U
(
τ , z̃τ + z, z̃τ

N+1

)− U
(
τ , Zτ

))
μ(dz) + μ

�
∫

|z|>1

(
U
(
τ , yτ + z, yτ

N+1

)− U
(
τ , Y τ

))
μ(dz)

−
∫

|z|>1

(
U
(
τ , z̃τ + z, yτ

N+1

)− U
(
τ , Zτ

))
μ(dz) + 2μ,

where μ = ‖μ0‖L1(RN \B1(0)). Now, let us introduce cτ = yτ +̃zτ

2 and δτ = yτ −̃zτ

2 ∈ [0, 1
2 )N so that yτ =

cτ + δτ and z̃τ = cτ − δτ . Hence

L(τ ) � 2μ +
∫

|z|>1

(
U
(
τ , cτ + z + δτ , yτ

N+1

)− U
(
τ , Y τ

))
μ(dz)

−
∫

|z|>1

(
U
(
τ , cτ + z − δτ , yτ

N+1

)− U
(
τ , Zτ

))
μ(dz)

� 2μ +
∫

|z−δτ |>1

(
U
(
τ , cτ + z, yτ

N+1

)− U
(
τ , Y τ

))
μ0

(
z − δτ

)
dz

−
∫

|z+δτ |>1

(
U
(
τ , cτ + z, yτ

N+1

)− U
(
τ , Zτ

))
μ0

(
z + δτ

)
dz

� 2μ −
∫

{|z−δτ |>1}∩{|z+δτ |>1}

(
U
(
τ , Y τ

)− U
(
τ , Zτ

))
min

{
μ0

(
z − δτ

)
,μ0

(
z + δτ

)}
dz

� 2μ − c0q(τ )

where c0 > 0. We conclude that q satisfies in the viscosity sense

∂τ q(τ ) � 2
∥∥W ′∥∥∞ + 2‖σ‖∞ + 2μ − c0q(τ ),

with q(0) = 0, from which we obtain (6.12).
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If the extrema are not attained, it suffices to consider for β > 0, Mβ(τ ) := supY ∈RN+1 (U (τ , Y ) −
βψ(Y )), mβ(τ ) := infY ∈RN+1 (U (τ , Y ) + βψ(Y )), and qβ(τ ) := Mβ(τ ) − mβ(τ ), where ψ is defined as
the function ψ2 in the proof of Proposition 4.7. By the properties of ψ , Mβ(τ ) and mβ(τ ) are attained.
Then, the previous argument shows that

qβ � C1 + Cβ,

and passing to the limit as β → 0+ we get (6.12).

Step 3. Control of the oscillations in time. We follow [24] by introducing the two quantities:

λ+(T ) := sup
τ�0

U (τ + T ,0) − U (τ ,0)

T
and λ−(T ) := inf

τ�0

U (τ + T ,0) − U (τ ,0)

T
,

and proving that they have a common limit as T → +∞. First let us estimate λ+(T ) from above. The
function U+(t, Y ) := U (τ ,0)+ C1 + C+t , is a supersolution of (6.4) if C+ = L +‖W ′‖∞ +‖σ‖∞ +ηa0.
Since U+(0, Y ) � U (τ , Y ) if C1 is as in (6.12), by the comparison principle for (6.4) in the time interval
[τ , τ + τ0], for any τ0 > 0 and t ∈ [0, τ0] we get

U (τ + t, Y ) � U (τ ,0) + C1 + C+t. (6.14)

Similarly

U (τ + t, Y ) � U (τ ,0) − C1 + C−t, (6.15)

where C− = L − ‖W ′‖∞ − ‖σ‖∞ + ηa0. We then obtain for τ0 = t = T and y = 0:

L − ∥∥W ′∥∥∞ − ‖σ‖∞ + ηa0 − C1

T
� λ−(T ) � λ+(T ) � L + ∥∥W ′∥∥∞ + ‖σ‖∞ + ηa0 + C1

T
.

(6.16)

By definition of λ±(T ), for any δ > 0, there exists τ± � 0 such that∣∣∣∣λ±(T ) − U (τ± + T ,0) − U (τ±,0)

T

∣∣∣∣� δ.

Let us consider α,β ∈ [0,1) such that τ+ − τ− − β = k ∈ Z, and U (τ+,0) − U (τ+ − k,0) + α ∈ Z.
From (6.12) we have

U
(
τ+, Y

)
� U

(
τ+,0

)+ C1 � U
(
τ+ − k, Y

)+ 2C1 + (
U
(
τ+,0

)− U
(
τ+ − k,0

))
� U

(
τ+ − k, Y

)+ 2C1� + (
U
(
τ+,0

)− U
(
τ+ − k,0

)+ α
)
.

Since σ(·, y) and W ′(·) are Z-periodic, the comparison principle for (6.4) on the time interval
[τ+, τ+ + T ] implies that:

U
(
τ+ + T , Y

)
� U

(
τ+ − k + T , Y

)+ 2C1� + U
(
τ+,0

)− U
(
τ+ − k,0

)+ 1.
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Choosing Y = 0 in the previous inequality we get

U
(
τ+ + T ,0

)− U
(
τ+,0

)
� U

(
τ+ − k + T ,0

)− U
(
τ+ − k,0

)+ 2C1� + 1

= U
(
τ− + β + T ,0

)− U
(
τ− + β,0

)+ 2C1� + 1,

and setting t = β and τ = τ− + T in (6.14) and τ = τ− in (6.15) we finally obtain:

T λ+(T ) � T λ−(T ) + 4C1� + 1 + 2
∥∥W ′∥∥∞ + 2‖σ‖∞ + 2δT .

Since this is true for any δ > 0, we conclude that:

∣∣λ+(T ) − λ−(T )
∣∣� 4C1� + 1 + 2‖W ′‖∞ + 2‖σ‖∞

T
.

Now arguing as in [23] and [24], we conclude that there exist limT →+∞ λ±(T ) =: λ and

∣∣λ±(T ) − λ
∣∣� 4C1� + 1 + 2‖W ′‖∞ + 2‖σ‖∞

T
,

which implies that ∣∣U (T ,0) − λT
∣∣� 4C1� + 1 + 2‖W ′‖∞ + 2‖σ‖∞,

and then, using (6.12) we get (6.10). The uniqueness of λ follows from (6.10). Finally, (6.11) is obtained
from (6.16) as T → +∞. �
6.3. Proof of Theorem 1.1

Let us consider the viscosity solution of (6.4) for η = 0. By Proposition 6.4 we know that there
exists a unique λ such that U (τ , Y )/τ converges to λ as τ goes to +∞ for any Y ∈ RN+1. Moreover,
by Proposition 4.6, U (τ , y,0) is viscosity solution of (1.6). Hence, the theorem follows immediately
from the uniqueness of the viscosity solution of (1.6).

6.4. Proof of Proposition 6.1

Step 1. Definition of W ±
η . Let us denote by U+

η the solution of (6.4) with a0 = C1, where C1 is de-

fined as in (6.12), and by U−
η the solution of (6.4) with a0 = 0. Let λ+

η = limτ→+∞
U+

η (τ ,Y )

τ and

λ−
η = limτ→+∞

U−
η (τ ,Y )

τ ; the existence of λ+
η and λ−

η is guaranteed by Proposition 6.4. Now, we set

W +
η (τ , Y ) := U+

η (τ , Y ) − λ+
η τ

and

W −
η (τ , Y ) := U−

η (τ , Y ) − λ−
η τ .

Step 2. Limits of λ±
η . By stability (see e.g. [7]), for η → 0+ the sequence (U+

η )η converges to U solu-
tion of (6.4) with η = 0. Moreover by (6.11) the sequence (λ+

η )η is bounded. Take a subsequence
ηn → 0 as n → +∞ such that λ+

ηn
→ λ∞ as n → +∞. We want to show that λ∞ = λ, where

λ = limτ→+∞ U (τ ,Y )
τ . By the proof of Theorem 1.1, we know that λ is the same quantity defined

in Theorem 1.1. Using (6.10), we get
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|λ − λ∞| �
∣∣∣∣λ − U (τ ,0)

τ

∣∣∣∣+ ∣∣∣∣U (τ ,0)

τ
− U+

ηn
(τ ,0)

τ

∣∣∣∣+ ∣∣∣∣U+
ηn

(τ ,0)

τ
− λ+

ηn

∣∣∣∣+ ∣∣λ+
ηn

− λ∞
∣∣

�
∣∣∣∣λ − U (τ ,0)

τ

∣∣∣∣+ ∣∣∣∣U (τ ,0)

τ
− U+

ηn
(τ ,0)

τ

∣∣∣∣+ C3

τ
+ ∣∣λ+

ηn
− λ∞

∣∣
where C3 does not depend on n. Then, passing to the limit first as n → +∞ and then as τ → +∞,
we obtain that λ = λ∞ . This implies that λ+

η → λ as η → 0.
The same argument shows that λ−

η → λ as η → 0.

Step 3. W +
η and W −

η are respectively sub and supersolutions. Since by (6.12), C0 + infY ′ U+
η (τ , Y ′) −

U+
η (τ , Y ) � 0, W +

η is supersolution of (3.6) with λ = λ+
η . Moreover, by (6.10), W +

η is bounded on

R+ ×RN+1 uniformly w.r.t. η: |W +
η (τ , Y )| � C3 for all (τ , Y ) ∈R+ ×RN+1.

Step 4. Regularity properties of W ±
η . By (6.5), W +

η is Lipschitz continuous w.r.t. yN+1 and −1 �
∂yN+1 W +

η � ‖W ′′‖∞
η . This implies that W +

η is also a viscosity subsolution of⎧⎪⎪⎨⎪⎪⎩
λ+
η + ∂τ V = L + I1

[
V (τ , ·, yN+1)

]− W ′(V + λ+
η τ + P · Y

)
+ σ(τ , y) + C1

(∥∥W ′′∥∥∞ + η
)

in R+ ×RN+1,

V (0, Y ) = 0 on RN+1.

(6.17)

By Proposition 4.6, W +
η is supersolution of (3.6) and subsolution of (6.17) in R+ × RN for any

yN+1 ∈ R. Then by Proposition 4.7, W +
η is of class Cα w.r.t. y uniformly in yN+1 and η, for any

0 < α < 1.
Similar arguments show that W −

η is subsolution of (3.6) with λ = λ−
η , is bounded on R+ ×RN+1,

Lipschitz continuous w.r.t. yN+1 with −1 � ∂yN+1 W +
η � ‖W ′′‖∞

η and Hölder continuous w.r.t. y. This
concludes the proof of Proposition 6.1.

6.5. Proof of Proposition 5.4

The continuity of H(p, L) follows from stability of viscosity solutions of (1.6) (see e.g. [7])
and from (6.10). Indeed, let (pn, Ln) be a sequence converging to (p0, L0) as n → +∞ and set
λn = λ(pn, Ln), n � 0. By (6.10), we have for any τ > 0∣∣∣∣λn − wn(τ , y)

τ

∣∣∣∣� C3

τ
.

Stability of viscosity solutions of (1.6) implies that wn converges locally uniformly in (τ , y) to a
function w0 which is a solution of (1.6) with (p, L) = (p0, L0). This implies that lim supn→+∞ |λn −
λ0| � 2C3

τ for any τ > 0. Hence, we conclude that limn→+∞ λn = λ0.
Property (i) is an immediate consequence of (6.11).
The monotonicity in L of H(p, L) comes from the comparison principle.
Let us show (iii). Let v be the solution of (1.5) and λ = λ(p, L). Set ṽ(τ , y) := v(τ ,−y). Remark

that I1 [̃v(τ , ·), y] = I1[v(τ , ·),−y]. If σ(τ , ·) is even then ṽ satisfies{
λ + ∂τ ṽ = I1

[̃
v(τ , ·), y

]+ L − W ′(̃v + λt − p · y) + σ(τ , y) in R+ ×RN ,

ṽ(0, y) = 0 on RN .

By the uniqueness of λ we deduce that λ(L, p) = λ(L,−p), i.e. (iii).
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Finally let us turn to (iv). Define ṽ(τ , y) := −v(τ ,−y). If W ′(·) and σ(τ , ·) are odd functions, ṽ
satisfies {−λ + ∂τ ṽ = I1

[̃
v(τ , ·), y

]− L − W ′(̃v − λt + p · y) + σ(τ , y) in R+ ×RN ,

ṽ(0, y) = 0 on RN .

As before, we conclude that λ(−L, p) = −λ(L, p), i.e. (iv).

7. Smooth approximate correctors

In this section, we prove the existence of approximate correctors that are smooth w.r.t. yN+1,
namely Proposition 3.1. We first need the following lemma:

Lemma 7.1. Let u1, u2 ∈ Cb(R
+ ×RN) be viscosity subsolutions (resp., supersolutions) of (3.6) in R+ ×RN ,

then u1 + u2 is viscosity subsolution (resp., supersolution) of

⎧⎪⎨⎪⎩
2λ + ∂τ v = 2L + I1[v] − W ′(u1 + P · Y + λτ)

− W ′(u2 + P · Y + λτ) + 2σ(τ , y) in R+ ×RN ,

v(0, y) = 0 on RN .

For the proof see Lemma 5.8 in [8].
Next, let us consider a positive smooth function ρ : R→R, with support in B1(0) and mass 1. We

define a sequence of mollifiers (ρδ)δ by ρδ(s) = 1
δ
ρ( s

δ
), s ∈ R. Let W +

η (resp. W −
η ) be the Lipschitz

supersolution (resp. subsolution) of (3.6) with λ = λ+
η (resp. λ = λ−

η ), whose existence is guaranteed
by Proposition 6.1. We define

V ±
η,δ(t, y, yN+1) := W ±

η (t, y, ·) � ρδ(·) =
∫
R

W ±
η (t, y, z)ρδ(yN+1 − z)dz. (7.1)

Lemma 7.2. The functions V +
η,δ and V −

η,δ are respectively super and subsolution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ±
η + ∂τ V ±

η,δ = L + I1
[
V ±

η,δ(τ , ·, yN+1)
]

+ σ(τ , y) −
∫
R

W ′(W ±
η (τ , y, z)

+ p · y + z + λ±
η τ

)
ρδ(yN+1 − z)dz in R+ ×RN+1,

V ±
η (0, Y ) = 0 on RN+1.

(7.2)

Proof. We prove the lemma for supersolutions. Let Q e
h = e +[−h/2,h/2), ρδ(e,h) = ∫

Q e
h
ρδ(y)dy and

Ih(τ , y, yN+1) =
∑
e∈hZ

W +
η (τ , y, yN+1 − e)ρδ(e,h).

The function Ih is a discretization of the convolution integral and by classical results, converges uni-
formly to V +

η,δ as h → 0. By Proposition 4.6, W +
η is a viscosity supersolution of (3.6) also in R+ ×RN .

Then, by Lemma 7.1, for any yN+1 ∈ R, Ih(τ , y, yN+1) is a supersolution of
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ+
η + ∂τ V = L + I1

[
V (τ , ·, yN+1)

]+ σ(τ , y)
∑
e∈hZ

ρδ(e,h)

−
∑
e∈hZ

W ′(W +
η (τ , y, yN+1 − e)

+ p · y + (yN+1 − e) + λ+
η τ

)
ρδ(e,h) in R+ ×RN ,

V (0, y) = 0 on RN .

Using the stability result for viscosity solution of non-local equations, see [7], we conclude that V +
η,δ

is supersolution of (7.2) in R+ ×RN and hence also in R+ ×RN+1. �
7.1. Proof of Proposition 3.1

We first show that the functions V +
η,δ and V −

η,δ , defined in (7.1), are respectively super and subso-
lution of⎧⎪⎪⎨⎪⎪⎩

λ±
η + ∂τ V ±

η,δ = L + I1
[
V ±

η,δ(τ , ·, yN+1)
]− W ′(V ±

η,δ + P · Y + λ±
η τ

)
+ σ(τ , y)∓Cη,δ in R+ ×RN+1,

V ±
η (0, Y ) = 0 on RN+1,

(7.3)

where Cη,δ = ‖W ′′‖∞(2δ‖W ′′‖∞/η + δ). Using (6.2) and the properties of the mollifiers, we get

∣∣∣∣W ′(V ±
η,δ(τ , y, yN+1) + p · y + yN+1 + λ±

η τ
)

−
∫
R

W ′(W ±
η (τ , y, z) + p · y + z + λ±

η τ
)
ρδ(yN+1 − z)dz

∣∣∣∣
�

∫
R

∣∣W ′(V ±
η,δ(τ , y, yN+1) + p · y + yN+1 + λ±

η τ
)

− W ′(W ±
η (τ , y, z) + p · y + z + λ±

η τ
)∣∣ρδ(yN+1 − z)dz

�
∥∥W ′′∥∥∞

∫
R

[∣∣V ±
η,δ(τ , y, yN+1) − W ±

η (τ , y, z)
∣∣+ |yN+1 − z|]ρδ(yN+1 − z)dz

�
∥∥W ′′∥∥∞

∫
R

[∫
R

∣∣W ±
η (τ , y, r) − W ±

η (τ , y, z)
∣∣ρδ(yN+1 − r)dr + |yN+1 − z|

]
ρδ(yN+1 − z)dz

�
∥∥W ′′∥∥∞

∫
R

[ ∫
|yN+1−r|�δ

‖W ′′‖∞
η

|r − z|ρδ(yN+1 − r)dr + |yN+1 − z|
]
ρδ(yN+1 − z)dz

�
∥∥W ′′∥∥∞

∫
|yN+1−z|�δ

[‖W ′′‖∞
η

(|yN+1 − z| + δ
)+ |yN+1 − z|

]
ρδ(yN+1 − z)dz

�
∥∥W ′′∥∥∞

(
2δ

‖W ′′‖∞
η

+ δ

)
.
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From this estimate and Lemma 7.2, we deduce that V +
η,δ and V −

η,δ are respectively super and subso-
lution of (7.3). Now, we choose δ = δ(η) such that ‖W ′′‖∞(2δ‖W ′′‖∞/η + δ) = oη(1) as η → 0 and
define

V ±
η (τ , Y ) := V ±

η,δ(η)(τ , Y ).

Then the functions V ±
η are the desired super and subcorrectors. Indeed, we have already shown that

they are super and subsolution of (3.7) with λ+
η and λ−

η satisfying (3.8). Properties (i) and (ii) of
Proposition 5.4 can be shown as in the proof of the proposition. Finally, (3.9)–(3.11) easily follow
from (6.1)–(6.3) and the properties of the mollifiers. �
Appendix A

Proof of Proposition 4.7. Heuristic arguments. Before entering in the proof, let us start with a heuristic
explanation. Indeed, replacing ∂t u by u, we should get a similar result for a stationary solution of

I1[u] + g2 � u � I1[u] + g1.

At a point (x, y), with x �= y, of supremum of

u(x) − u(y) − K |x − y|α

we have for r > 0 {
u(x) � g1 + KI1,r

1

[| · −y|α, x
]+ I2,r

1 [u, x],
u(y) � g2 − KI1,r

1

[|x − ·|α, y
]+ I2,r

1 [u, y].

Setting e = x−y
|x−y| , ϕα(z) = |z|α and using the homogeneity of the functions, we get for r = σ |x − y|

I1,r
1

[| · −y|α, x
] = −|x − y|α−1cσ

α = I1,r
1

[|x − ·|α, y
]

with − cσ
α = I1,σ

1 [ϕα, e].

Therefore we get

u(x) − u(y) − K |x − y|α � g1 − g2 − K |x − y|α − 2K |x − y|α−1cσ
α + I2,r

1 [u, x] − I2,r
1 [u, y].

By the maximal property of (x, y), for any z ∈RN we have

u(x + z) − u(y + z) � u(x) − u(y)

which implies that

I2,r
1 [u, x] − I2,r

1 [u, y] � 0.

We conclude that

u(x) − u(y) − K |x − y|α � g1 − g2 − K |x − y|α − 2K |x − y|α−1cσ
α .

We can show that cσ
α > 0, for σ small enough and then an optimization on |x − y| shows that for K

large enough, the right hand side is negative. This shows the Hölder estimate.
It turns out that the condition cσ

α > 0 is not satisfied for large values of σ .
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Rigorous proof. We use standard techniques from the theory of regularity of viscosity solutions of
uniformly elliptic second-order local operators, see [28], adapted to our context.

We argue by contradiction, assuming that u does not belong to Cα
x (R+ × RN ). Let uε,ε′

and uε,ε′
be respectively the double-parameters sup and inf convolution of u in R+ ×RN , i.e.

uε,ε′
(t, x) = sup

(s,y)∈R+×RN

(
u(s, y) − 1

2ε
|x − y|2 − 1

2ε′ (t − s)2
)

,

uε,ε′(t, x) = inf
(s,y)∈R+×RN

(
u(s, y) + 1

2ε
|x − y|2 + 1

2ε′ (t − s)2
)

.

Then uε,ε′
is semiconvex and is a subsolution of

∂t uε,ε′ = I1
[
uε,ε′

(t, ·)]+ g1 in (tε′ ,+∞) ×RN

and uε,ε′ is semiconcave and is a supersolution of

∂t uε,ε′ = I1
[
uε,ε′(t, ·)]+ g2 in (tε′ ,+∞) ×RN ,

where tε′ → 0 as ε′ → 0, see e.g. Proposition III.2 in [5].
Since u is not Hölder continuous in x, there exists α ∈ (0,1) such that for any K > 0 and ε, ε ′ > 0

sup
(t,x1,x2)∈R+×R2N

uε,ε′
(t, x1) − uε,ε′(t, x2) − K |x1 − x2|α

� sup
(t,x1,x2)∈R+×R2N

u(t, x1) − u(t, x2) − K |x1 − x2|α

> 0.

In order to make the supremum attained at some point, let us introduce smooth positive func-
tions ψ1(t) and ψ2(x) with bounded first and second derivatives such that ψ1(t) → +∞ as t → +∞,
ψ2(x) → +∞ as |x| → +∞ and there exists K0 > 0 such that |ψ2(x)| � K0(1 + √|x| ). The last as-
sumption on ψ2 assures that I2

1 [ψ2] is finite at any point. Then, for any K > 0 and ε , ε′ > 0 and
β > 0 small enough, the supremum on R+ ×R2N of the function

uε,ε′
(t, x1) − uε,ε′(t, x2) − φ(t, x1, x2), (A.1)

where

φ(t, x1, x2) = K |x1 − x2|α + βψ1(t) + βψ2(x1),

is positive and is attained at some point (t, x1, x2) ∈ [0,+∞) × R2N . For ε , ε′ small enough, x1 �= x2.
Moreover, since uε,ε′

(0, x) = uε,ε′(0, x) = 0 for any x ∈ RN , it turns out that actually t > tε′ . Remark
that

|x1 − x2| �
(

2 sup(t,x)∈R+×RN |u(t, x)|
K

) 1
α

. (A.2)

The function (A.1) is semiconvex, hence, by Aleksandrov’s Theorem, twice differentiable almost
everywhere. Let us now introduce a perturbation of it, for which we can choose maximum points of
twice differentiability. First we transform (t, x1, x2) into a strict maximum point. In order to do that,
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we consider a smooth function h : R+ → R, with compact support, such that h(0) = 0 and h(s) > 0
for 0 < s < 1 and we set θ(t, x1, x2) = h((t − t)2) + h(|x1 − x1|2) + h(|x2 − x2|2). Clearly (t, x1, x2) is a
strict maximum point of uε,ε′

(t, x1)−uε,ε′(t, x2)−φ(t, x1, x2)−θ(t, x1, x2). Next we consider a smooth
function χ : RN → R such that χ(x) = 1 if |x|� 1/2 and χ(x) = 0 for |x| � 1.

By Jensen’s Lemma, see e.g. Lemma A.3 of [9], for every small and positive δ there exist sδ ∈ R,
qδ

1,qδ
2 ∈ RN with |sδ |, |qδ

1|, |qδ
2| � δ such that the function

Φ(t, x1, x2) = uε,ε′
(t, x1) − uε,ε′(t, x2) − K |x1 − x2|α − ϕ1(t, x1) − ϕ2(x2), (A.3)

where

ϕ1(t, x1) = βψ1(t) + βψ2(x1) + h
(
(t − t)2)+ h

(|x1 − x1|2
)+ sδt + χ(x1 − x1)q

δ
1 · x1,

ϕ2(x2) = h
(|x2 − x2|2

)+ χ(x2 − x2)q
δ
2 · x2,

has a maximum at (tδ, xδ
1, xδ

2), with

|tδ − t|, ∣∣xδ
1 − x1

∣∣, ∣∣xδ
2 − x2

∣∣� δ (A.4)

and uε,ε′
(t, x1) − uε,ε′(t, x2) is twice differentiable at (tδ, xδ

1, xδ
2). In particular uε,ε′

is twice differen-
tiable w.r.t. x1 at (tδ, xδ

1) and uε,ε′ is twice differentiable w.r.t. x2 at (tδ, xδ
2). The function χ has been

introduced to make I2
1 [ϕ1] and I2

1 [ϕ2] finite.
For δ small enough, we can assume xδ

1 �= xδ
2 and this will allow us to compute the derivatives

of (A.3). Since (tδ, xδ
1, xδ

2) is a maximum point, we have

∇x1 uε,ε′(
tδ, xδ

1

) = ∇x1ϕ1
(
tδ, xδ

1

)+ αK
∣∣xδ

1 − xδ
2

∣∣α−2(
xδ

1 − xδ
2

)
,

∇x2 uε,ε′
(
tδ, xδ

2

) = −∇x2ϕ2
(
xδ

2

)+ αK
∣∣xδ

1 − xδ
2

∣∣α−2(
xδ

1 − xδ
2

)
. (A.5)

Moreover the inequalities

Φ
(
tδ, xδ

1 + z, xδ
2

)
� Φ

(
tδ, xδ

1, xδ
2

)
,

Φ
(
tδ, xδ

1, xδ
2 + z

)
� Φ

(
tδ, xδ

1, xδ
2

)
,

Φ
(
tδ, xδ

1 + z, xδ
2 + z

)
� Φ

(
tδ, xδ

1, xδ
2

)
,

for any z ∈RN , with together (A.5), give respectively:

uε,ε′(
tδ, xδ

1 + z
)− uε,ε′(

tδ, xδ
1

)− ∇x1 uε,ε′(
tδ, xδ

1

) · z

� ϕ1
(
tδ, xδ

1 + z
)− ϕ1

(
tδ, xδ

1

)− ∇x1ϕ1
(
tδ, xδ

1

) · z

+ K
∣∣xδ

1 + z − xδ
2

∣∣α − K
∣∣xδ

1 − xδ
2

∣∣α − αK
∣∣xδ

1 − xδ
2

∣∣α−2(
xδ

1 − xδ
2

) · z, (A.6)

−(
uε,ε′

(
tδ, xδ

2 + z
)− uε,ε′

(
tδ, xδ

2

)− ∇x2 uε,ε′
(
tδ, xδ

2

) · z
)

� ϕ2
(
xδ

2 + z
)− ϕ2

(
xδ

2

)− ∇x2ϕ2
(
xδ

2

) · z

+ K
∣∣xδ

1 − z − xδ
2

∣∣α − K
∣∣xδ

1 − xδ
2

∣∣α + αK
∣∣xδ

1 − xδ
2

∣∣α−2(
xδ

1 − xδ
2

) · z, (A.7)

and for any r > 0
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uε,ε′(
tδ, xδ

1 + z
)− uε,ε′(

tδ, xδ
1

)− ∇x1 uε,ε′(
tδ, xδ

1

) · z1Br (z)

� uε,ε′
(
tδ, xδ

2 + z
)− uε,ε′

(
tδ, xδ

2

)− ∇x2 uε,ε′
(
tδ, xδ

2

) · z1Br (z)

+ ϕ1
(
tδ, xδ

1 + z
)− ϕ1

(
tδ, xδ

1

)− ∇x1ϕ1
(
tδ, xδ

1

) · z1Br (z)

+ ϕ2
(
xδ

2 + z
)− ϕ2

(
xδ

2

)− ∇x2ϕ2
(
xδ

2

) · z1Br (z), (A.8)

where Br = Br(0). The last inequality in particular implies that

I2,r
1

[
uε,ε′(

tδ, ·), xδ
1

]
� I2,r

1

[
uε,ε′

(
tδ, ·), xδ

2

]+ I2,r
1

[
ϕ1

(
tδ, ·), xδ

1

]+ I2,r
1

[
ϕ2, xδ

2

]
. (A.9)

Next, in order to test, we need to double the time variables. Hence, for j > 0, let us consider the
maximum point (t j, x j

1, s j, x j
2) of the function

uε,ε′
(t, x1) − uε,ε′(s, x2) − Ψ (t, x1, x2) − j

2
|t − s|2,

where

Ψ (t, x1, x2) = K |x1 − x2|α + ϕ1(t, x1) + ϕ2(x2) + ∣∣t − tδ
∣∣2 + ∣∣x1 − xδ

1

∣∣2 + ∣∣x2 − xδ
2

∣∣2,
on Q ρ,ρ(tδ, xδ

1) × Q ρ,ρ(tδ, xδ
2), for ρ > 0 sufficiently small. Standard arguments show that

(t j, x j
1, s j, x j

2) → (tδ, xδ
1, tδ, xδ

2) as j → +∞. Hence for j large enough there exists ρ > 0 such that

Q ρ,ρ(t j, x j
1) × Q ρ,ρ(s j, x j

2) ⊂ Q ρ,ρ(tδ, xδ
1) × Q ρ,ρ(tδ, xδ

2) and x j
1 �= x j

2. Testing, we get

j
(
t j − s j)+ 2

(
t j − tδ

)+ ∂tϕ1
(
t j, x j

1

)
� I1,ρ

1

[
Ψ
(
t j, ·, x j

2

)
, x j

1

]+ I2,ρ
1

[
uε,ε′(

t j, ·), x j
1

]+ g1,

j
(
t j − s j)�−I1,ρ

1

[
Ψ
(
t j, x j

1, ·
)
, x j

2

]+ I2,ρ
1

[
uε,ε′

(
s j, ·), x j

2

]+ g2.

Subtracting the two last inequalities, and then letting j → +∞, we have

∂tϕ1
(
tδ, xδ

1

)
� I1,ρ

1

[
Ψ
(
tδ, ·, xδ

2

)
, xδ

1

]+ I1,ρ
1

[
Ψ
(
tδ, xδ

1, ·
)
, xδ

2

]
+ I2,ρ

1

[
uε,ε′(

tδ, ·), xδ
1

]− I2,ρ
1

[
uε,ε′

(
tδ, ·), xδ

2

]+ g1 − g2.

Since uε,ε′
(tδ, ·) and uε,ε′(tδ, ·) are twice differentiable respectively at x1 = xδ

1 and x2 = xδ
2, we can

pass to the limit as ρ → 0+ and obtain

∂tϕ1
(
tδ, xδ

1

)
� I1

[
uε,ε′(

tδ, ·), xδ
1

]− I1
[
uε,ε′

(
tδ, ·), xδ

2

]+ g1 − g2.

Using (A.9), we finally get

∂tϕ1
(
tδ, xδ

1

)
� I1,r

1

[
uε,ε′(

tδ, ·), xδ
1

]− I1,r
1

[
uε,ε′

(
tδ, ·), xδ

2

]
+ I2,r

1

[
ϕ1

(
tδ, ·), xδ

1

]+ I2,r
1

[
ϕ2, xδ

2

]+ g1 − g2. (A.10)

Next, let us estimate the term I1,r
1 [uε,ε′

(tδ, ·), xδ
1] −I1,r

1 [uε,ε′(tδ, ·), xδ
2] and show that it contains a

main negative part. For 0 < ν0 < 1, let us denote

Ar := {
z ∈ Br(0),

∣∣z · (xδ
1 − xδ

2

)∣∣� ν0|z|
∣∣xδ

1 − xδ
2

∣∣}.
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Then

I1,r
1

[
uε,ε′(

tδ, ·), xδ
1

]− I1,r
1

[
uε,ε′

(
tδ, ·), xδ

2

]
=

∫
Ar

[
uε,ε′(

tδ, xδ
1 + z

)− uε,ε′(
tδ, xδ

1

)− ∇x1 uε,ε′(
tδ, xδ

1

) · z

− (
uε,ε′

(
tδ, xδ

2 + z
)− uε,ε′

(
tδ, xδ

2

)− ∇x2 uε,ε′
(
tδ, xδ

2

) · z
)]

μ(dz)

+
∫

Br\Ar

[. . .]μ(dz)

= T1 + T2.

From (A.8) we have

T2 � C .

Here and henceforth C denotes various positive constants independent of the parameters. Let us es-
timate T1. Using (A.6) and (A.7), and successively making the change of variable z → −z, we get the
following estimate of T1:

T1 �
∫
Ar

[
K
∣∣xδ

1 + z − xδ
2

∣∣α − K
∣∣xδ

1 − xδ
2

∣∣α − αK
∣∣xδ

1 − xδ
2

∣∣α−2(
xδ

1 − xδ
2

) · z
]
μ(dz) + C

+
∫
Ar

[
K
∣∣xδ

1 − z − xδ
2

∣∣α − K
∣∣xδ

1 − xδ
2

∣∣α + αK
∣∣xδ

1 − xδ
2

∣∣α−2(
xδ

1 − xδ
2

) · z
]
μ(dz)

= 2
∫
Ar

[
K
∣∣xδ

1 + z − xδ
2

∣∣α − K
∣∣xδ

1 − xδ
2

∣∣α − αK
∣∣xδ

1 − xδ
2

∣∣α−2(
xδ

1 − xδ
2

) · z
]
μ(dz) + C

� αK

∫
Ar

sup
|t|�1

{∣∣xδ
1 − xδ

2 + tz
∣∣α−4(∣∣xδ

1 − xδ
2 + tz

∣∣2|z|2 − (2 − α)
[(

xδ
1 − xδ

2 + tz
) · z

]2)}
μ(dz) + C .

Let us fix r = σ |xδ
1 − xδ

2|, σ > 0, then for z ∈ Ar

∣∣xδ
1 − xδ

2 + tz
∣∣� (1 + σ)

∣∣xδ
1 − xδ

2

∣∣,∣∣(xδ
1 − xδ

2 + tz
) · z

∣∣� ∣∣(xδ
1 − xδ

2

) · z
∣∣− |z|2 � (ν0 − σ)

∣∣xδ
1 − xδ

2

∣∣|z|.
Let us choose 0 < σ < ν0 < 1 such that

C0 := −(1 + σ)2 + (2 − α)(ν0 − σ)2 > 0,

then

T1 � −CC0 K
∣∣xδ

1 − xδ
2

∣∣α−2
∫
A

|z|2μ(dz) + C .
r
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By homogeneity ∫
Ar

|z|2μ(dz) = Cr.

Then, we conclude

T1 � −CC0 K
∣∣xδ

1 − xδ
2

∣∣α−2
r + C � −CC0 K

∣∣xδ
1 − xδ

2

∣∣α−1 + C,

and from (A.10)

CC0 K
∣∣xδ

1 − xδ
2

∣∣α−1 � −∂tϕ1
(
tδ, xδ

1

)+ g1 − g2 + C

+ I2,r
1

[
ϕ1

(
tδ, ·), xδ

1

]+ I2,r
1

[
ϕ2, xδ

2

]
� g1 − g2 + C .

Letting δ go to 0, from the previous inequalities and (A.4) we finally obtain

K |x1 − x2|α−1 � C,

where C is independent of K . This is a contradiction for K large enough, because of (A.2), hence
u ∈ Cα

x (R+ ×RN ). �
Proof of Proposition 6.2. Let us define the functions V 1(τ , Y ) := e−kτ U1(τ , Y ) and V 2(τ , Y ) :=
e−kτ U2(τ , Y ), where k := ‖W ′′‖∞ + 1. It is easy to see that V 1 and V 2 are respectively sub and
supersolution of

⎧⎪⎪⎨⎪⎪⎩
∂τ V = Le−kτ + I1

[
V (τ , ·, yN+1)

]+ g(τ , Y , V )

+ η
[
a0 + ekτ

(
inf
Y ′ V

(
τ , Y ′)− V (τ , Y )

)]∣∣∂yN+1 V + e−kτ
∣∣ in R+ ×RN+1,

V (0, Y ) = 0 on RN+1,

(A.11)

where g(τ , Y , V ) = −e−kτ W ′(ekτ V + P · Y ) − kV + e−kτ σ (τ , y). Remark that, by the choice of k,

g(τ , Y , V 1) − g(τ , Z , V 2) � −(V 1 − V 2) + e−kτ (∥∥W ′′∥∥∞|P | + ∥∥σ ′∥∥∞
)|Y − Z |. (A.12)

To prove the comparison between U1 and U2, it suffices to show that V 1(τ , Y ) � V 2(τ , Y ) for all
(τ , Y ) ∈ (0, T ) ×RN+1 and for any T > 0.

Suppose by contradiction that M = sup(τ ,Y )∈(0,T )×RN+1 (V 1(τ , Y ) − V 2(τ , Y )) > 0 for some T > 0.
Define for small ν1, ν2, β, δ > 0 the function φ ∈ C2((R+ ×RN+1)2) by

φ(τ , Y , s, Z) = 1

2ν1
|τ − s|2 + 1

2ν2
|Y − Z |2 + βψ(Y ) + δ

T − τ
,

where ψ is defined as the function ψ2 in the proof of Proposition 4.7. The supremum of V 1(τ , Y ) −
V 2(s, Z) − φ(τ , Y , s, Z) is attained at some point (τ , Y , s, Z) ∈ ((0, T ) × RN+1)2. Standard arguments
show that, because U1 and U2 are assumed bounded
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(τ , Y , s, Z) → (τ̂ , τ̂ , Ŷ , Ẑ) as ν1 → 0,

V 1(τ , Y ) → V 1(τ̂ , Ŷ ), V 2(s, Z) → V 2(τ̂ , Ẑ) as ν1 → 0,

where (τ̂ , Ŷ , Ẑ) is a maximum point of V 1(τ , Y ) − V 2(τ , Z) − 1
2ν2

|Y − Z |2 − βψ(Y ) − η
T −τ . Moreover,

it is easy to see that

lim sup
ν1→0

inf
Y ′ V 1

(
τ , Y ′)� inf

Y ′ V 1
(
τ̂ , Y ′), lim inf

ν1→0
inf
Y ′ V 2

(
s, Y ′)� inf

Y ′ V 2
(
τ̂ , Y ′).

Since V 1 and V 2 are respectively sub and supersolution of (A.11), for any r > 0 we have

δ

(T − τ )2
+ τ − s

ν1

� Le−kτ + CNr

ν2
+ βI1,r

1

[
ψ(·, yN+1), y

]+ I2,r
1

[
V 1(τ , ·, yN+1), y

]+ g
(
τ , Y , V 1(τ , Y )

)
+ η

[
a0 + ekτ

(
inf
Y ′ V 1

(
τ , Y ′)− V 1(τ , Y )

)]∣∣∣∣ yN+1 − zN+1

ν2
+ β∂yN+1ψ(Y ) + e−kτ

∣∣∣∣ (A.13)

and

τ − s

ν1
� Le−ks − CNr

ν2
+ I2,r

1

[
V 2(s, ·, zN+1), z

]+ g
(
s, Z , V 2(s, Z)

)
+ η

[
a0 + eks

(
inf
Y ′ V 2

(
s, Y ′)− V 2(s, Z)

)]∣∣∣∣ yN+1 − zN+1

ν2
+ e−ks

∣∣∣∣, (A.14)

where CN is a constant depending on the dimension N . Since (τ , Y , s, Z) is a maximum point, we
have

V 1(τ , y + x, yN+1) − V 1(τ , Y )� V 2(s, z + x, zN+1) − V 2(s, Z) + β
[
ψ(y + x, yN+1) − ψ(Y )

]
,

for any x ∈RN , which implies that for any r > 0

I2,r
1

[
V 1(τ , ·, yN+1), y

]
� I2,r

1

[
V 2(s, ·, zN+1), z

]+ βI2,r
1

[
ψ(·, yN+1), y

]
.

Then, subtracting (A.13) with (A.14) and letting r → 0+ , we get

δ

(T − τ )2
� L

(
e−kτ − e−ks)+ βI1

[
ψ(·, yN+1), y

]+ g
(
τ , Y , V 1(τ , Y )

)− g
(
s, Z , V 2(s, Z)

)
+ η

[
a0 + ekτ

(
inf
Y ′ V 1

(
τ , Y ′)− V 1(τ , Y )

)]∣∣∣∣ yN+1 − zN+1

ν2
+ β∂yN+1ψ(Y ) + e−kτ

∣∣∣∣
− η

[
a0 + eks

(
inf
Y ′ V 2

(
s, Y ′)− V 2(s, Z)

)]∣∣∣∣ yN+1 − zN+1

ν2
+ e−ks

∣∣∣∣.
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Next, letting ν1 → 0 and using (A.12), we obtain

δ

(T − τ̂ )2

� βI1
[
ψ(·, ŷN+1), ŷ

]− (
V 1(τ̂ , Ŷ ) − V 2(τ̂ , Ẑ)

)+ e−kτ̂ (‖W ′′‖∞|P | + ‖σ ′‖∞
)|Ŷ − Ẑ | + Cβ

+ ηekτ̂
[

inf
Y ′ V 1

(
τ̂ , Y ′)− inf

Y ′ V 2
(
τ̂ , Y ′)− (

V 1(τ̂ , Ŷ ) − V 2(τ̂ , Ẑ)
)]∣∣∣∣ ŷN+1 − ẑN+1

ν2
+ e−kτ̂

∣∣∣∣.
(A.15)

It is easy to prove that

lim inf
(β,δ)→(0,0)

(
V 1(τ̂ , Ŷ ) − V 2(τ̂ , Ẑ)

)
� M (A.16)

and

|Ŷ − Ẑ |2
ν2

� C,

where C is independent of β and δ. Up to subsequence, τ̂ → τ0 ∈ [0, T ] as (β, δ) → (0,0) and by
(A.16), we have

lim sup
(β,δ)→(0,0)

[
inf
Y ′ V 1

(
τ̂ , Y ′)− inf

Y ′ V 2
(
τ̂ , Y ′)− (

V 1(τ̂ , Ŷ ) − V 2(τ̂ , Ẑ)
)]

� inf
Y ′ V

(
τ0, Y ′)− inf

Y ′ V 2
(
τ0, Y ′)− sup

Y ′

(
V 1

(
τ0, Y ′)− V 2

(
τ0, Y ′))

� 0.

Then, passing to the limit first as (β, δ) → (0,0) and then as ν2 → 0 in (A.15) we finally get the
contradiction:

M � 0,

and this concludes the proof of the comparison theorem. �
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