
Information and Computation 205 (2007) 679–693

www.elsevier.com/locate/ic

Quasi-optimal energy-efficient leader election algorithms
in radio networks

Christian Lavault a,*, Jean-François Marckert b, Vlady Ravelomanana a

aLIPN, CNRS UMR 7030, Université Paris 13, 99, av. J.-B. Clément, 93430 Villetaneuse, France
bCNRS, LaBRI Université Bordeaux 1, 351, cours de la Libération, 33405 Talence cedex, France

Received 26 June 2006; revised 29 September 2006
Available online 11 December 2006

Abstract

Radio networks (RN) are distributed systems (ad hoc networks) consisting in n � 2 radio stations. Assum-
ing the number n unknown, two distinct models of RN without collision detection (no-CD) are addressed:
the model with weak no-CD RN and the one with strong no-CD RN. We design and analyze two distributed
leader election protocols, each one running in each of the above two (no-CD RN) models, respectively. Both
randomized protocols are shown to elect a leader within O(log (n)) expected time, with no station being awake
for more than O(log log (n)) time slots (such algorithms are said to be energy-efficient). Therefore, a new class
of efficient algorithms is set up that match the �(log (n)) time lower-bound established by Kushilevitz and
Mansour [E. Kushilevitz, Y. Mansour, An �(D log (N/D)) lower-bound for broadcast in radio networks,
SIAM J. Comp. 27 (1998) 702–712).].
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1. Introduction

Electing a leader is a fundamental problem in distributed systems and it is studied in a varie-
ty of contexts including radio networks [3]. A radio network (RN, for short) can be viewed as a
distributed system of n radio stations with no central controller. The stations are bulk-produced,
hand-held devices and are also assumed to be indistinguishable: no identification numbers (or IDs)
are available (anonymous network).

A large body of research has already focused on finding efficient solutions to elect one
station among an n-stations RN under various assumptions (see e.g. [3,11,16]). It is also as-
sumed that the stations run on batteries. Therefore, saving battery power is important, since
recharging batteries may not be possible in standard working conditions. We are interest-
ed in designing power-saving protocols (also called energy-efficient protocols). The present
work is motivated by various applications in emerging technologies: from wireless
communications, cellular telephony, cellular data, etc., to simple sensors, or hand-held multi-
media services.

1.1. The models

As customary, the time is assumed to be slotted, the stations work synchronously and they
have no IDs available. No a priori knowledge is assumed on the number n � 2 of stations
involved in the RN, neither a (non-trivial) lower-bound nor an upper-bound on n. During a
time slot, a station may be awake or sleeping. When sleeping, a station is unable to listen or
to send a message. Awake stations communicate globally, i.e., the underlying graph is a clique,
by using a unique radio frequency channel with no collision detection (no-CD for short) mech-
anism. In each time slot, the status of the unique channel can be in one of the following two
states:

• either SINGLE: there is exactly one transmitting station,
• or NULL: there is either no station or more than two (� 2) broadcasting stations.

When the status is NULL, each listening station hears some noise and can not decide whether 0
or more than 2 station are broadcasting. When the status is SINGLE, each listening station hears
clearly the message sent by the unique broadcasting station.

In the weak no-CD model of RN, during a time slot each awake station may either send (broad-
cast) a message or listen to the channel, exclusively. By contrast, in the strong no-CD model of RN,
both operations can be performed simultaneously by each awake station during a time slot. Hence,
in the strong no-CD model, when exactly one station sends at time slot t, then all the stations that
listen at time t, transmitter included, eventually receive the message. In the literature, the no-CD RN
usually means the strong model of RN, see e.g. [11,14]. In the weak no-CD case, such a transmitting
station is not aware of the channel status.

Such models feature concrete situations; in particular, the lack of feedback mechanism occurs in
real-life applications (see e.g. [12]). Usually, the natural noise existing within radio channels makes
it impossible to carry out a message collision detection.
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1.2. Related works

The model of RN considered is the broadcast network model (see e.g. [3]). In this setting, the
results of Willard [16], Greenberg et al. [7] (with collision detection) or Kushilevitz and Mansour
[11] (no-CD) for example, are among the most popular leader election protocols.

In such a model, Massey and Mathys [12] serves as a global reference for basic conflict-resolution
based protocols. Previous researches on RN with multiple-access channel mainly concern stations
that are kept awake during all the running time of a protocol even when such stations are the “very
first losers” of a coin flipping game algorithm [15]. In [9], the authors design an energy-efficient proto-
col (witho(log log(n)) energycost) thatapproximatesnup toaconstant factor.However, the running
time achieved is O

(
log2+�(n)

)
in strong no-CD RN. Also, an important issue in RN is to perform

distribution analysis of various randomized election protocols as derived in [4,8] for example.

1.3. Our results

Two leader election protocols are provided in the present paper. The first one (Algorithm 1) is
designed for the strong no-CD model of RN, while the second one (Algorithm 2) is designed for the
weak no-CD model of RN. Both are double-loop randomized algorithms, which use a simple coin-
tossing procedure (rejection algorithms). Our leader election protocols achieve a (quasi) optimal
O(log n) average running time complexity, with no station in the RN being awake for more than
O(log log (n)) time slots. Indeed, both algorithms match the�(log n) time lower-bound established
in [11] and also allow the stations to keep sleeping most of the time. In other words, each algorithm
greatly reduces the total awake time slots of the n stations: shrinking from the usual O(n log n)
down to O(n log log n), while their expected time complexity still remains O(log n). These protocols
are thus “energy-efficient” and suitable for hand-held devices working with batteries.

Besides the algorithms use a parameter �which works as a flexible regulator. By tuning the value
of � the running time ratio of each protocol to its energy consumption may be adjusted : the running
time and the awake duration are functions of �. It is also worth mentioning that the algorithms
include explicit termination detection.

Furthermore, the design of Algorithms 1 and 2 suggests that within both the weak and the strong
no-CD RN, the average time complexity of each algorithm only differs by a slight constant factor.
Also, our results improve on [13].

1.4. Outline of the paper

In Section 2, we present Algorithm 1 and Algorithm 2, and the main complexity results are given:
Theorem 1 and Theorem 2, corresponding to Algorithm 1 and Algorithm 2. Sections 3 and 4 are
devoted to the analysis of both algorithms, by means of tight asymptotic techniques.

2. Algorithms and results

Both algorithms rely on the obvious fact that all stations must be awake together within a
sequence of predetermined time slots in order to be informed that the election succeeds of fails.
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To complete the election a first naive idea is to have stations using probabilities 1/2, 1/4, . . .
to wake up and broadcast. This solution is not correct since with probability > 0 no station ever
broadcasts alone. In order to correct the failure we will plan an unbounded sequence of rounds
with predetermined length. Awake time slots are programmed at the end of each round in order to
allow all stations to detect the possible termination of the session.

In the following, we let � denote a real (tuning) parameter value, which is required to be >1 (this is
explained in Remarks 4 and 6).

2.1. Algorithm 1

In Algorithm 1 the stations work independently. Given a round j in the outer loop (repeat-until
loop), during the execution time of the inner loop each station randomly chooses to sleep or to be
awake: in this last case it listens and broadcasts, simultaneously. If a unique station is broadcasting,
this station knows the status of the radio channel; if the status is SINGLE, it becomes a candidate.
At the end of round j, every station wakes up and listens to the channel and the candidates broad-
cast. If there is a single candidate, the status is SINGLE again, and this candidate is elected. Every
listening station knows the channel status, and is informed that the election is done. Otherwise, the
next round begins.

round ← 1;
Repeat

For k from 1 to ��round� do /* probabilistic phase */


Each station wakes up independently with probability 1/2k .
An awake station listens and broadcasts
If a unique station broadcasts Then it becomes a candidate station EndIf

EndFor /* deterministic phase */



At the end of each round, all stations wake up, listen,
and in addition all candidate stations broadcast;
If there is a unique candidate then it is elected EndIf;

round ← round + 1;

until a station is elected

Algorithm 1. Leader election protocol for strong no-CD RN

The brackets in both algorithms represent the actions that take place in one time slot. Notice
that the content of the broadcasting message is not specified, since it has no importance. The status
“candidate” is valid for one round duration only.

Definition and Notation 1. For the sake of simplicity, the following notations are used throughout
the paper. We let

j
� ≡ j�

(n)
def= �log� log2(n)�. (1)
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Let also C : �2→ � defined by

C(x, y) def= xy3

(y − 1)
(
1− y(1− x)

) . (2)

We have

Theorem 1. Let � ∈ (1, 1.1743 . . .) and p�

1 = .14846 . . . On the average, Algorithm 1 elects a leader
in at most C(p�

1 ,�) log2 (n) + O(log log n) time slots, with no station being awake for more than

2 log� log2(n)
(
1+ o(1)

)
mean time slots.

2.2. Algorithm 2

In the case of the weak no-CD model of RN a potential candidate alone cannot be aware of its
status since it cannot broadcast and listen simultaneously. The awake stations choose to broadcast
or (exclusively) to listen. In the inner loop of Algorithm 2 any exclusively broadcasting station is
called an initiator; when there is a unique initiator, a station that is listening to the channel, hears
clearly the message. Such a station is said to be a witness. Witnesses are intended to acknowledge
an initiator in the case when there is exactly one initiator.

round ← 1;
Repeat

For k from 1 to ��round� do /* probabilistic phase */


Each station wakes up independently with probability 1/2k;
With probability 1/2, each awake station either broadcasts
the message〈k〉 or listens, exclusively;
If there is a unique initiator, the status is SINGLE;
The witness(es) record(s) the value 〈k〉 EndIf

EndFor /* deterministic phase */


At the end of each round, all stations wake up;
All witnesses forward the recorded message;
If the status is SINGLE
there is a unique witness, the other stations receive the message 〈k〉
Then the unique initiator of the message 〈k〉 is elected[

and replies to all the stations to advise of its status EndIf
round ← round + 1;

until a station is elected.

Algorithm 2. Leader election protocol for weak no-CD RN

During the last deterministic phase all stations wake up. An election takes place in a round if this
round is the first when there is a unique time slot in which there remains exactly a unique initiator
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and a unique witness. When a station is a witness, it continues to behave as if it were not. Hence,
a witness can be a witness twice or more, or even be an initiator. This is obviously not optimal but
simpler for the analysis.

We have

Theorem 2. Let � ∈ (1, 1.0861 . . .) and p�

2 = .07929 . . . On the average, Algorithm 2 elects a leader
in at most C(p�

2 ,�) log2 (n) + O(log log n) time slots, with no station being awake for more than

5/2 log� log2(n)
(
1+ o(1)

)
mean time slots.

3. Analysis of Algorithms 1 and 2

To prove Theorems 1 and 2, we give lower bounds on the probability of success in each round,
by using the following Lemma 1 to control the mean of the quantities of interests.

Lemma 1. Let (Xi)i�1 and (Yi)i�1 be two sequences of independent Bernoulli random variables, denoted
by B(Pi) and B(Qi), respectively, and such that Pi � Qi for any i. By definition,

�(Xi = 1) = 1− �(Xi = 0) = Pi and �(Yi = 1) = 1− �(Yi = 0) = Qi.
Let H = inf{j,Xj = 1} and K = inf{j, Yj = 1}, which may be regarded as a first success in each
sequence (Xi) and (Yi) (resp.). Then, the stochastic dominance H ≤S K holds: for any non-negative
integer k , �(H � k) � �(K � k).

As a consequence for any non-decreasing function f ,

�(f(H)) � �(f(K)). (3)

Proof. The first part of the Lemma can be proved by constructing a probability space � in which
the sequences of r.v. (Xi) and (Yi) “live” and in which, for each ω ∈ �, Xi(ω) � Yi(ω). Since for any
ω, K(ω) � H(ω), the stochastic order is a simple consequence of this almost sure order on �. Next,
for any nondecreasing function f , f(K(ω)) � f(H(ω)) also holds almost surely, whence Eq. (3). �

3.1. Proof of Theorem 1

Assume that Algorithm 1 begins with its variable round = j, and let pj be the probability that
one station is elected at the end of this round j. One may also view pj as the conditional probability
that an election occurs at round j knowing that it did not occur before. Within that round, that is
for k ranging from 1 to ��j�, every station decides to broadcast with the sequence of probabilities
(1/2k)1�k���j�.

The probability �(i,n) that there is exactly one candidate for k = i in a round is

�(i,n) = n

2i

(
1− 1

2i

)n−1

. We then have

pj =
��j�∑
k=1

�(k ,n)

��j�∏
i=1
i /=k

(
1− �(i,n)

) =
��j�∑
k=1

�(k ,n)
(
1− �(k ,n)

)−1
��j�∏
i=1

(
1− �(i,n)

)
(4)
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which rewrites pj = tj sj with

tj ≡
∞∑
m=0

��j�∑
k=1

(
�(k ,n)

)(m+1) and sj ≡
��j�∏
i=1

(1− �(i,n)). (5)

The following Lemma 2 provides a lower bound on lim inf
n

pj .

Lemma 2. Let j ≡ j(n). Assuming that n/2�
j → 0 (so that j(n)→+∞),

lim inf
n

pj > p
�

1 = .14846 . . .

We postpone the proof of this Lemma until Appendix A.

Remark 3. Simple considerations show that when 2�
j � n, the probability sj of having no candi-

date in the jth round is close to 1 (and it is “far from” 1 when 2�
j 
 n). This remark explains the

occurrences of the crucial values n/2�
j

and the definition of j� in Eq. (1).

We return to theproofofTheorem1. It is straightforward to check that,when n→∞,n/2�
(j�+1)→

0. According to Lemma 2, if n is large enough

pj � p
�

1 j�j�+1. (6)

As a consequence, let N1 denote the number of rounds in Algorithm 1 and N ′1 = j� + G where G
is a geometric random variable with parameter p�

1 , then

N1 ≤S N ′1 . (7)

We recall that the geometric distribution with parameter p is given by p(1− p)(k−1) for any k � 1;
this is the law of the first success in a sequence of independent Bernoulli random variables with
parameter p .

To prove Eq. (7), notice first that N1 has the same distribution as inf{i,Xi = 1}, where the (Xi)
are independent and Xi is B(pi)-distributed. Next, N ′1 = inf{i, Yi = 1}, where Yi is B(qi)-distributed
for qi = p�

1 j�j�+1. Indeed, the first j� trials fail and afterwards, each trial results in a success with
probability p�

1 .
Finally, Eq. (6) and Lemma 1 allow to conclude,

�(N1) � �(N ′1) = j
� + 1/p�

1 = log� log2(n) + O(1).

Let T1 ≡ T1(n) be the time needed to elect a leader in Algorithm 1. Since N1 ≤S N ′1 and since
r �→∑r

i=1��i� is non-decreasing, by Lemma 1,
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�(T1) = �



N1∑
j=1

��j�

 ≤ �



N ′1∑
j=1

��j�

 ≤

+∞∑
k=1

j
�+k∑
j=1

(1+ �j)p�

1 (1− p�

1 )
k−1

� C(p�

1 ,�) log2(n) + O(log log n). (8)

During a round, the mean number of awake time slots for a given station is at most 2. (One at the
end and one from the contribution of

∑
k 1/2k , 1/2k being the probability to be awake at time slot

k .)
Since the number of rounds is smaller than, say log� log2(n)+ log log log(n), with probability

going to 1, we get the announced result.

Remark 4. It is easily seen that the algorithm and the convergence of the double sum in Eq. (8)
(resp.) require the conditions � > 1 and �(1− p�

1 ) < 1, with p�

1 = .14846 (resp.). The value of �may
thus be chosen in the range (1, 1.743 . . .), so as to achieve a tradeoff between the average execution
time of the algorithm and the global awake time. Thus, the minimum value of the constant C(p�

1 ,�)
is C(p�

1 , �̃) � 29.058 . . ., with �̃ = 1.0767 . . .

3.2. Proof of Theorem 2

Two awake stations are needed in Algorithm 2: the one is only sending (the initiator) and the
other is listening. The probability p ′j that one station is elected in round j expresses along the same
lines as in Eq. (5) with the corresponding probability. The probability of having exactly one initiator
and one witness for k = j in a round is

qnj ≡
1
2

(n
2

)

4j

(
1− 1

2j

)n−2

.

Hence p ′j = t′j s′j , where

t′j ≡
��j�∑
k=1

q(k ,n)
(
1− q(k ,n)

)−1 and s′j ≡
��j�∏
i=1

(1− q(i,n)). (9)

The proof of Theorem 2 is the same as the proof of Theorem 1, except that the lower bound on
lim infnp ′j given by the following Lemma 5, replaces the one on lim infnpj (in Lemma 2).

Lemma 5. Let j ≡ j(n). Assuming that n/2�
j → 0 (so that j(n)→+∞),

lim inf
n

p ′j > p
�

2 := .07929 . . .

The proof of this Lemma is postponed until the Appendix.
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Remark 6. The lower bound p�

2 in Algorithm 2 is already defined in (2). Now, since p�

2 = .07929,
� meets the new condition if it belongs to (1, 1.086 . . .), and the minimum value of the constant
C(p�

2 ,�) is C(p�

2 , �̃) � 52.516, with �̃ = 1.0404 . . .

Remark 7. Note also that Algorithms 1 and 2 can be improved by starting from k = k0, k0 > 1 (in-
stead of 1) in the third line of the algorithms. Though the running time of each algorithm remains
asymptotically the same, starting from k = k0 > 1 reduces the awake time to (1+ �) log� log2(n)

time slots in Algorithm 1, and to (1.5+ �) log� log2(n) time slots in Algorithm 2 (with � = 1/2k0−1).
Yet, this also makes the running time longer for small values of n; whence the (obvious) fact that
the knowledge of any lower bound on n greatly helps.

A. Appendix

A.1. Two technical results

The following two technical Lemmas are at the basis of the asymptotic complexity analysis of
Algorithms 1 and 2, in the proof of Theorems 1 and 2, respectively. They both use Mellin transform
techniques [5,6,10]. Note that real asymptotic approximations, such as e.g. Euler–Maclaurin sum-
mation, only provide a O(1) error term when n gets large. In the present case, such an error term is
far too imprecise to stay under control when summing on m.

Lemma 8. Let r ≡ r(n) such that, when n→+∞, we have n/2r → 0 (and consequently r→∞).
Then, for all positive integer m,

r∑
k=1

( n
2k

)m
exp

(
−nm

2k

)
= m!
mm+1 ln 2

+ 1
m 2m

Um

(
log2 (n)

)

+O
(

2m

nm

)
+ O

(
nm

2rm

)
. (A.1)

Denote �� ≡ 2i��/ ln 2. For any positive integer m, Um
(

log2 (n)
)

is defined as

Um(z) = −2m

mm−1 ln 2

∑
�∈�\{0}

�(m+ ��) exp
(
− �� ln(m)

)
exp (−2i��z). (A.2)

The Fourier seriesUm(z) has mean value 0 and the amplitude of its coefficients does not exceed .024234.

Proof. The asymptotic approximation of the finite sum in Eq. (A.1) is obtained by direct use of the
properties of the Mellin transform [5,6].

The sum

f(x) =
+∞∑
k=1

( x
2k

)m
exp

(
−mx

2k

)
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is to be analyzed as x→∞. Its Mellin transform, with fundamental strip 〈−1, 0〉, is

f ∗(s) = �(s+ m)2s
ms+m(1− 2s)

.

There is a simple pole at s = 0, but also simple imaginary poles at s = �� ≡ 2i��/ ln 2 (for all non
zero integers �), which are expected to introduce periodic fluctuations. The singular expansion of
f ∗(s) in 〈−1/2, 2〉 is

f ∗(s) �
[
�(m)

mm ln 2
1
s

]
− 1
mm ln 2

∑
�∈�\{0}

�(m+ ��) exp
(
− �� ln(m)

)

s− �� .

Accordingly, by putting
r∑
k=1

( x
2k

)m
exp

(
−mx

2k

)
back into f(x), one finds the results stated in Eqs.

(A.1) and (A.2). Note that the sign minus appears before Um(z) since n→+∞, and so does x in the
sum f(x) (see the proof e.g. in [6]).

In Eq. (A.1), the periodic fluctuations are occurring under the form of the Fourier series
Um

(
log2 (n)

)
with mean value 0. Besides, for any positive integerm, the maximum of the amplitude

of the Fourier series is taken at m = 11 and it is rather small

∀m > 0 |Um(z)| �
∑

�∈�\{0}

2m |�(m+ ��)|
mm−1 ln 2

< .024234 (A.3)

The Fourier coefficients also decrease very fast (see e.g., [6] or [10, p. 131]). The error terms O(2m/nm)
and O(nm/2rm) in Eq. (A.1) result from the “truncated” summation: 1 � k � r. (The Mellin trans-
form itself results in a O (

n−1
)

error term.) �
Lemma 9. Again, let r ≡ r(n) such that, when n→+∞, we have n/2r → 0 (and consequently r→∞).
Then, for all positive integer m,

r∑
k=1

1
4m

(
n2

4k

)m
exp

(
−nm

2k

)
= (2m− 1)!

4mm2m+1 ln 2
+ 1
m2 Vm

(
log2 (n)

)

+O
(

2m

nm

)
+ O

(
nm

2rm

)
. (A.4)

Again denote �� ≡ 2i��/ ln 2. For any positive integer m, the above Fourier series

Vm(z) = − m

4mm2m ln 2

∑
�∈�\{0}

�(2m+ ��) exp
(
− 2i�� log2(m)

)
exp (−2i��z)

has mean value 0 and the amplitude of the coefficients of Vm(z) cannot exceed 9.0054 10−5.
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Proof. An asymptotic approximation of the finite sum in Eq. (A.4) is computed along the same lines
as in Lemma 8. Now,

g(x) =
+∞∑
k=1

1
4m

( x
2k

)2m
exp

(
−mx

2k

)

is to be analyzed when x→∞. Similarly, its Mellin transform is g∗(s) = �(s+ 2m)2s

ms+2m(1− 2s)
, with fun-

damental strip 〈−1, 0〉. Again there is a simple pole at s = 0 and simple imaginary poles at s = �� ≡
2i��/ ln 2 (for all non zero integers �), which are also expected to introduce periodic fluctuations.
Also note that the sign minus before Vm(z) appears again for the same reason as in Lemma 8.

As in Lemma 8 the singular expansion of g∗(s)provides an asymptotic approximation of the finite
sum in Eq. (A.4). The periodic fluctuations occur under the form of the Fourier series Vm

(
log2 (n)

)
.

As Um(z), Vm(z) has mean value 0 and its coefficients have a very tiny amplitude. Their maximum
is taken at m = 2, and

∀m > 0 |Vm(z)| �
∑

�∈�\{0}

|�(2m+ ��)|
4m m2m−1 ln 2

< 9.0054 10−5.

The Fourier coefficients also decrease very fast (see e.g., [6] or [10, p. 131]). Last, the “truncated”
summation (1 � k � r) results again in error terms O(2m/nm) and O(nm/2rm) in Eq. (A.4). �

A.2. Proofs of the lower Bound on lim inf pj and lim inf p ′j

Lemma 10 provides a lower bound on the finite product denoted by sj in Eq. (5).

Lemma 10. Let j ≡ j(n). Assuming that n/2�
j → 0 (which implies that j(n)→+∞),

lim inf
n

sj � .1809 . . . .

Proof. We rewrite the product sj in (5) as follows: for any r ∈ {2, . . . , ��j�},

sj =
r−1∏
i=1

(1− �(i,n))×
��j�∏
i=r
(1− �(i,n)), (A.5)

where �(i,n) = n

2i

(
1− 1

2i

)n−1

(as defined in Subsection 3.1).

Since for any a ∈ [0, 1] and n � 1, (1− a)n � e−an, we have for any i � 1,

1− �(i,n) � 1− n

2i
exp

(
−n− 1

2i

)
� 1− n

2i
exp

(
− n

2i

)
e1/2; (A.6)

and more precisely, for i ∈ {r, . . . , ��j�}, with r large enough,
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1− �(i,n) � 1− n

2i
exp

(
− n

2i

)
exp

(
1
2r

)
� 1− n

2i
exp

(
− n

2i

)(
1+ 2

2r

)
. (A.7)

Now we let r ≡ r(n) = �1/2 log2 (n)�, ensuring that 2r/
√
n is bounded. A simple bounding argument

in Eq. (A.6) shows that
r−1∏
i=1

(1− �(i,n))→ 1 when n→∞.

Thus, using also inequality (A.7), Eq. (A.5) yields

lim inf
n

sj � exp



��j�∑
i=r

ln
(

1−
(

1+ 2
2r

)
n

2i
exp

(
− n

2i

))


� exp


−

∑
m�1

(
1+ 2

2r

)m

m

��j�∑
i=1

nm

2im
exp

(
−nm

2i

)

. (A.8)

Denote by An the right hand side of the inequality. Computing the second sum (inside the exponen-
tial in An) is completed through asymptotic approximations using the Mellin transform in Lemma
8 (given in Appendix A.1). This is possible since, by assumption, n/2�

j → 0. And by Lemma 8,

An � exp


o(1)−

∑
m�1

(
1+ 2

2r

)m
m!

mm+2 ln 2
−

(
1+ 2

2r

)m

m2 2m
sup
	
|U	(log2 n)|


, (A.9)

where sup	 |U	(z)| < .024234 for all z, as stated in Lemma 8.
Therefore, the third term in Eq. (A.9) is bounded from below by

exp
(
− .024234

∑
m�1

1
m2

)
= .96092 . . .

Next, the second term within the exponential in Eq. (A.9) evaluates to

∞∑
m=1

(
1+ 2

2r

)m
m!

(ln 2) mm+2 �
n1/6∑
m=1

(
1+ 2

2r

)m
m!

(ln 2) mm+2 +
∞∑

m=n1/6+1

2mm!
(ln 2) mm+2 . (A.10)

As a consequence of Lebesgue’s dominated convergence theorem, the first sum on the right hand
side of Eq. (A.10) converges to

∑
m�1

m!
(ln 2) mm+2 = 1.6702 . . . ,

(when n and so r tends to+∞), the numerical results being given by Maple. The second term of the
right hand side of Eq. (A.10) goes to 0, as can be derived from Stirling formula.
Finally, combining all these facts we obtain the announced lower bound on sj . �
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Proof of Lemma 2. Since (1− x) � exp (−2x) for x ∈ [0, 1/2], we can derive the following,

��j�∑
k=1

(�(k ,n))
(m+1) �

��j�∑
k=1

(
n

2k
exp

(
−n− 1

2k−1

))(m+1)

�
��j�∑
k=1

1
2m+1

( n

2k−1

)m+1
exp

(
−n(m+ 1)

2k−1

)

=
��j�∑
k=1

1
2m+1

( n
2k

)m+1
exp

(
−n(m+ 1)

2k

)

+ 1
2m+1

(
nm+1 exp

(
− n(m+ 1)

)
−
(

n

2��j�

)m+1

exp
(
−n(m+ 1)

2��j�

))

= 1
2m+1

(m+ 1)!
(m+ 1)m+2 ln 2

+
Um+1

(
log2(n)

)

(m+ 1)2 4m+1 + O
(

n

2�j+m+1
+ 1
n 2m+1

)
.

By assumption, n/2�
j → 0. So, the latter expression comes from Lemma 8, where the term Um(z) is

defined in Eq. (A.2). Now, summing on m in Eq. (5) we derive

tj � O
(
n

2�j
+ 1
n

)
+
∞∑
m=1

m!
2m mm+1 ln 2

−
∞∑
m=1

sup	 |U	(log2 n)|
m2 4m

.

By Eq. (A.3), numerical evaluations of the sums (with Maple) give lim inf
n

tj � .82092 . . .
Finally, by using both lower bounds on sj and tj (in Lemma 10 and in the above proof, resp.) we
obtain the desired lower bound on lim inf

n
pj > p

�

1 = .14846. . . �

Proof of Lemma 5. First,

s′j �
��j�∏
i=1

(
1 − 1

2

(n
2

)

4i
exp

(
−n− 2

2i

))
, since ∀x ∈ [0, 1] 1− x � e−x ,

�
��j�∏
i=1

(
1 − n2

4i+1 exp
(
−n− 2

2i

))
, since

(
n

2

)
�
n2

2
,

�
��j�∏
i=1

(
1 − n2

4i
exp

(
− n

2i

) e
4

)
�
��j�∏
i=1

(
1 − n2

4i
exp

(
− n

2i

))
.

Using this latter lower bound in Lemma 9 yields

s′j � exp


−

∞∑
m=1

��j�∑
i=1

1
m

n2m

4im
exp

(
−nm

2i

)

� exp

(
o(1)−

∞∑
m=1

1
m

(2m− 1)!
m2m+1 ln 2

−
∞∑
m=1

(
1
m3 sup

	
|V	(log2 n)|

))
,
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with the following value of the lower bound on s′j (computed with Maple):

lim inf
n

s′j � .19895 . . .

Next, 1− x2 � e−x when x is close to 0 and so
(
n

2

)
�
n2

2
exp

(
− 1√

n

)
. Whence t′j also is bounded

from below as follows:

t′j �
��j�∑
k=1

∞∑
m=1

(
1
2

(n
2

)

4k

(
1− 1

2k

)n)m
�
∞∑
m=1

��j�∑
k=1


 1

2
n2

2

exp
(
− 1√

n

)

4k

(
1− 1

2k

)n

m

.

Now, 1− x � exp (−x − x2) when x ∈ [0, 1/2], and

t′j �
∞∑
m=1

e
− m√

n

��j�∑
k=1

1
4m

(
n2

4k
exp

(
− n

2k
− n

4k

))m

�
∞∑
m=1

e
− m√

n

��j�∑
k=r

1
4m

(
n2

4k
exp

(
− n

2k
− n

4r

))m
, (A.11)

where the last summation is starting from r ≡ r(n) = 3/2 log2(n). For such a choice of r, we have
2r � n� 4r (which is used in the following).

Therefore, we can now use Lemma 9 to deal with the inner sum in Eq. (A.11)

t′j �
∞∑
m=1

exp
(
− m√

n
− m n

4r

) ��j�∑
k=r

1
4m

(
n2

4k
exp

(
− n

2k

))m

�
n1/4∑
m=1

e
− m√

n
− mn

4r

(
(2m− 1)!

4m m2m+1 ln 2
− 1
m2 sup

	
|V	(log2 n)|

)
+ o(1).

By Lebesgue’s monotone convergence theorem, this sum converges to

+∞∑
m=1

(
(2m− 1)!

4m m2m+1 ln 2
− 1
m2 sup

	
|V	(log2 n)|

)
,

and the numerical value obtained is lim inf
n

t′j � .39856 . . . Finally, from the lower bounds values

on s′j and t′j , we find

lim inf
n

p ′j � .079294 . . . �
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