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Abstract Potential biologically active new constituents labd-3b, 9b-diol-3a-D-glucopyranosyl-
(2a fi 1b)-a-D-glucopyranosyl-(2b fi 1c)-a-D-glucopyranosyl-(2c fi 1d)-a-D-arabinofuranosyl-2d-
p-hydroxybenzoate (1) and a-D-glucuronopyranosyl (2 fi 10)-a-D-glucuronopyranosyl (20 fi 100)-a-
D-glucopyranosyl-200-n-octadec-9000-enoate (2) along with b-sitosterol-b-D-glucoside were isolated

from the fruits of Lycium chinense. Their chemical structures were elucidated using detailed spectro-

scopic studies. The structure assignments are based on two-dimensional (2D)-NMR techniques

including COSY, HSQC, HMBC and NOESY experiments. Compounds 1 and 2 were evaluated

for antioxidant activities with three assay protocols such as diphenylpicrylhydrazyl (DPPH) radical

scavenging activity, reducing power and the phosphomolybdenum activity, compound 2 showed

more potential as compared with 1.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Lycium chinense Miller fruits (Fructus Lycii) known as
‘Gou-Qi-Zi’ in Chinese have long history of application as a

valuable tonic and health food supplement for improving
vision and maintaining good health. It is reputed to have
properties like nourishing the blood, enriching the yin,

tonifying the kidney and the liver, and moistening the lungs
(Peng et al., 2005). Fruits of L. chinense (Solanaceae),
distributed in northeast Asia, especially China, Japan, Korea,
andTaiwan, have beenwidely used as a tonic in traditionalmed-
icine. Potentially hepatoprotective glycolipid constituents and
determination of betain in L. chinense fruits have been

reported (Jung et al., 2005; Shin et al., 1999). Antimicrobial
compounds have also been reported from L. chinense roots
(Lee et al., 2005). The plant is reported to possess antibacterial,

anticancer and antioxidant properties (Lee et al., 2005; Zhang
et al., 2011; Wang et al., 2010). Antihepatotoxic activity and
chemical constituents from L. chinense fruits have been

reported (Chin et al., 2003). Variation in fruit sugar
zcomposition of Lycium barbarum and L. chinense of different
regions and varieties was also reported (Zheng et al., 2010).

Evaluation of antioxidant and other activities of compounds
from L. barbarum and L. chinense has also been reported (Li
et al., 2007; Ming et al., 2009). Some compounds were reported
in recent reports fromL. chinense fruits (Jung et al., 2012; Chung
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et al., 2013). As part of our ongoing investigations on the biolog-
ically active compounds from L. chinense fruits, we report here
the isolation and identification of two new compounds (1–2) to-

gether with known compound from the methanolic extract of
fruits of L. chinense. New compounds 1 and 2 were evaluated
for antioxidant activities with three assay protocols such as

diphenylpicrylhydrazyl (DPPH) radical scavenging activity,
reducing power and the phosphomolybdenum activity. The ap-
proach developed has proved useful in the study of the active

constituents in traditional Chinese medicines like L. chinense.

2. Experimental

2.1. General information

All chemicals used were of analytical grade. Hexane, ethyl ace-
tate, chloroform, methanol, ethanol, water, sulphuric acid and
vanillin were purchased from Daejung Chemicals and Metals
Co. Ltd, Korea. Pre-coated TLC plates (layer thickness

0.25 mm), silica gel for column chromatography (70–230 mesh
ASTM) and LiChroprep RP-18 (40–63 lm) were from Merck
(Darmstadt, Germany). Previously isolated authentic standard

of b-sitosterol-b-D-glucoside is available. Optical rotation was
measured on an AA-10 model polarimeter (Instruments Ltd,
Seoul, South Korea). Both 1H and 13C NMR spectra were ob-

tained on a Bruker Avance 600 high resolution spectrometer
operating at 600 and150 MHz, respectively. ThisNMRmachine
was available at the Seoul National University (SNU), Seoul,

South Korea and all NMR spectra were recorded at SNU.
NMR spectra were obtained in deuteratedmethanol using tetra-
methylsilane (TMS) as an internal standard, with chemical shifts
expressed in ppm (d) and coupling constants (J) in Hz. FABMS

data were recorded on a JMS-700 (Jeol, Japan) spectrometer
instrument which was available at SNU, Seoul, South Korea.
IR spectra were recorded on an Infinity Gold FT-IR (Thermo

Mattson, USA) spectrophotometer, which was available atKor-
ea Institute of Science andTechnology, Seoul, SouthKorea. The
sugars were determined using high performance liquid chroma-

tography (HPLC,Waters Milfords, MA, USA) with a universal
evaporative lights scattering detector, column Eurospher 100
NH2, detector differential refractometerR401,mobile phase ace-
tonitrile:water (4:1), flow rate of 1.0 ml/min, ambient tempera-

ture and 2 Mpa pressure standard samples of sugars were
obtained from Merck (Germany). The sugar solutions injected
into the column calibration lines for each sugars were made,

which were later used for assessing the concentrations corre-
sponding to the different peaks in the chromatograms.

2.2. Preparation of the extracts

The fruits of L. chinense (3.1 kg) were immersed in methanol
(8 L) for three days at room temperature and then the

supernatant was concentrated under vacuum to yield 230 g
of the extract, which was suspended in water and extracted
with hexane, ethyl acetate and n-butanol successively to
produce 20.0 g, 10.1 g and 40 g of the extracts respectively.

2.3. Isolation of the compounds from n-butanol extract

The entire butanol extract was subjected to normal phase

column chromatography over silica gel (600 g) to yield 24
fractions (each of 500 mL) with the following eluants: frac-
tions 1–2 with chloroform, fractions 3–4 with chloro-
form:methanol (9.8:0.2, V:V), fractions 5–6 with

chloroform:methanol (9:6:0.4, V:V), fractions 7–8 with chloro-
form:methanol (9.4:0.6, V:V), fractions 9–10 with chloro-
form:methanol (9.2:0.8, V:V), fractions 11–12 with

chloroform:methanol (9:1, V:V), fractions 13–14 with chloro-
form:methanol (8.8:1.2, V:V), fractions 15–16 with chloro-
form:methanol (8.5:1.5, V:V), fractions 17–18 with

chloroform:methanol (8:2, V:V), fractions 19–20 with chloro-
form:methanol (8.5:2.5, V:V) and fractions 21–24 with metha-
nol. All fractions were examined by TLC. Fractions 1–4 were
not further separated due to the low amount of the substance.

Fractions 7–8 (0.9 g) were crystallized after purification by col-
umn chromatography, yielding b-sitosterol-b-D-glucoside
(70 mg) whose identity was confirmed through comparison

of TLC and spectroscopic data with those of an authentic
sample. Fractions 13–14 (4.4 g) were re-chromatographed over
LiChroprep RP-18 (ODS silica gel; 40–63 lm: 200 g; each

fraction 100 mL). The elution was sequentially performed with
methanol and water to yield 20 fractions with the following
eluants: fractions 1–4 with water:methanol (8:2, V:V), frac-

tions 5–8 with water:methanol (6:4, V:V), fractions 9–12 with
water:methanol (4:6, V:V), fractions 13–16 with water:metha-
nol (2:8, V:V), fractions 17–20 with methanol. Fractions 9–12
were rechromatographed over Lichroprep RP18 ODS (80 g,

each fraction of 50 mL). The elution was sequentially per-
formed with methanol containing 80%, 60%, 40%, 20%,
10%, and 0% of water to yield two new compounds 1 and 2.
3. Spectral data

3.1. Labd-3b, 9b-diol-3a-D-glucopyranosyl-(2a fi 1b)-a-D-
glucopyranosyl-(2b fi 1c)-a-D-glucopyranosyl-(2c fi 1d)-a-D-
arabinofuranosyl-2d-p-hydroxybenzoate (1)

Light yellow viscous; [a]D
20 + 25.1 (c 0.13, MeOH); 1H NMR

(MeOD, 600 MHz) d: 1.79, 1.84 (m, 2H, H-1), 1.98, 2.03 (m,

2H, H-2), 3.70 (dd, J = 4.9, 9.6 Hz, 1H, H-3), 2.27 (dd,
J= 7.2, 7.8 Hz, 1H, H-5), 1.53, 1.58 (m, 2H, H-6), 1.56,
1.60 (m, 2H, H-7), 1.96 (m, 1H, H-8), 1.67 (t, J = 6.0 Hz,
2H, H-11), 1.33, 1.37 (m, 2H, H-12), 1.60 (m, 1H, H-13),

1.41, 1.43 (m, 2H, H-14), 0.90 (t, J = 6.6 Hz, 3H, H-15),
1.25 (br s, 3H, H-16), 1.29 (br s, 3H, H-17), 0.92 (d,
J= 7.2 Hz, 3H, H-18), 1.27 (br s, 3H, H-19), 0.95 (d,

J= 7.8, 3H, H-20), 5.33 (d, J = 4.8, 1H, H-1a), 3.88 (dd,
J= 4.8, 5.2 Hz, 1H, H-2a), 3.87 (m, 1H, H-3a), 3.83 (m, 1H,
H-4a), 4.15 (m, 1H, H-5a), 3.30 (br s, 2H, H-6a), 5.31 (d,

J= 5.0 Hz, 1H, H-1b), 3.73 (dd, J= 3.6, 5.5 Hz, 1H, H-2b),
3.81 (m, 1H, H-3b), 3.65 (m, 1H, H-4b), 3.82 (m, 1H, H-5b),
3.32 (br s, 2H, H-6b), 4.36 (d, J= 6.0 Hz, 1H, H-1c), 4.01

(dd, J = 4.2, 6.0 Hz, 1H, H-2c), 3.69 (m, 1H, H-3c), 3.56 (m,
1H, H-4c), 3.97 (m, 1H, H-5c), 3.28 (br s, 2H, H-6c), 4.63
(d, J = 5.9 Hz, 1H, H-1d), 4.12 (dd, J = 4.8, 5.9 Hz, 1H, H-
2d), 3.62 (m, 1H, H-3d), 4.31 (m, 1H, H-4d), 3.34 (br s, 2H,

H-5d), 7.62 (dd, J = 3.0, 7.2 Hz, 1H, H-20), 7.71 (dd,
J= 2.9, 8.5 Hz, 1H, H-30), 7.70 (dd, J= 2.9, 7.9 Hz, H-50),
7.60 (dd, J= 3.0, 7.9 Hz, 1H, H-60); 13C NMR (MeOD,

150 MHz) d: 30.2 (C-1), 26.2 (C-2), 79.0 (C-3), 56.5 (C-4),
40.3 (C-5), 21.4 (C-6), 30.6 (C-7), 31.7 (C-8), 78.8 (C-9), 35.2
(C-10), 30.9 (C-11), 30.7 (C-12), 33.2 (C-13), 20.3 (C-14),
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11.5 (C-15), 23.8 (C-16), 24.1 (C-17), 14.5 (C-18), 25.1 (C-19),
14.5 (C-20), 105.3 (C-1a), 84.8 (C-2a), 71.6 (C-3a), 64.5 (C-4a),
74.0 (C-5a), 60.6 (C-6a), 101.3 (C-1b), 83.6 (C-2b), 66.9 (C-3b),

64.6 (C-4b), 78.0 (C-5b), 61.6 (C-6b), 101.1 (C-1c), 82.7 (C-2c),
66.8 (C-3c), 64.8 (C-4c), 77.1 (C-5c), 62.9 (C-6c), 109.3 (C-1d),
87.5 (C-2d), 65.4 (C-3d), 89.4 (C-4d), 64.4 (C-5d), 133.7 (C-10),

132.5 (C-20), 124.9 (C-30), 150.0 (C-40), 123.4 (C-50), 130.1 (C-
60), 169.4 (C-70); IR (KBr) mmax: 3510, 3420, 3395, 2922,
2852, 1738, 1625, 1556, 1430, 1380, 1246, 1072, 1028 cm�1;

FAB-MS (positive ion mode) m/z 1049 [M + H]+

(C50H81O23) (1.5), 366 (10.5), 269 (15.7), 366 (10.5), 269
(15.7), 253 (11.3), 137 (23.1), 121 (82.6); HR-FABMS (positive
mode) m/z 1049.5159 [M + H] (calculated for C50H81O23,

1049.5169); ESI Mass (positive mode) m/z 413 (M+ H -3
glucose + 1furanose).

3.2. a-D-glucuronopyranosyl (2 fi 1)-a-D-glucuronopyranosyl
(2 fi 1)-a-D-glucopyranosyl -200-n-octadec-9000-enoate (2)

Dark yellow semi-solid; [a]D
20 + 33.1 (c 0.23, MeOH); 1H

NMR (MeOD, 600 MHz) d: 4.49 (d, J = 6.6 Hz , 1H, H-1),
4.09 (dd, J = 6.1, 6.6 Hz, 1H, H-2), 3.71 (m, 1H, H-3), 3.64
(m, 1H, H-4), 3.96 (d, J = 7.2 Hz, 1H, H-5), 4.83 (d,

J = 6.8 Hz, H-10), 4.01 (dd, J = 5.8, 6.6 Hz, H-20), 3.69 (m,
1H, H-30), 3.57 (m, 1H, H-40), 3.75 (d, J = 6.6 Hz, 1H, H-
50), 5.01 (d, J = 6.9 Hz, 1H, H-100), 4.35 (dd, J= 6.6, 6.9 Hz,
1H, H-200), 3.66 (m, 1H, H-300), 3.49 (m, 1H, H-400), 3.78 (m,

1H, H-500), 3.27 (br s, 2H, H-600), 2.80 (d, J= 4.2 Hz, 2.77,
J = 4.1 Hz, 2H, H-2000), 2.42 (m, 2H, H-3000), 2.20 (m, 2H, H-
4000), 1.98 (m, 2H, H-5000), 1.96 (m, 4H, H-6000 & 7000), 2.62 (m,

2H, H-8000), 5.02 (m, 2H, H-9000 & 10000), 2.58 (m, 2H, H-11000),
2.30 (m, 2H, H-12000), 2.01 (m, 2H, H-13000), 1.96 (m, 2H, H-
14000), 1.49 (m, 2H, H-15000), 1.33 (m, 2H, H-16000), 1.25 (br s,

2H, H-17000), 0.89 (t, J = 7.2 Hz, H-18000); 13C NMR (MeOD,
150 MHz) d: 97.8 (C-1), 74.9 (C-2), 73.2 (C-3), 72.3 (C-4),
78.1 (C-5), 179.4 (C-6), 98.3 (C-10), 74.3 (C-20), 73.0 (C-30),

71.9 (C-40), 77.7 (C-50), 176.3 (C-60), 99.4 (C-100), 83.3 (C-200),
71.2 (C-300), 69.6 (C-400), 76.4 (C-500), 62.8 (C-600), 169.0 (C-
1000), 54.0 (C-2000), 39.1 (C-3000), 32.4 (C-4000), 32.0 (C-5000), 27.5
(C-6000 & C-7000), 41.5 (C-8000), 120.9 (C-9000), 116.9 (C-10000),

40.7 (C-11000), 27.5 (C-12000), 26.7 (C-13000 & C-14000), 27.0 (C-
15000 & C-16000), 22.6 (C-17000), 15.0 (C-18000); IR mmax: (KBr):
3410, 3375, 3265, 2930, 2843, 1737, 1709, 1628, 1477, 1395,

1334, 1081, 980, 895 cm�1; FAB-MS (positive mode) m/z
(rel. int.) 797 [M + H]+ (C36H61O19 (2.1), 427 (11.3), 370
(6.8), 281 915.8), 265 (9.7), 193 (9.8); HRFAB MS (positive

mode) m/z 797.3798 [M + H]+ (calculated for C36H61O19,
797.3807); ESI Mass (positive mode) m/z 426 [M-2 glucoronic
acid]+ and 829 [M-H +H2O2]

+.

3.3. Acid hydrolysis of compound 1

Compound 1 (10 mg) was refluxed with 2 mL of 1 mol/L
hydrochloric acid:dioxane (1:1, V:V) in a water bath for 4 h.

The reaction mixture was evaporated to dryness and parti-
tioned with chloroform and water four times, and each extract
was concentrated. The chloroform extract contained the agly-

cone portion, while the water extract possessed glycone por-
tion (co-chromatographed on TLC (CHCl3:CH3OH:H2O:
AcOH at 16:9:2:2) with authentic sample determined by

HPLC.
3.4. Acid hydrolysis of compound 2

A solution of compound 2 (10 mg in tetrahydrofuran) was
added to 0.5 mL 1 NHCl and stirred at 80 �C for 4 h.After cool-
ing, the reaction mixture was diluted with H2O and extracted

with EtOAc (3 ml · 3), yielded oleic acid and the aqueous layer
was subjected to TLC (CHCl3:CH3OH:H2O:AcOH at 16:9:2:2)
together with an authentic sample of D-glucose and to HPLC.

4. Antioxidant activity

Three assay protocols such as diphenylpicrylhydrazyl (DPPH)
radical scavenging activity, reducing power and the

phosphomolybdenum activity were used for the evaluation of
antioxidant activity of compounds (1–2) as described below:

4.1. Free radical scavenging activity

The antioxidant activity of compounds 1 and 2 based on the
scavenging activity of the stable 1,1-diphenyl-2-picrylhydrazyl

(DPPH�) free radical, was determined by the method de-
scribed by Katerere and Eloff (2005). The method is based
on the reduction of methanolic DPPH� solution in the pres-

ence of a hydrogen donating antioxidant, due to the formation
of the non-radical form DPPH–H by the reaction (Blois,
1958). Different concentrations (1.0, 2.0, 3.0, 4.0, and 5.0 mg
of 1 and 50, 100, 150, 200, and 250 lg of 2) of the tested sam-

ples (0.2 ml; compounds and BHT) were taken in different test
tubes with 4 ml of a 0.006% MeOH solution of DPPH�.
Water (0.2 ml) in place of the compound was used as control.

Absorbance at 517 nm was determined after 30 min of incuba-
tion at 37 �C. Radical scavenging activity was expressed as the
inhibition percentage and was calculated using the following

formula, % Radical scavenging activity = [(A0 � A1)/
A0] · 100, where A0 is the absorbance of the control, and A1

is the absorbance of the compound/standard.

4.2. Assay of reductive potential

The reductive potential of the compound was determined
according to the method of Dorman and Hiltunen (2004).

The reaction mixture comprises varying concentrations of
the compounds (1.0, 2.0, 3.0, 4.0, and 5.0 mg of 1 and 200,
400, 600, 800 and 1000 lg/ml of 2) in 1 ml of distilled water,

phosphate buffer (2.5 ml, 0.2 M, pH 6.6) and potassium ferri-
cyanide [K3Fe(CN)6] (2.5 ml, 1%). The mixture was incubated
at 50 �C for 20 min. A portion (2.5 ml) of trichloroacetic acid

(10%) was added to the mixture, which was then centrifuged at
1000 rpm for 10 min. The upper layer of the solution (2.5 ml)
was mixed with distilled water (2.5 ml) and FeCl3 (0.5 ml,
0.1%) and the absorbance was measured at 700 nm in a spec-

trophotometer. BHT was used as standard. Increased absor-
bance of the reaction mixture indicated increased reductive
potential. All analyses were run in triplicate and averaged.

4.3. Evaluation of antioxidant capacity by phosphomolybdenum

method

The total antioxidant capacity of compounds 1 and 2 was eval-
uated by the method (Prieto et al., 1999). An aliquot of 0.1 ml
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of sample solution (100 lg/ml) was combined with 1 ml of re-
agent solution (0.6 M sulphuric acid, 28 mM sodium phos-
phate and 4 mM ammonium molybdate). The tubes were

capped and incubated in a boiling water bath at 95 �C for
90 min. After the samples had cooled to room temperature,
the absorbance of the aqueous solution of each was measured

at 695 nm against blank. A typical blank solution contained
1 ml of reagent solution and the appropriate volume of the
same solvent used for the sample and it was incubated under

same conditions as rest of the sample. The results are expressed
as equivalents of a-tocopherol (mg/g of compound).

5. Results and discussion

Compound 1, was obtained as a light yellow viscous mass from
chloroform–methanol (8.8:1.2, V:V) eluants. Its IR spectrum

showed characteristic absorption bands for hydroxyl groups
(3510, 3420, 3395 cm�1), ester function (1738 cm�1), and aro-
matic ring (1625, 1556, 1028 cm�1). The FAB mass and 13C
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Three broad signals at d 1.25, 1.29 and 1.27 and two doublets
at d 0.92 (J= 7.2 Hz) and 0.95 (J = 7.8 Hz), all integrated for
three protons each were ascribed to tertiary methyl Me-16,

Me-17 and Me-19 and secondary methyl Me-18 and Me-20
respectively. A three proton triplet at 0.90 (J= 6.6 Hz), was
due to primary methyl Me-15 proton. The remaining methy-

lene and methine resonated from d 2.27 to 1.33.
The 13C NMR spectrum of 1 and its one-dimensional

modifications (ATP) showed that the compound was a glyco-

side with four sugar residues. The 13C NMR spectrum dis-
played signals for aromatic carbons from d 150.03 to 123.40,
ester carbon at d 169.49 (C-70), anomeric carbon at d 105.37
(C-1a), 101.35 (C-1b), 101.16 (C-1c), and 109.36 (C-1d), the

other sugar carbons between d 89.42 and 60.68, oxygenated
methine carbon at d 79.08 (C-3), hydroxyl-substituted quater-
nary carbon at d 78.84 (C-9), and other labdane carbons from

d 56.55 to 11.55. The presence of two sugar signals in the
deshielded region at d 109.36 (C-1d), and 89.42 (C-4d)
suggested a-furanoarabinose moiety in the sugar chain. The

presence of C-2a at d 84.81, C-2b at d 83.65, C-2c at d 82.72
and C-2d at d 87.75 supported C2fi1 linkages of the sugar units.
Analysis of the spin–spin coupling constants of the anomeric

carbon atoms to anomeric protons established that the sugars
adopted the furanose form with an axial anomeric proton.

The 1H–1H COSY spectrum of 1 showed correlations of H-
3 with H2-2, H3-16 and H-1a; H-2a with H-1a, H-3a and H-1b;

H-2c with H-1c, H-3c and H-1d; H-20 with H-30 and H-60; H-5
with Me-16 and H2-6; and Me-20 with H-13, Me-15 and
Figure 3 Antioxidant activity of compound 1 at different concent
H2-14. The HMBC spectrum of 1 exhibited interactions of
C-3 with H2-2, H3-17 and H-1a; C-9 with H-8, H3-18 and
H3-19; C-2a with H-3a and H-1b; C-1d with H-2d and H-2c;

C-4d with H2-5d, H-3d and H-2d; and C-70 with H-20, H-60

and H-2d. The HSQC experiment showed key-correlations be-
tween the proton H-3 at d 3.70 and C-3 at d 79.08; H-1a at d
5.33 with C-1a at d 105.37; H-1b at d 5.31 with C-1b at d
101.35; H-1c at d 4.36 with C-1c at d 101.16; H-1d at d 4.63
with C-1d at d 109.36 and aromatic protons with respective

carbon signals. The COSY and TCOSY spectra showed close
spin systems belonging to sugar protons and enabled a deter-
mination of the monosaccharide composition of the carbohy-
drate part of each glycoside. These spectra exhibited a series

of close spin systems for the protons of rings A and B of the
aglycone and enabled their partial assignment. The ROESY
spectrum showed the bonding sequence of residues in the

tetrasaccharide and the site of attachment of the sugars to
the aglycone. The ROESY spectrum of 1 contained the usual
correlation peaks for a furanose with axial anomeric protons

H-1a/H-2a, H-1a/H-3a, H-1a/H-5a, and H-1a/H-6a; in
additions to correlation peaks H-1a/H-2b, H-1b/H-1c; H-1c/
H-2c, H-1c/H-1d; H-1d/H-2c, H-1d/H-2d, H-1d/H-5d; and

H-2d/H-20 and H-20 and 60. This enables the sequence of resi-
dues in the tetrasaccharide. The NOESY spectrum of 1 showed
correlations of H-3a with Me-16 and H-5a; Me-19 with Me-18,
H2-1 and H2-11.

Acid hydrolysis of 1 yielded glucose and arabinose as
sugars (co-TLC and HPLC comparable). On the basis of the
ration levels as measured by DPPH radical scavenging activity.
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foregoing discussion the structure of 1 has been established as
labd-3b, 9b-diol-3a-D-glucopyranosyl-(2 fi 1)-a-D-glucopyr-
anosyl-(2 fi 1)-a-D-glucopyranosyl-(2 fi 1)-a-D-arabinofur-
anosyl-2d-p-hydroxybenzoate. This is a new diterpene
glycoside.

Compound 2 (Fig. 1), was obtained as dark yellow viscous

mass from chloroform–methanol (8.8:1.2; V:V) eluants. It gave
positive test for glycosides. Its IR spectrum showed character-
istic absorption bands for hydroxyl groups (3410, 3375,

3265 cm�1), ester group (1737 cm�1), carboxylic function
(1709 cm�1) and unsaturation (1628 cm�1). On the basis of
FAB mass and 13C NMR spectra the molecular weight of 2
was determined at m/z 797 [M + H]+ corresponding to the

molecular formula of a triglycosidic fatty acid ester
C36H61O19. The ion peaks arising at 265 [CH3

(CH2)7CH‚CH (CH2)7 CO]+, 281 [CH3 (CH2)7CH‚CH

(CH2)7 COO]+ and 427 [C6H10O6–oleate]
+ suggested that

oleic acid moiety was attached to the C6-sugar unit. The ion
peaks arising at 193 [C5H8O5COOH]+, and 370 [C5H8O5-

COOH–C5H7O4COOH]+ supported the presence of two glu-
coronosidic units in the molecule. The fragmentation pattern
of compound 2 is shown in Fig. 2.

The 1H NMR spectrum of 2 exhibited a two-proton multi-
plet at d 5.02 assigned to vinylic H-9000 and H-10000 protons
respectively. Three one-proton doublets at d 4.49
Figure 4 Antioxidant activity of compound 2 at different concent
(J = 6.6 Hz), 4.83 (J = 6.8 Hz) and d 5.10 (J = 6.9 Hz) were
ascribed to a-oriented H-1, H-10 and H-100 anomeric protons
respectively. The other sugar protons appeared from d 4.35

to 3.27. The presence of H-2, H-20 and H-200 signals as double
doublets in the deshielded region at d 4.09 (J = 6.6, 6.1 Hz),
4.01 (J = 6.6, 5.8 Hz), 4.35 (J= 6.6, 6.9 Hz) respectively indi-

cated (2 fi 1) linkage of the sugar units and location of ester
function at C-200. A three-proton triplet at d 0.89
(J = 7.2 Hz) was accounted to terminal primary C-18000 methyl

protons. The remaining methylene protons resonated between
d 2.80 and 1.25.

The 13C NMR spectrum showed important signals for car-
boxylic carbons at d 179.40 (C-6) and 176.35 (C-60), anomeric

carbons at d 97.83 (C-1), d 98.38 (C-10), d 99.45 (C-100), and
other sugar carbons from d 83.33 to 62.89. The presence of
C-200 in the deshielded region at d 83.33 supported the existence

of the function at this carbon. The signals for fatty acids chain
resonated for unsaturated carbons at d 120.93 (C-9000) and
116.80 (C-10000), methylene carbons from d 54.01 to 22.63

and methyl carbon at d 15.06 (C-18000).
The 1H–1HCOSYspectrum of 2 showed interactions of H-10

with H-20, H-30 and H-2; H-100 with H-200 and H-20; H-9000 with

H-8000 and H2-11
000; and H2-6

00 with H-500. The HMBC spectrum
of 2 exhibited correlations of C-6 with H-5 and H-4; C-10 with
H-2, H-20, H-30; C-100 with H-20 and H-200; C-1000 with H-200; and
ration levels as measured by DPPH radical scavenging activity.
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C-9000 with H-10000, H2-8
000 and H-11000. The HSQC spectrum of 2

showed important correlations of anomeric H-1, H-10 and
H-100 with C-1, C-10 and C-100; H-2 at d 4.09 with C-2 at d
74.93; H-200 at d 4.35 with C-200 at d 83.33; and vinylic protons
at d 5.02 with C-9000 and C-10000. The ROESY spectrum of 2
showed correlation signals for axial anomeric protons H-1

with pyranose protons H-2, H-3, H-5 and H-10; H-20 with H-
10, H-30, H-40 and H-100; and H-200 with H-100, H-300 and H2-
2000. This enables the sequence of sugar units and site of attach-

ment of the trisaccharide to the aglycone.
Acid hydrolysis of 2 yielded oleic acid, glucoronic acid and

glucose. On the basis of above evidences, the structure of 2 has
been elucidated as a-D-glucuronopyranosyl (2 fi 1)-a-D-glu-
curonopyranosyl (2 fi 1)-a-D-glucopyranosyl-200-n-octadec-
9000-enoate. This is a new glycosidic ester.

6. Biological activity

6.1. Free radical scavenging activity

Figs. 3 and 4 show the concentration dependent antioxidant
activity of compounds 1 and 2 at different concentration levels

as measured by the DPPH-radical scavenging assay. Com-
pounds 1 and 2 were able to reduce the stable radical DPPH�

to the yellow-coloured diphenylpicrylhydrazine. The IC50 va-

lue of compounds 1 and 2 were 3.94 mg/ml and 53.31 lg/ml
respectively. The DPPH activity of BHT showed a higher de-
gree of free radical-scavenging activity than that of the com-

pound at very low concentration points. The DPPH activity
of BHT exhibited 92.04% at 50 lg/ml concentration with an
Figure 5 Reducing power of compoun
IC50 value of 27.16 lg/ml (data not shown). This is similar
to other studies wherein they have reported that only 0.3 mg/
ml tocopherol, 0.23 mg/ml BHT and 0.1 mg BHA exhibited

a free radical scavenging activity equivalent to 3.9 mg/ml of
red bean and 10 mg/ml of sesame coat extract (Chang et al.,
2002; Chung et al., 2002).

6.2. Reducing power

As shown in Figs. 5 and 6 reducing power of compounds 1 and

2 increased with increasing concentration from 1.0 to 5.0 mg/
ml for compound 1 and 200 to 1000 lg/ml for compound 2.
The activity of BHT was higher than the test samples at each

concentration points (data not shown). This is in accordance
with the observations of several other workers wherein the
reducing power of BHT and tocopherol (Chung et al., 2002)
and BHA (Oktay et al., 2003) was higher than the extracts.

In the present study, compounds 1 and 2 from the butanol
fraction of methanol extract of lycium fruits exhibited a good
reducing power.

6.3. Antioxidant capacity by phosphomolybdenum method

The antioxidant capacity of compounds 1 and 2 was measured

spectrophotometrically through phosphomolybdenum meth-
od, which is based on the reduction of Mo (IV) to Mo (V)
by the sample analyte and the subsequent formation of green
phosphate/Mo (V) compounds with a maximum absorption

at 695 nm. The antioxidant capacity of compounds 1 and 2

was found to be 115. 95 and 131.74 mg/g respectively.
d 1 at different concentration levels.



Figure 6 Reducing power of compound 2 at different concentration levels.
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7. Conclusion

The new compounds 1 and 2 were isolated from the butanol
fraction of methanolic extract of L. chinense fruits along with

known compound. Compounds 1 and 2 were evaluated for
antioxidant activities with three assay protocols as radical
scavenging activity, reducing power and phosphomolybdenum

activity, compound 2 showed more potential as a natural
antioxidant as compared with 1. The approach developed
has proved useful in the study of the active constituents in

traditional Chinese medicines.
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