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Abstract

This paper characterizes directed graphs which are Cayley graphs of strong semilattices of groups and, in particular, strong chains
of groups, i.e. of completely regular semigroups which are also called Clifford semigroups.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Cayley graph; Digraph; Clifford semigroup; Strong semilattice of groups; Completely regular

1. Introduction

One of the first investigations on Cayley graphs of algebraic structures can be found in Maschke’s Theorem from
1896 about groups of genus zero, that is, groups G which possess a generating system A such that the Cayley graph
Cay(G, A) is planar, see for example [15]. In [10] Cayley graphs which represent groupoids, quasigroups, loops or
groups are described. The result for groups originates from [14] and is meanwhile folklore, see for example [2]. After
this it is natural to investigate Cayley graphs for semigroups which are unions of groups, so-called completely regular
semigroups, see for example [13]. In [1] Cayley graphs which represent completely regular semigroups which are
right (left) groups are characterized. We now characterize Cayley graphs which represent Clifford semigroups. Recent
studies in a different direction investigates transitivity of Cayley graphs of groups and semigroups [7], of right and left
groups and of Clifford semigroups [12]. Other related results can be found, for example, in [5,7,9]. Relations to network
theory together with many theoretical results are presented in [4]. The concept of the Cayley graph of a groupoid has
also been considered in relation to automata theory in a recent book by Kelarev [6].

2. Basic definitions and results

All sets in this paper are assumed to be finite. A groupoid is a non-empty set G together with a binary operation on
G. A semigroup is a groupoid G which is associative. A monoid is a semigroup G which contains a (two-sided) identity
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element eG ∈ G. A group is a monoid G such that for every a ∈ G there exists a group inverse a−1 ∈ G such that
a−1a = aa−1 = eG.

Let S be a semigroup. The set C(S)={c ∈ S|cs=sc for all s ∈ S} is called the center of S. The set of all idempotents
of S is denoted by E(S). An element s ∈ S is called a regular element, if sxs = s for some x ∈ S. One calls S a regular
semigroup if all of its elements are regular. A regular semigroup S is called a Clifford semigroup if E(S) ⊆ C(S), i.e.
idempotents of S commute with all elements of S.

If (Y, �) is a non-empty partially ordered set such that the meet a ∧b of a and b exists for every a, b in Y we say that
(Y, �) is a (lower) semilattice. A semigroup S is said to be a semilattice of groups (G�, ◦�), � ∈ Y , if Y is a semilattice,
S = ⋃

�∈Y G�, and G�G� ⊆ G�∧�, and a strong semilattice of groups (or a strong chain of groups if Y is a chain) if, in
addition, for all ��� in Y there exists a group homomorphism f�,� : G� → G� such that f�,� = idG� is the identity
mapping and for all �, �, � ∈ Y with �����, we have f�,� ◦ f�,� = f�,�, where the multiplication ∗ on S = ⋃

�∈Y G�
is defined for x ∈ G� and y ∈ G� by

x ∗ y = f�,�∧�(x)◦�∧�f�,�∧�(y).

Theorem 2.1 (Kilp et al. [10], Petrich and Reilly [13]). For a semigroup S the following are equivalent:

(i) S is a Clifford semigroup,
(ii) for every s ∈ S there exists x ∈ S such that sxs = s and sx = xs,

(iii) S is a semilattice of groups,
(iv) S is a strong semilattice of groups.

In the sequel, we will use the term strong semilattice of groups instead of Clifford semigroup, since we will use the
respective properties and formulate results also for the more special case of strong chains of semigroups. We need the
following standard definitions.

Definition 2.2. Let (V1, E1) and (V2, E2) be digraphs. A mapping � : V1 → V2 is called a (digraph) homomorphism
if (u, v) ∈ E1 implies (�(u), �(v)) ∈ E2, i.e. � preserves arcs. We write � : (V1, E1) → (V2, E2). A digraph
homomorphism � : (V , E) → (V , E) is called a (digraph) endomorphism. If � : (V1, E1) → (V2, E2) is a bijective
digraph homomorphism and �−1 is also a digraph homomorphism, then � is called a (digraph) isomorphism. A digraph
isomorphism � : (V , E) → (V , E) is called a (digraph) automorphism.

Definition 2.3. Let G be a groupoid (semigroup, group, etc.) and A ⊆ G. We define the Cayley graph Cay(G, A) as
follows: G is the vertex set and (u, v), u, v ∈ G, is an arc in Cay(G, A) if there exists an element a ∈ A such that
v = ua. The set A is called the connection set of Cay(G, A).

Note that this way we do not get multiple edges in Cayley graphs. For groupoids this may in some cases imply a loss
of information. Note, moreover, that there exist several slightly different definitions of Cayley graphs, in particular the
definition by left action of the elements of A. Using right action we can write mappings (color endomorphisms) on the
left to get a biact, see [9].

Definition 2.4. A digraph (V , E) is called a groupoid (semigroup, group, etc.) digraph or digraph of a groupoid,
(semigroup, group, etc.) if there exists a groupoid (semigroup, group, etc.) G and a connection set A ⊆ G such that
(V , E) is isomorphic to the Cayley graph Cay(G, A). We speak about G-groupoid digraphs, if we want to consider
various subsets A ⊆ G and the respective Cayley graphs Cay(G, A).

For terms in graph theory not defined here, see for example [3].

Theorem 2.5 (Na Chiangmai [11], Sabidussi [14]). A digraph (V , E) with n vertices is a group digraph if and only
if its automorphism group Aut(V , E) contains a subgroup � of order n such that for any two vertices u, v ∈ V there
exists � ∈ � such that �(u) = v.



S. Panma et al. / Discrete Mathematics 306 (2006) 1247 –1252 1249

3. General lemmas

Lemma 3.1. Let Y be a finite semilattice,
(⋃

�∈Y G�; ∗)
a strong semilattice of groups (G�; ◦�), � ∈ Y , and let A be

a subset of
⋃

�∈Y G�. If x′
� ∈ G�, y′

� ∈ G�, and if (x′
�, y′

�) is an arc in Cay
(⋃

�∈Y G�, A
)
, then ��� and for each

x� ∈ G�, there exists y� ∈ G� such that (x�, y�) is an arc in Cay
(⋃

�∈Y G�, A
)
.

Proof. For x′
� ∈ G�, y′

� ∈ G� let (x′
�, y′

�) be an arc in the Cayley graph Cay
(⋃

�∈Y G�, A
)
. Then there exists a ∈ A

such that y′
� = x′

� ∗ a with a ∈ G� for some � ∈ Y . Hence, y′
� = x′

� ∗ a = f�,�∧�(x
′
�)◦�∧�f�,�∧�(a) and thus � ∧ � = �

and ���. Moreover, for any x� ∈ G� we get

x� ∗ a = f�,�∧�(x�)◦�∧�f�,�∧�(a) = f�,�(x�)◦�f�,�(a).

Hence, we have y� = x� ∗ a ∈ G� and (x�, y�) is an arc in Cay
(⋃

�∈Y G�, A
)
. �

In this lemma we use the concept of group digraph from Definition 2.3 and the concept strong group subdigraph,
meaning that the injection is a strong graph homomorphism, or in other words, we mean the induced subdigraph, i.e.
the subdigraph having all edges between its vertices which exist in the big digraph between the respective vertices.

In this lemma, to be used in Theorem 4.1 and Corollary 4.2, we restrict our attention to one-element connection sets.

Lemma 3.2. Let Y be a finite semilattice,
(⋃

�∈Y G�; ∗)
a strong semilattice of groups (G�; ◦�), � ∈ Y . Take a ∈⋃

�∈Y G�. Then the Cayley graph Cay
(⋃

�∈Y G�, {a}) contains |Y | disjoint strong group subdigraphs (G�, E�), � ∈
Y , where (G�, E�)�Cay(G�, A�) with A� := {f�,�(a)} for a ∈ G�, ���, and A� := ∅ otherwise.

Proof. Take � ∈ Y and a ∈ ⋃
�∈Y G�. Consider the strong group subdigraph (G�, E�) of Cay

(⋃
�∈Y G�, {a}). We

show that (G�, E�) is isomorphic to Cay(G�, A�) where A� := {f�,�(a)} for a ∈ G� and ���. Let � : (G�, E�) →
Cay(G�, A�) be the identity mapping on the group G�. We will show that � and �−1 are digraph homomorphisms.

For x�, y� ∈ G�, take (x�, y�) ∈ E�. We prove that (x�, y�) is an arc in Cay(G�, A�). Since (G�, E�) is the strong
group subdigraph of the Cayley graph Cay

(⋃
�∈Y G�, {a}), (x�, y�) is an arc in Cay

(⋃
�∈Y G�, {a}) . Therefore, we

have y� = x� ∗ a. For the given a ∈ G�, say, for � ∈ Y . Hence,

y� = x� ∗ a = f�,�∧�(x�)◦�∧�f�,�∧�(a),

and thus � ∧ � = �. Therefore, ���, and thus y� = x�◦�f�,�(a). Hence (x�, y�) is an arc in Cay(G�, A�).
For x�, y� ∈ G�, let now (x�, y�) be an arc in Cay(G�, A�). Therefore, there exists � ∈ Y such that ��� and

y� = x�◦�f�,�(a) = x� ∗ a. Therefore (x�, y�) is an arc in (G�, E�). �

4. Clifford semigroup digraphs

Now we proceed to the main results and finally give an example of Cayley graphs of a Clifford semigroup with
different connection sets. In the first theorem we describe the structure of Cayley graphs of a given strong semilattice
of groups with a given connection set. In view of Lemma 8.3 in [8] we know that Cay(G, A) = ⋃

a∈A Cay(G, {a}).
Corollary 4.2 specializes the result of Theorem 4.1 for strong chains of groups.

Theorem 4.1. Let Y be a finite semilattice,
(⋃

�∈Y G�; ∗)
a strong semilattice of groups (G�; ◦�), � ∈ Y . Take a ∈

G� ⊆ ⋃
�∈Y G�. Then

(1) the Cayley graph Cay
(⋃

�∈Y G�, {a}) contains |Y | disjoint strong group subdigraphs (G�, E�), � ∈ Y , where
(G�, E�) := Cay(G�, A�) with A� := {f�,�(a)} if ���, A� := ∅ otherwise, in particular, A� = {a}, and

(2) if � 
= �, x� ∈ G�, y� ∈ G�, then (x�, y�) is an arc in Cay
(⋃

�∈Y G�, {a}) if and only if � > �, � ∧ � = �, and
(f�,�(x�), y�) is an arc in Cay(G�, A�) for the given a ∈ G�.

Note that for � = � the condition in (2) is not fulfilled since � ∧ � 
= �. If � = � we have that (f�,�(x�), y�) is an arc
in Cay(G�, a).
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Proof. By Lemma 3.2, we get (1).
For (2) take � 
= � in Y , y� ∈ G�, x� ∈ G�.
(⇒) Suppose (x�, y�) is an arc in Cay

(⋃
�∈Y G�, {a}), i.e. y� = x� ∗ a, a ∈ G�, � ∈ Y . Therefore, y� =

f�,�∧�(x�)◦�∧�f�,�∧�(a) and � ∧ � = �, i.e. y� = f�,�(x�)◦�f�,�(a) and � > �. Thus, (f�,�(x�), y�) is an arc in
Cay(G�, A�).

(⇐) Suppose � > � and (f�,�(x�), y�) is an arc in Cay(G�, A�), i.e. y� = f�,�(x�)◦�f�,�(a) for the given a ∈ G�.
Since � > � and � > � � ∧ � = �. Thus y� = f�,�∧�(x�)◦�∧�f�,�∧�(a) = x� ∗ a. Therefore, (x�, y�) is an arc in
Cay

(⋃
�∈Y G�, {a}). �

Corollary 4.2. Let Y be a finite chain,
(⋃

�∈Y G�; ∗)
a strong chain of groups (G�; ◦�), � ∈ Y . Take a ∈ G� ⊆⋃

�∈Y G�. Then

(1) the Cayley graph Cay
(⋃

�∈Y G�, {a}) contains |Y | disjoint strong group subdigraphs (G�, E�), � ∈ Y , where
(G�, E�) := Cay(G�, A�) with A� := {f�,�(a)} if ���, A� := ∅ otherwise, in particular, A� = {a}, and

(2) if � 
= �, x� ∈ G�, y� ∈ G�, then (x�, y�) is an arc in Cay
(⋃

�∈Y G�, {a}) if and only if � > � and (f�,�(x�), y�)

is an arc in Cay(G�, A�).

Proof. By Theorem 4.1(1), we get (1). For (2) we get that a ∈ A� if � ∧ � = �. Indeed, if � 
= �, and � ∧ � = � for
� ∈ Y we get � = � since Y is a chain, and thus f�,�(a) = a. Now Theorem 4.1(2) is (2). �

The following theorem takes an approach opposite to Theorem 4.1. We describe when a graph, whose vertex set
can be associated with the elements of a strong semilattice of groups, is a strong semilattice of groups digraph, by
constructing the appropriate connection set. Corollary 4.4 does the same for strong chains of groups digraphs. Here, it
is necessary to consider connection sets A with more than one element.

Theorem 4.3. Let Y be a finite semilattice,
(⋃

�∈Y G�; ∗)
a strong semilattice of groups (G�; ◦�), � ∈ Y, e� denotes

the identity element of the group (G�; ◦�), and let
(⋃

�∈Y G�, E
)

be a digraph such that:

(1) the graph
(⋃

�∈Y G�, E
)

contains |Y | disjoint strong group subdigraphs (G�, E�) where (G�, E�)=Cay(G�, A�)

and A� := {a� ∈ G�|(e�, a�) ∈ E} for � ∈ Y , and
(2) if B� := {a� ∈ A�|(e�, a�) ∈ E f or all ���}, then (x�, y�) ∈ E, x� ∈ G�, y� ∈ G�, if and only if ��� and

there exist � ∈ Y , � ∧ � = � and a� ∈ B� such that y� = f�,�(x�)◦�f�,�(a�). Moreover, if � > � and one has one
(x�, y�) ∈ E then for all x� ∈ G� there exists y� ∈ G� such that (x�, y�) ∈ E.

Then
(⋃

�∈Y G�, E
)

is a strong semilattice of groups digraph.

Note that A� contains the tails of all arcs in
(⋃

�∈Y G�, E
)

starting in e� and B� contains those vertices of A� which
are the tails of all arcs in

(⋃
�∈Y G�, E

)
starting in e� for all � > �.

Proof. With B� = {a� ∈ A�|(e�, a�) ∈ E for all ���}, we set A := ⋃
�∈Y B�. To show that

(⋃
�∈Y G�, E

)
�

Cay
(⋃

�∈Y G�, A
)
, let � : (⋃

�∈Y G�, E
) → Cay

(⋃
�∈Y G�, A

)
be the identity mapping on

⋃
�∈Y G�. We will show

that � and �−1 are digraph homomorphism. For (x�, y�) ∈ E we prove that (x�, y�) is an arc in Cay
(⋃

�∈Y G�, A
)
.

If � = �, then by (2), we have y� = x�◦�f�,�(a�), for some a� ∈ B� and ���. Then y� = x� ∗ a�, a� ∈ B� ⊆ A. Thus
(x�, y�) is an arc in Cay

(⋃
�∈Y G�, A

)
.

If � > �, then by (2), we get y� = f�,�(x�)◦�f�,�(a�) for some � ∈ Y such that � ∧ � = � and some a� ∈ B�. Hence
y� = f�,�∧�(x�)◦�∧�f�,�∧�(a�), i.e. y� = x� ∗ a�, a� ∈ B� ⊆ A. Hence (x�, y�) is an arc in Cay

(⋃
�∈Y G�, A

)
.

Let now (x�, y�) be an arc in Cay
(⋃

�∈Y G�, A
)
. We prove that (x�, y�) ∈ E. The hypothesis implies y� = x� ∗ a

for some a ∈ A = ⋃
�∈Y B�. Hence a ∈ B� for some � ∈ Y . By Lemma 3.1, we get ���.

If � = �, then y� = f�,�∧�(x�)◦�∧�f�,�∧�(a), � = � ∧ �. Hence y� = f�,�(x�)◦�f�,�(a) = x�◦�f�,�(a). By (2), we get
that (x�, y�) ∈ E.

If � > � then y� = f�,�∧�(x�)◦�∧�f�,�∧�(a). Thus � = � ∧ � and therefore y� = f�,�(x�)◦�f�,�(a). By (2), we get
(x�, y�) ∈ E.

Note that the “Moreover” part in (2) actually follows from the rest of (2) by Lemma 3.1. �
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Corollary 4.4. Let Y be a finite chain,
(⋃

�∈Y G�; ∗)
a strong semilattice of groups (G�; ◦�), � ∈ Y , e� denotes the

identity element of the group (G�; ◦�), and let
(⋃

�∈Y G�, E
)

a digraph such that:

(1) the graph
(⋃

�∈Y G�, E
)

contains |Y | disjoint strong group subdigraphs (G�, E�) where (G�, E�)=Cay(G�, A�)

and A� := {a� ∈ G�|(e�, a�) ∈ E} for � ∈ Y , and
(2) if B� := {a� ∈ A�|(e�, a�) ∈ E for all ���}, then (x�, y�) ∈ E, x� ∈ G�, y� ∈ G�, if and only if ��� and

(f�,�(x�), y�) is an arc in Cay(G�, B�). Moreover, if � > � and one has one (x�, y�) ∈ E then for all x� ∈ G�
there exists y� ∈ G� such that (x�, y�) ∈ E.

Then
(⋃

�∈Y G�, E
)

is a strong chain of groups digraph.

For the following examples we recall that for any semigroup G and connection set A we have Cay(G, A) =⋃
a∈A Cay(G, {a}), cf. Lemma 8.3 in [8].

Example 4.5. We consider the strong semilattice of groups consisting of three copies of Z2, elements being denoted by
e�, x� (at the bottom) and similarly with indices � (top left) and � (top right), with one group homomorphism being the
identity mapping (from top right), the other one the constant mapping onto the identity e� (from top left) as indicated.
Then we give the Cayley graphs Cay(G, A) for all the six different one-element connection sets A, as indicated in the
picture.
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