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1. INTRODUCTION 

It is not true, in general, that the localization T-‘E of an injective R- 
module E over a commutative ring R with respect to a multiplicatively 
closed subset T of R is an injective T-‘R module. Counter-examples are 
given in [2, 3, 51. 

However, if R is Noetherian, Tp ‘E is indeed injective, as was pointed 
out in [2]. To see this, we tensor the exact sequence 

Hom(R, E) ’ + Hom(Z, E) ---+ 0 

to obtain the commutative diagram 

Hom(R, E) @ Tp ‘R ‘@‘+ Hom(Z, E)@T-‘R+O 

Hom(R, E@ T-‘R) * p Hom(Z, E@ Tp’R) 

for any ideal Z of R. Here $ is defined in the obvious way and 
y,:f@x-f,, wheref,(r)=f(r)@x, etc. 

The map yR is an isomorphism, and y, is also an isomorphism provided 
that Z is finitely related, [6, Lemma 3.831. Thus, if R is Noetherian, y1 is an 
isomorphism for all ideals Z of R so that $ is an epimorphism and 
Tp ‘E = E @ Tp ‘R is R-injective and therefore also Tp ‘R-injective (see 
Proposition 2.2 of [2]). 

In the case of localization with respect to maximal ideals, more positive 
results exists. E. Matlis [4, Proof of Theorem 241 proves that if R is an h- 
local domain and E an R-module, then E is an injective R-module if and 
only if E,,, is an injective R,-module for every maximal ideal A4 of R. 
Furthermore he proves that inj dim, E = supMEmSpec R inj dim., E,, where 
mspec R is the set of all maximal ideals of R. 
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Let T be any multiplicatively closed set and T the image of T in R,. In 
this paper we prove that if E is T-torsion-free, then E is T-injective if and 
only if E, is a F-injective R, -module. From this result it follows that if R 
is an order in a semi-simple ring, then E is an injective R-module if and 
only if E, is an injective R,-module for every maximal ideal M of R. 

We obtain similar results for the torsion case with the additional restric- 
tion that R be h-local. 

Finally, these results are combined to show that for R T-h-local, an 
arbitrary R-module E is T-injective if and only if E, is T-injective for every 
maximal ideal M of R. If, in addition, R is an order in a semi-simple ring, 
then E is an injective R-module if and only if E, is an injective R,-module 
for every maximal ideal M. Examples of such rings include finite products 
of valuation domains. 

2. NOTATION AND PRELIMINARIES 

Throughout this paper, R will denote a commutative ring with identity 
and R, will denote the ring R localized at a maximal ideal M. 

Let T be any multiplicatively closed subset of R. The T-torsion part of an 
R module E, denoted by tT(E), is defined to be the set of all elements eE E 
such that te = 0 for some t E T. The R-module E is called a T-torsion 
module if tT(E) = E and is T-torsion-free if t,(E) = 0. The module E/t,(E) 
is always T-torsion-free. A module E is T-injective if for each ideal Z of R 
such that In T# 12/ and each homomorphism CI: Z-r E there exists XE E 
such that a(u) = xa for all a E I. E is T-divisible if E = tE for all t E T. 

We shall denote the set of regular elements of R by S, and we observe 
that the image of S, denoted by 3, of S in R, is a multiplicatively closed 
subset of R,, although in general this is not the set of regular elements of 
R M- 

The T-injective R-modules have the following property: 

PROFQSITION 2.1. An R-module E is T-injective if and only if every 
diagram of R-modules and R-homomorphisms 

O-A-B 

in which B/A is a T-torsion module and the row is exact, can be extended to 
a commutative diagram with the new R-homomorphism p. 
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Proof The proof is analogous to the proof of the Baer criterion (see, 
e.g., [6, Theorem 3.20, p. 671). 1 

A similar result holds for T-injective R,-modules. 
The following results will be useful: 

PROPOSITION 2.2. An R,-module is R,-injective if and only tf it is 
R-injective. 

Proof [2, p. 4173. 1 

PROPOSITION 2.3. Let E be any R,-module and M a maximal ideal of R. 
Then E is a T-injective R,-module if and only if E is a T-injective R-module. 

Proof Suppose E is a T-injective R,-module. Let Z be an ideal of R 
such that In T # 0 and let a: Z + E be an R-homomorphism. Define an 
R,-homomorphism a’: I, -+ E; i/u + l/u a(i). Since E is T-injective, there 
exists an x E E such that 

Thus 

a’( i/u) = x * i/u for all i/u E I,. 

a(i)=a’(i/l)=x*i/l 

=x.i for all i E 1 

(by the definition of E as R-module), and it follows that E is T-injective. 
Conversely, let J be an ideal of R,, J n T# 0. Let r E T such that 
r/lEJni=.ThenrEJ’nT. 

Let a: J + E be any R,-homomorphism. Define cl: J’ + E; t + a(t/l). As 
E is T-injective, there exists an x E E such that cl(t) = tx; therefore 
a(r/u) = x * r/u for all r/u E J, and thus E is T-injective. m 

3. THE TORSION-FREE CASE 

We have the following relationship between T-injectivity and 
T-divisibility for T-torsion-free R-modules. 

PROPOSITION 3.1. The following properties of an R-module C are 
equivalent: 

(a) C is T-torsion-free and T-injective; 
(b) C is T-torsion-free and T-divisible. 

Proof [7, Proposition 3.7, p. 581. 1 
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It is easy to see that for any T-torsion-free R-module C, CM is a 
T-torsion-free R,-module, for any ME mspec R. 

PROPOSITION 3.2. Let C be a T-torsion-free R-module. Then C is a 
T-injective R-module if and only if CM is a T-injective R,-module for every 
ME mspec R. 

Proqf: We shall only prove that C is T-divisible if and only if C, is 
T-divisible for every ME mspec R. The result will then follow from 
Proposition 3.1 and the above remark. 

Suppose C is T-divisible and let c/u be an arbitrary element of C, and 
t/l E 5? Since C is T-divisible, there exists dE C such that c = dt. Then 
d/u. t/l = c/u, and thus C, is T-divisible. 

Conversely, suppose C, is T-divisible for every ME mspec R and con- 
sider the R-homomorphism 

8,: c+c; cwct, te T. 

Then (e,),: CM + C,, c/u + t/l. c/u is an epimorphism for every 
ME mspec R since C, is T-divisible for every ME mspec R. Thus 8, is an 
epimorphism. Since this hold for all t E Tit follows that C is T-divisible. 1 

COROLLARY 3.3. Let R be an order in a semi-simple ring and let C be an 
S-torsion-free R module. Then C is an injective R-module if and only if C, is 
an injective R,-module. 

ProojI If R is an order in a semi-simple ring, then every T-injective R- 
module is injective [7, Proposition 3.8, p. 583. The result follows from 
Propositions 2.2, 2.3, and 3.2. 1 

3.4. Examples of rings which are orders in semi-simple rings 
include the following: 

(a) Finite sums of domains (use [7, Theorem 2.21). 
(b) Let R be an integral domain with field of fractions K and let G be 

a finite group such that the characteristic of K does not divide the order of 
G. Then R[G] is an order in the semi-simple ring K[G]. 

4. THE TORSION CASE 

In the torsion case, we shall restrict ourselves to T-h-local rings. A ring R 
is T-h-local if every t E T is an element of only finitely many maximal ideals 
of R and every prime ideal P of R, which is not a minimal prime and 
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P n T# 0, is a subset of only one maximal ideal of R( [ 11). An S-h-local 
ring is called h-local. 

h-Local domains are extensively studied in [4]. We observe that the 
class of h-local rings is closed under arbitrary sums so that any sum of 
h-local domains is an h-local ring. 

If E is an R-module and M a maximal ideal of R, then define 
E(M)= (0) u (XE EIM is the only maximal ideal such that 
ann, (x) c M}. The brackets ( . > will denote a coproduct map. 

PROPOSITION 4.1. Let R be T-h-local and D a T-torsion R-module. D is 
T-injective if and only if D, is a T-injective R,-module for every 
ME mspec R. 

Proof. We need the following lemma, the proof of which is 
straightforward in view of Theorem 2.6 and Corollary 2.7 in [ 11, which 
also hold for arbitrary T-h-local rings. 

LEMMA 4.2. Let A and D be any S-torsion R-modules and f: D + A an 
R-monomorphism. Then there exist isomorphisms 8, : @ NEmSpec R D, + D 
and 0,: ONfmspecRAN+A such that f 0 0, = 8,o (in, ofN), where 
lnAN. .AN+ GhmspecR A, is the injection map. 

Proof of the Theorem. Suppose D, is T-injective for all A4 E mspec(R). 
Consider any exact sequence 

O-D~A~R,/I,+O (4.1) 

with K a maximal ideal of R and I an ideal of R such that In Tf 0. It 
follows that A is a T-torsion module. 

Since the sequence (4.1) is exact, the sequence 

0 - DM A A,,., + (&/I,), - 0 (4.2) 

is exact for every ME mspec R. But D, is T-injective and T-torsion; thus 
the sequence (4.2) splits (Proposition 2.1); i.e., for every fM: D, + A, 
there exists an R,-homomorphism, h”: A,,,, + D, such that hM 0 fM = l,,. 

Consider the diagram 
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Mb, ohN)o <inA,ofN) = 1 f!BDN 

and from the lemma that 

Thus, the exact sequence (4.1) splits, and therefore ExtX(R,/I,, D) = 0. But 
R/I is T-torsion, and therefore 

R/I= 0 R,fI,. 
MEmspec R 

Thus Extk(R/I, D) = nMEmSpecR Ext(R,,,/I,, D) = 0 so that D is 
T-injective (see the proof of Theorem 9.11 in [6 J ). 

Conversely, suppose D is T-injective. Since D = @ NEmspec R D,, every 
D, is a T-injective R-module. From Proposition 2.2 it follows that every 
D, is a T-injective RN-module. 

COROLLARY 4.3. Let R be a h-local ring that is an order in a semi-simple 
ring and let D be a T-torsion R-module. Then D is an injective R-module if 
and only ty D, is an injective R,-module. 

Proof Similar to the proof of Corollary 3.3. [ 

4.4. Examples of rings that are both h-local and an order in a semi- 
simple ring include finite products of local domains. These are not 
Noetherian if the local rings are not Noetherian, for example non-discrete 
valuation domains. 

5. THE MAIN THEOREM 

We shall now combine Sections 3 and 4 to prove the main theorem, but 
first we need additional lemmas, which we state without proof: 

LEMMA 5.1. If t,(E) is the T-torsion part of an R-module E, then 
(tT(E))M is the T-torsion part of E,. 

LEMMA 5.2. Let E be any R-module (R,-module). If E is T-injective 
(T-injective), then E/t .E (E/t T( E)) is T-divisible ( T-divisible). 
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LEMMA 5.3. Let 

O+A+B-+B/A+O 

be an exact sequence of R-modules with A and B/A T-injective. Then B is 
T-injective. 

We are now ready to prove the main theorem. 

THEOREM 5.4. Let R be a T-h-local ring. Then E is a T-injective R- 
module if and only if E, is a T-injective R,-module for every A4 E mspec R. 

ProojI Suppose E is T-injective. It is easy to prove that t,(E) is T-injec- 
tive. Furthermore, tT(E) = eMEmSpecR (tr(E))M, and thus every (tT(E)),,., 
is T-injective. It follows from Proposition 2.2 that (tTE)M is a T-injective 
R,-module. E/t.(E) is T-divisible, and thus E,/(t,E), is T-divisible (see 
the proof of Proposition 3.2). Since it is T-torsion-free, it follows from 
Proposition 3.1 that E,/(t,E), is T-injective. 

Lemma 5.3 now implies that E, is T-injective. 
Conversely, suppose E, is T-injective for every ME mspec R. Then 

(tTE),,,, is the T-torsion part of E, (from Lemma 5.1) and (tTE)M is 
T-injective since E, is T-injective, and thus tT(E) is T-injective 
(Proposition 4.1). 

Lemma 5.2 implies that EM/(trE)M is T-divisible, and since it is 
T-torsion-free, it is T-injective. Therefore, E/t,(E) is T-injective, by 
Proposition 3.1. 

The theorem follows from Lemma 5.3. 1 

COROLLARY 5.5. Let R be an h-local ring that is an order in a semi- 
simple ring and let E be an R-module. Then E is an injective R-module if and 
only if E, is an injective R,-module. 

Proof This is similar to the proof of Corollary 3.3. 1 

We can use the above corollary to obtain the following result on the 
injective dimension of a module: 

COROLLARY 5.6. Let R be an h-local ring that is an order in a semi- 
simple ring and let E be any R-module. Then 

inj dim, E= sup 
ME mspec R 

inj dim., E,. 

ProoJ The proof is a direct extension of the proof of Matlis [4, 
Theorem 241 in the domain case. 1 
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