JOURNAL OF ALGEBRA 103, 108-115 (1986)

On Localization of Injective Modules

C. NAUDÉ AND G. NAUDÉ

National Research-Institute for Mathematical Sciences, CSIR, P. O. Box 395, Pretoria 0001, Republic of South Africa

Communicated by Barbara L. Osofsky

Received November 29, 1984

1. INTRODUCTION

It is not true, in general, that the localization $T^{-1}E$ of an injective *R*-module *E* over a commutative ring *R* with respect to a multiplicatively closed subset *T* of *R* is an injective $T^{-1}R$ module. Counter-examples are given in [2, 3, 5].

However, if R is Noetherian, $T^{-1}E$ is indeed injective, as was pointed out in [2]. To see this, we tensor the exact sequence

$$\operatorname{Hom}(R, E) \xrightarrow{\phi} \operatorname{Hom}(I, E) \longrightarrow 0$$

to obtain the commutative diagram

$$\operatorname{Hom}(R, E) \otimes T^{-1}R \xrightarrow{\psi \otimes 1} \operatorname{Hom}(I, E) \otimes T^{-1}R \to 0$$

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & &$$

for any ideal I of R. Here ψ is defined in the obvious way and $\gamma_R: f \otimes x \to f_x$, where $f_x(r) = f(r) \otimes x$, etc.

The map γ_R is an isomorphism, and γ_I is also an isomorphism provided that *I* is finitely related, [6, Lemma 3.83]. Thus, if *R* is Noetherian, γ_I is an isomorphism for all ideals *I* of *R* so that ψ is an epimorphism and $T^{-1}E = E \otimes T^{-1}R$ is *R*-injective and therefore also $T^{-1}R$ -injective (see Proposition 2.2 of [2]).

In the case of localization with respect to maximal ideals, more positive results exists. E. Matlis [4, Proof of Theorem 24] proves that if R is an *h*-local domain and E an R-module, then E is an injective R-module if and only if E_M is an injective R_M -module for every maximal ideal M of R. Furthermore he proves that inj dim_{R E} = sup_{$M \in mspec R$} inj dim_{$R_M E_M$}, where mspec R is the set of all maximal ideals of R.

Let T be any multiplicatively closed set and \overline{T} the image of T in R_M . In this paper we prove that if E is T-torsion-free, then E is T-injective if and only if E_M is a \overline{T} -injective R_M -module. From this result it follows that if R is an order in a semi-simple ring, then E is an injective R-module if and only if E_M is an injective R_M -module for every maximal ideal M of R.

We obtain similar results for the torsion case with the additional restriction that R be h-local.

Finally, these results are combined to show that for R *T*-h-local, an arbitrary *R*-module *E* is *T*-injective if and only if E_M is *T*-injective for every maximal ideal *M* of *R*. If, in addition, *R* is an order in a semi-simple ring, then *E* is an injective *R*-module if and only if E_M is an injective R_M -module for every maximal ideal *M*. Examples of such rings include finite products of valuation domains.

2. NOTATION AND PRELIMINARIES

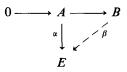
Throughout this paper, R will denote a commutative ring with identity and R_M will denote the ring R localized at a maximal ideal M.

Let T be any multiplicatively closed subset of R. The T-torsion part of an R module E, denoted by $t_T(E)$, is defined to be the set of all elements $e \in E$ such that te = 0 for some $t \in T$. The R-module E is called a T-torsion module if $t_T(E) = E$ and is T-torsion-free if $t_T(E) = 0$. The module $E/t_T(E)$ is always T-torsion-free. A module E is T-injective if for each ideal I of R such that $I \cap T \neq \emptyset$ and each homomorphism $\alpha: I \to E$ there exists $x \in E$ such that $\alpha(a) = xa$ for all $a \in I$. E is T-divisible if E = tE for all $t \in T$.

We shall denote the set of regular elements of R by S, and we observe that the image of S, denoted by \overline{S} , of S in R_M is a multiplicatively closed subset of R_M , although in general this is not the set of regular elements of R_M .

The T-injective R-modules have the following property:

PROPOSITION 2.1. An R-module E is T-injective if and only if every diagram of R-modules and R-homomorphisms



in which B/A is a T-torsion module and the row is exact, can be extended to a commutative diagram with the new R-homomorphism β .

Proof. The proof is analogous to the proof of the Baer criterion (see, e.g., [6, Theorem 3.20, p. 67]).

A similar result holds for \overline{T} -injective R_M -modules. The following results will be useful:

PROPOSITION 2.2. An R_M -module is R_M -injective if and only if it is *R*-injective.

Proof. [2, p. 417].

PROPOSITION 2.3. Let E be any R_M -module and M a maximal ideal of R. Then E is a \overline{T} -injective R_M -module if and only if E is a T-injective R-module.

Proof. Suppose E is a \overline{T} -injective R_M -module. Let I be an ideal of R such that $I \cap T \neq \emptyset$ and let $\alpha: I \to E$ be an R-homomorphism. Define an R_M -homomorphism $\alpha': I_M \to E; i/u \to 1/u \ \alpha(i)$. Since E is \overline{T} -injective, there exists an $x \in E$ such that

$$\alpha'(i/u) = x \cdot i/u$$
 for all $i/u \in I_M$.

Thus

$$\alpha(i) = \alpha'(i/1) = x \cdot i/1$$

= $x \cdot i$ for all $i \in I$

(by the definition of E as R-module), and it follows that E is T-injective. Conversely, let J be an ideal of R_M , $J \cap \overline{T} \neq \emptyset$. Let $r \in T$ such that $r/1 \in J \cap \overline{T}$. Then $r \in J^c \cap T$.

Let $\alpha: J \to E$ be any R_M -homomorphism. Define $\bar{\alpha}: J^c \to E$; $t \to \alpha(t/1)$. As E is T-injective, there exists an $x \in E$ such that $\bar{\alpha}(t) = tx$; therefore $\alpha(r/u) = x \cdot r/u$ for all $r/u \in J$, and thus E is \overline{T} -injective.

3. THE TORSION-FREE CASE

We have the following relationship between T-injectivity and T-divisibility for T-torsion-free R-modules.

PROPOSITION 3.1. The following properties of an R-module C are equivalent:

- (a) C is T-torsion-free and T-injective;
- (b) C is T-torsion-free and T-divisible.

Proof. [7, Proposition 3.7, p. 58].

110

It is easy to see that for any T-torsion-free R-module C, C_M is a \overline{T} -torsion-free R_M -module, for any $M \in \text{mspec } R$.

PROPOSITION 3.2. Let C be a T-torsion-free R-module. Then C is a T-injective R-module if and only if C_M is a \overline{T} -injective R_M -module for every $M \in mspec R$.

Proof. We shall only prove that C is T-divisible if and only if C_M is \overline{T} -divisible for every $M \in \text{mspec } R$. The result will then follow from Proposition 3.1 and the above remark.

Suppose C is T-divisible and let c/u be an arbitrary element of C_M and $t/1 \in \overline{T}$. Since C is T-divisible, there exists $d \in C$ such that c = dt. Then $d/u \cdot t/1 = c/u$, and thus C_M is \overline{T} -divisible.

Conversely, suppose C_M is \overline{T} -divisible for every $M \in \text{mspec } R$ and consider the R-homomorphism

$$\theta_t: C \to C; \qquad c \mapsto ct, \quad t \in T.$$

Then $(\theta_t)_M: C_M \to C_M$, $c/u \to t/1 \cdot c/u$ is an epimorphism for every $M \in \text{mspec } R$ since C_M is \overline{T} -divisible for every $M \in \text{mspec } R$. Thus θ_t is an epimorphism. Since this hold for all $t \in T$ it follows that C is T-divisible.

COROLLARY 3.3. Let R be an order in a semi-simple ring and let C be an S-torsion-free R module. Then C is an injective R-module if and only if C_M is an injective R_M -module.

Proof. If R is an order in a semi-simple ring, then every T-injective R-module is injective [7, Proposition 3.8, p. 58]. The result follows from Propositions 2.2, 2.3, and 3.2.

3.4. Examples of rings which are orders in semi-simple rings include the following:

(a) Finite sums of domains (use [7, Theorem 2.2]).

(b) Let R be an integral domain with field of fractions K and let G be a finite group such that the characteristic of K does not divide the order of G. Then R[G] is an order in the semi-simple ring K[G].

4. THE TORSION CASE

In the torsion case, we shall restrict ourselves to T-h-local rings. A ring R is T-h-local if every $t \in T$ is an element of only finitely many maximal ideals of R and every prime ideal P of R, which is not a minimal prime and

 $P \cap T \neq \emptyset$, is a subset of only one maximal ideal of R([1]). An S-h-local ring is called h-local.

h-Local domains are extensively studied in [4]. We observe that the class of *h*-local rings is closed under arbitrary sums so that any sum of *h*-local domains is an *h*-local ring.

If E is an R-module and M a maximal ideal of R, then define $E(M) = \{0\} \cup \{x \in E | M \text{ is the only maximal ideal such that } ann_R(x) \subseteq M\}$. The brackets $\langle \cdot \rangle$ will denote a coproduct map.

PROPOSITION 4.1. Let R be T-h-local and D a T-torsion R-module. D is T-injective if and only if D_M is a \overline{T} -injective R_M -module for every $M \in \text{mspec } R$.

Proof. We need the following lemma, the proof of which is straightforward in view of Theorem 2.6 and Corollary 2.7 in [1], which also hold for arbitrary T-h-local rings.

LEMMA 4.2. Let A and D be any S-torsion R-modules and $f: D \to A$ an R-monomorphism. Then there exist isomorphisms $\theta_D: \bigoplus_{N \in \text{mspec } R} D_N \to D$ and $\theta_A: \bigoplus_{N \in \text{mspec } R} A_N \to A$ such that $f \circ \theta_D = \theta_A \circ \langle in_A \circ f_N \rangle$, where $in_{A_N}: A_N \to \bigoplus_{N \in \text{mspec } R} A_N$ is the injection map.

Proof of the Theorem. Suppose D_M is \overline{T} -injective for all $M \in mspec(R)$. Consider any exact sequence

$$0 \longrightarrow D \xrightarrow{J} A \xrightarrow{g} R_K / I_K \longrightarrow 0 \tag{4.1}$$

with K a maximal ideal of R and I an ideal of R such that $I \cap T \neq \emptyset$. It follows that A is a T-torsion module.

Since the sequence (4.1) is exact, the sequence

$$0 \longrightarrow D_M \xrightarrow{f_M} A_M \xrightarrow{g_M} (R_K/I_K)_M \longrightarrow 0$$
(4.2)

is exact for every $M \in \text{mspec } R$. But D_M is \overline{T} -injective and \overline{T} -torsion; thus the sequence (4.2) splits (Proposition 2.1); i.e., for every $f_M : D_M \to A_M$ there exists an R_M -homomorphism, $h^M : A_M \to D_M$ such that $h^M \circ f_M = 1_{D_M}$.

Consider the diagram

$$D_{M} \xrightarrow{J_{M}} A_{M}$$

$$\downarrow^{in_{D_{M}}} \qquad \downarrow^{in_{A_{N}}\circ f_{N}}$$

$$\bigoplus D_{N} \xrightarrow{\langle in_{A_{N}}\circ f_{N} \rangle} \bigoplus A_{N}$$

It follows easily that

$$\langle in_{D_N} \circ h^N \rangle \circ \langle in_{A_N} \circ f_N \rangle = 1_{\bigoplus D_N}$$

and from the lemma that

$$f \circ \theta_D \circ \langle in_{D_N} \circ h^N \rangle \circ \theta_A^{-1} = 1_D.$$

Thus, the exact sequence (4.1) splits, and therefore $\operatorname{Ext}_{R}^{1}(R_{K}/I_{K}, D) = 0$. But R/I is T-torsion, and therefore

$$R/I = \bigoplus_{M \in \text{mspec } R} R_M/I_M.$$

Thus $\operatorname{Ext}_{R}^{1}(R/I, D) = \prod_{M \in \operatorname{mspec} R} \operatorname{Ext}(R_{M}/I_{M}, D) = 0$ so that D is T-injective (see the proof of Theorem 9.11 in [6]).

Conversely, suppose D is T-injective. Since $D = \bigoplus_{N \in \text{mspec } R} D_N$, every D_N is a T-injective R-module. From Proposition 2.2 it follows that every D_N is a \overline{T} -injective R_N -module.

COROLLARY 4.3. Let R be a h-local ring that is an order in a semi-simple ring and let D be a T-torsion R-module. Then D is an injective R-module if and only if D_M is an injective R_M -module.

Proof. Similar to the proof of Corollary 3.3.

4.4. Examples of rings that are both h-local and an order in a semisimple ring include finite products of local domains. These are not Noetherian if the local rings are not Noetherian, for example non-discrete valuation domains.

5. The MAIN THEOREM

We shall now combine Sections 3 and 4 to prove the main theorem, but first we need additional lemmas, which we state without proof:

LEMMA 5.1. If $t_T(E)$ is the T-torsion part of an R-module E, then $(t_T(E))_M$ is the \overline{T} -torsion part of E_M .

LEMMA 5.2. Let E be any R-module $(R_M$ -module). If E is T-injective $(\overline{T}$ -injective), then $E/t_T E(E/t_T(E))$ is T-divisible $(\overline{T}$ -divisible).

LEMMA 5.3. Let

 $0 \to A \to B \to B/A \to 0$

be an exact sequence of R-modules with A and B/A T-injective. Then B is T-injective.

We are now ready to prove the main theorem.

THEOREM 5.4. Let R be a T-h-local ring. Then E is a T-injective Rmodule if and only if E_M is a \overline{T} -injective R_M -module for every $M \in \text{mspec } R$.

Proof. Suppose E is T-injective. It is easy to prove that $t_T(E)$ is T-injective. Furthermore, $t_T(E) = \bigoplus_{M \in \text{mspec } R} (t_T(E))_M$, and thus every $(t_T(E))_M$ is T-injective. It follows from Proposition 2.2 that $(t_T E)_M$ is a \overline{T} -injective R_M -module. $E/t_T(E)$ is T-divisible, and thus $E_M/(t_T E)_M$ is \overline{T} -divisible (see the proof of Proposition 3.2). Since it is \overline{T} -torsion-free, it follows from Proposition 3.1 that $E_M/(t_T E)_M$ is \overline{T} -injective.

Lemma 5.3 now implies that E_M is \overline{T} -injective.

Conversely, suppose E_M is \overline{T} -injective for every $M \in \text{mspec } R$. Then $(t_T E)_M$ is the \overline{T} -torsion part of E_M (from Lemma 5.1) and $(t_T E)_M$ is \overline{T} -injective since E_M is \overline{T} -injective, and thus $t_T(E)$ is T-injective (Proposition 4.1).

Lemma 5.2 implies that $E_M/(t_T E)_M$ is \overline{T} -divisible, and since it is \overline{T} -torsion-free, it is \overline{T} -injective. Therefore, $E/t_T(E)$ is T-injective, by Proposition 3.1.

The theorem follows from Lemma 5.3.

COROLLARY 5.5. Let R be an h-local ring that is an order in a semisimple ring and let E be an R-module. Then E is an injective R-module if and only if E_M is an injective R_M -module.

Proof. This is similar to the proof of Corollary 3.3.

We can use the above corollary to obtain the following result on the injective dimension of a module:

COROLLARY 5.6. Let R be an h-local ring that is an order in a semisimple ring and let E be any R-module. Then

$$\operatorname{inj\,dim}_{R} E = \sup_{M \in \operatorname{mspec} R} \operatorname{inj\,dim}_{R_{M}} E_{M}.$$

Proof. The proof is a direct extension of the proof of Matlis [4, Theorem 24] in the domain case.

114

References

- 1. W. BRANDAL, "Commutative Rings Whose Finitely Generated Modules Decompose," Lecture Notes in Mathematics Vol. 723, Springer-Verlag, Berlin/Heidelberg, 1979.
- 2. E. C. DADE, Localization of injective modules, J. Algebra 69 (1981), 416-425.
- 3. J. KUZMANOVICH, Solution to problem 6311 (1980, 675) proposed by J. Rotman, Amer. Math. Monthly 89 (1982), 342.
- 4. E. MATLIS, "Torsion-Free Modules," Chicago Lectures in Mathematics, Univ. of Chicago Press, Chicago, 1972.
- 5. E. MATLIS, The minimal prime spectrum of a reduced ring, Illinois J. Math. 27 (1983), 353-391.
- 6. J. J. ROTMAN, "An Introduction to Homological Algebra," Academic Press, New York, 1979.
- 7. B. STENSTRÖM, "Rings of Quotients," Springer-Verlag, Berlin/Heidelberg, 1975.