
Journal of Algebra 330 (2011) 221–233

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Second cohomology groups and finite covers of infinite
symmetric groups

David M. Evans a, Elisabetta Pastori b,∗
a School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, UK
b Dipartimento di Matematica, Università degli Studi di Torino, Via Carlo Alberto 10, 10123, Torino, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 August 2009
Available online 3 January 2011
Communicated by Michel Broué

Keywords:
Infinite permutation groups
Continuous cohomology groups
Permutation modules for the symmetric
group of infinite degree
Finite covers in model theory

For Ω an infinite set, k � 2 and W the set of k-sets from Ω ,
there is a natural closed permutation group Γk which is a non-split
extension 0 → Z

W
2 → Γk → Sym(Ω) → 1. We classify the closed

subgroups of Γk which project onto Sym(Ω). The question arises
in model theory as a problem about finite covers, but here we
formulate and solve it in algebraic terms.
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1. Introduction and background on finite covers

The problem of understanding the finite covers of a structure arises in model theory (for example,
see [1,7]), but it also has a natural formulation in purely algebraic terms as an extension problem in
the category of permutation groups and we adopt this approach here. We begin by reviewing some
definitions and basic facts about infinite permutation groups and finite covers. Further details can be
found in [4,5].

If C is any set then the full symmetric group Sym(C) on C can be considered as a topological group
by giving it the topology whose open sets are arbitrary unions of cosets of pointwise stabilizers of
finite subsets of C . A subgroup Γ � Sym(C) is closed in Sym(C) if and only if any element of Sym(C)

which stabilizes each Γ -orbit on Cn , for all n ∈ N, is in Γ . As is well known, closed subgroups in
this topology are precisely automorphism groups of first-order structures on C . Hence we say that
a permutation structure is a pair 〈C;Γ 〉 where C is a set and Γ is a closed subgroup of Sym(C).
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Suppose 〈C;Γ 〉 is a permutation structure and ρ is a Γ -invariant equivalence relation on C . Let
W = C/ρ , the set of equivalence classes. The action of Γ on W gives a continuous homomorphism
μ : Γ → Sym(W ). If all the ρ-classes are finite then G = μ(Γ ) is a closed subgroup of Sym(W ), μ is
an open map (indeed a proper map) and 〈W ; G〉 is a permutation structure. We say that 〈C;Γ 〉 is a
finite cover of 〈W ; G〉 with kernel kerμ. The latter is a profinite group and we have an exact sequence
of topological groups

1 → K → Γ
μ−→ G → 1. (1)

We say that a subgroup Σ of Γ is full (with respect to μ) if it is closed and μ(Σ) = G , or
equivalently, if Γ = KΣ . Usually μ will be clear from the context and in this case we will just say
that Σ is full in Γ . We say that Σ is minimally full if it is full and has no proper full subgroup. It can
be shown that any full subgroup of Γ contains a minimally full subgroup (Lemma 1.5(i) of [2]). The
main result of this paper is an explicit determination of the minimally full subgroups of some very
natural finite covers associated with the infinite symmetric group. To describe these and to motivate
the problem a little further, it will be useful to introduce the following terminology.

A finite cover 〈C;Γ 〉 of 〈W ; G〉 with kernel K has the following data associated to it. Let w ∈ W
and C(w) denote the ρ-class in C labelled by w . For w ∈ W , the fibre group F (w) at w is the finite
permutation group induced on C(w) by the setwise stabilizer in Γ of C(w). The binding group B(w)

at w is the finite permutation group induced on C(w) by the kernel K . It is clear that B(w) � F (w).
Let G w be the stabilizer of w in G . There is a homomorphism χw : G w → F (w)/B(w), defined by
χw(g) = (h|C(w))B(w), where g ∈ G w and h ∈ Γ is a permutation which extends g . This homomor-
phism is well defined, continuous and surjective [4, Lemma 2.1.1]. We shall refer to it as the canonical
homomorphism of the cover. Clearly, if G acts transitively on W then all the fibre groups are isomor-
phic as permutation groups, as are the binding groups.

Conversely, given a permutation structure 〈W ; G〉 with G acting transitively on W , some w ∈ W ,
finite permutation groups B � F and a continuous epimorphism χ : G w → F/B , there is a unique
finite cover 〈C0;Γ0〉 of 〈W ; G〉 with these data and kernel K0 equal to the full direct product

∏
w∈W B

[4, Lemma 2.1.2]. We refer to this as the free finite cover with the given data. Any finite cover 〈C;Γ 〉
of 〈W , G〉 with the same data can be regarded as having C = C0 and Γ � Γ0.

So the problem of determining the finite covers of a transitive permutation structure 〈W ; G〉 with
given fibre and binding groups and canonical homomorphisms is equivalent to the problem of de-
termining the full subgroups Γ of the corresponding free cover 〈C0;Γ0〉. Moreover we can write
Γ = KΓ1 where K = Γ ∩ K0 is the kernel of the cover and Γ1 is some minimally full subgroup. Thus
the problem can be reduced to determining the possible kernels K � K0 and the minimally full sub-
groups of Γ0. In the case where the binding groups are abelian, K0 is a continuous G-modules and
the possible kernels are just the closed G-submodules.

Previous work on problems of this kind has been done in cases where the fibre groups split over
the binding groups. Our main results here are concerned with the following finite covers, which are
probably the simplest examples where this is not the case. Denote by Zn the cyclic group of order n.

Definition 1.1. Let Ω be an infinite set and k � 2 a natural number. Then G = Sym(Ω) acts naturally
on [Ω]k , the set of k-subsets from Ω and is a closed permutation group on this set. Note that if
w ∈ [Ω]k , then G w = Sym(w) × Sym(Ω \ w) so there is a homomorphism χw : G w → Z2 given by
taking χw(g) to be the sign of g restricted to w . Let 〈Ck;Γk〉 be the free finite cover of 〈[Ω]k; G〉
with fibre groups Z4 acting regularly, binding group Z2, and canonical homomorphisms χw .

So with this notation, we have an exact sequence:

0 → Z[Ω]k

2 → Γk → Sym(Ω) → 1.
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The paper [6] gives a method for determining the closed G-submodules of Z[Ω]k

2 : cf. Section 3 here.
Thus, to determine all finite covers of 〈[Ω]k; G〉 with the given data it remains to determine the
minimally full subgroups of Γk . We summarise our results on this in the following.

Theorem 1.2.

(i) The group Γ2 has no proper full subgroup.
(ii) For 2 � � there exist continuous homomorphisms γ2,� : Γ2 → Γ� which extend the natural G-

homomorphisms α2,� : Z[Ω]2

2 → Z[Ω]�
2 . The Γ�-conjugates of γ2,�(Γ2) are the minimally full subgroups

of Γ� .

Part (i) here is Theorem 4.1 and answers the second part of Question 8.8 of [4]. Part (ii) is Theo-
rem 4.8.

2. Full subgroups and continuous cohomology

We use cohomological methods to analyse group extensions as in the exact sequence (1) of the
Introduction. As these are topological groups, the appropriate context is that of continuous cohomol-
ogy. The basic results of group cohomology (extension theory, the long exact sequence, Shapiro’s
lemma) hold in this context, although some care is needed in adapting the standard proofs. For
more details we refer the reader to [5]. Previous work on finite covers has made use of first co-
homology groups H1

c . One of the novelties of our approach here is that we use second-degree
cohomology H2

c .
Denote by P G the class of all topological groups arising as permutation groups. So these are

Hausdorff topological groups with a base of open neighbourhoods of the identity consisting of open
subgroups. Suppose G ∈ P G is a closed permutation group and K is a continuous profinite G-module.
We denote by Cn

c (G, K ) the additive group of continuous functions ϕ : Gn → K . The usual coboundary
operator δn sends Cn

c (G, K ) to Cn+1
c (G, K ), so that (Cn

c (G, K ); δn)n∈N is a cochain complex. The ho-
mology of this complex, H∗

c (G, K ), is the continuous cohomology of G with coefficients in K .
Let G ∈ P G and M be a profinite continuous G-module (written additively). By a P G -extension of

M by G we mean a short exact sequence with continuous open homomorphisms

0 → M → Γ → G → 1, (2)

where Γ ∈ P G .
Any such P G -extension (2) admits a continuous closed section s : G → Γ [5] and so cohomology

of low degree continuous cocycles on profinite G-modules retains its familiar applications: H1
c (G, M)

classifies closed complements in the split extension and H2
c (G, M) classifies all P G -extensions of M

by G (see the proof of Theorem 2.1 below).
We use the following notation. If f : M1 → M2 is a continuous G-homomorphism of profinite

continuous G-modules, we denote by

f ∗ : Hn
c (G, M1) → Hn

c (G, M2)

the induced homomorphism in cohomology. Note if M0 is the kernel of f , this is the map in the long
exact sequence

· · · → Hn−1
c (G, M0) → Hn−1

c (G, M1) → Hn−1
c (G, M2) → Hn

c (G, M0) → ·· ·

arising from the short exact sequence 0 → M0 → M1 → M2 → 0.
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Theorem 2.1. Suppose 〈C0;Γ0〉 is a finite cover of 〈W ; G〉 with abelian kernel K0 and K a closed G-submodule
of K0 . Let e0 be the element in H2

c (G, K0) which gives rise to Γ0 (as an extension of K0 by G).
Let

0 → K i−→ K0 → K̄ → 0

be the natural short exact sequence where i is the inclusion map. Consider

· · · → H1
c (G, K̄ ) → H2

c (G, K )
i∗−→ H2

c (G, K0),

part of the long exact sequence, where i∗ is the induced map in cohomology. Then there exists a full subgroup
Γ � Γ0 with K = Γ ∩ K0 if and only if there exists an element e ∈ H2

c (G, K ) such that i∗(e) = e0 .

Proof. We adapt some standard facts about group extensions, omitting the details of the proofs.
Let 0 → N → E → L → 1 be a P G -extension and s : L → E a continuous closed section. Given
g1, g2 ∈ L, since s(g1) + s(g2) and s(g1 g2) belong to the same coset of N in E , there exists an el-
ement f (g1, g2) ∈ N such that

s(g1) + s(g2) = f (g1, g2) + s(g1 g2). (3)

The map f : L2 → N is a continuous 2-cocycle. We can then define a multiplication on the set L × N
by

(g1,n1)(g2,n2) = (
g1 g2, f (g1, g2) + g2n1 + n2

)
. (4)

Then L × N with multiplication (4) becomes a topological group and 0 → N → L × N → L → 1 is a
P G -extension equivalent to the original one. All P G -extensions of N by L are obtained in this way
up to isomorphism, and two P G -extensions are isomorphic if and only if their continuous 2-cocycles
differ by a continuous 2-coboundary. Also, different choices of section give cohomologous continuous
2-cocycles.

Suppose now that Γ is a full subgroup of Γ0 with Γ ∩ K0 = K . So Γ is a P G -extension of K by G .
Let s : G → Γ , given by s(a) = ga , be a continuous closed section associated to the P G -extension Γ

of K by G and let mK : G × G → K be the corresponding (given by (3)) continuous 2-cocycle. We
consider the map

s0 : G s−→ Γ
i

↪→ Γ0,

a �→ ga �→ ga

which is continuous and closed. It is easy to check that s0 : G → Γ0 is a section. We also denote the
resulting 2-cocycle (which goes from G × G to K0) by mK since on each element of G × G it takes
the same value as the 2-cocycle mK : G × G → K . It follows that e0 = mK + B2

c (G, K0) and, if e is the
element in H2

c (G, K ) which Γ comes from, then e = mK + B2
c (G, K ). Hence, i∗(e) = e0.

Conversely, suppose e = mK + B2
c (G, K ) ∈ H2

c (G, K ) is such that i∗(e) = e0. The topological group
Γ0 is isomorphic to the product space G × K0 with multiplication

(g1,a)(g2,b) = (
g1 g2,m0(g1, g2) + g2a + b

)
.

The continuous 2-cocycles i∗(mK )(g1, g2) := i(mK (g1, g2)) and m0 are in the same class in H2
c (G, K0).

Then Γ0 is isomorphic to the extension G × K0 which has multiplication
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(g1,k1)(g2,k2) = (
g1 g2, i∗(mK )(g1, g2) + g2k1 + k2

)
,

where g1, g2 ∈ G and k1,k2 ∈ K0. Let Γ̃ = G × K be the group with multiplication

(g1,k1)(g2,k2) = (
g1 g2,mK (g1, g2) + g2k1 + k2

)
and θ : G × K → G × K0 be the map defined by θ(g,k) = (g, i(k)). It is easy to see that θ is an injective
homomorphism from Γ̃ to Γ0. Let Γ := θ(Γ̃ ), then Γ is a subgroup of Γ0 which is an extension of
K by G . Let (1, i(K )) be the subgroup of Γ of elements {(1, i(k)): k ∈ K }. Analogously we use the
notation (G,0) and (1, K0). It is simple to verify that the intersection Γ ∩ (1, K0) = (1, i(K )) and
Γ (1, K0) = Γ0. Finally we show that Γ is closed in Γ0. By hypothesis i(K ) is closed in K0 and so
i(K ) is the complement in K0 of an open set A. The set A0 := G × A is an open set in Γ0, since Γ0 is
equipped of the product topology. Hence Γ , which is equal to the complement in Γ0 of A0, is closed
in Γ0. �
3. Modules and cohomology groups for Sym(Ω)

Henceforth, F will denote an arbitrary finite field and F2 is the field with 2 elements, which
(somewhat abusively) we identify with Z2. Suppose G is a permutation group on a set W . Then
G acts on FW the set of functions from W to F and if we give FW the product topology (with
F being discrete) then it is a profinite continuous G-module. We can also consider the (discrete)
G-module FW , the F-vector space with basis W . There is a natural pairing FW × FW → F given
by ( f ,

∑
w aw w) �→ ∑

w aw f (w). By a standard application of Pontryagin duality, the closed FG-
submodules of FW are of the form X0 for FG-submodules X of FW , where X0 denotes the annihi-
lator of X with respect to this pairing. Moreover if X � Y are FG-submodules of FW then Y 0 � X0

and X0/Y 0 is isomorphic to the Pontryagin dual S∗ of S = Y /X .
From now on, we take Ω to be an infinite set and let G = Sym(Ω). If k is a positive integer then

[Ω]k denotes the set of subsets of size k from Ω . We let W = [Ω]k . We now collect together various
results about closed submodules of FW and associated cohomology groups.

As is shown in [6], F[Ω]k is Sym(Ω)-isomorphic to Mλ(k) , the Sym(Ω)-module arising from the
vector space over F with basis elements the λ(k)-tabloids, for λ(k) a particular infinite partition of Ω

(for the definition of infinite partition see [6]). Using the work, for example of James, about the
irreducible representations of the symmetric group of finite degree (see [8,9]) and adapting it to the
infinite case, in [6] Gray describes the submodule structure of F[Ω]k showing that it is completely
determined by the maps βk, j : F[Ω]k → F[Ω] j for 0 � j � k, where βk, j(w) = ∑{w ′: w ′ ∈ [w] j} for
w ∈ [Ω]k and then extended linearly. Indeed, every proper submodule of F[Ω]k is an intersection of
kernels of these maps.

The Specht module Sk , which is defined as the Sym(Ω)-submodule of Mλ(k) ∼= F[Ω]k generated
by the λ(k)-polytabloids (see [8,9] for definitions and [6] for the extension to the infinite case), can
be characterized as

⋂k−1
i=0 kerβk,i when k � 1 and is irreducible. If k = 0, then S0 = F is the trivial

module. Furthermore, F[Ω]k has a finite FG-composition series in which the composition factors are
isomorphic to Sl for l = 0, . . . ,k, each appearing exactly once.

The dual of βk, j is the map α j,k : F[Ω] j → F[Ω]k
given by α j,k( f )(w) = ∑

v∈[w] j f (v), for f ∈ F[Ω] j

and w ∈ [Ω]k . The image of α j,k is the annihilator of kerβk, j . Dualizing Gray’s results, every closed

FG-submodule of F[Ω]k
is a sum of images of various α j,k (for j � k) and the (topological) FG-

composition factors of F[Ω]k
are the duals (S j)∗ of the Specht modules (for j = 0,1, . . . ,k − 1).

The paper [6] also gives an algorithm for computing the lattice of submodules of F[Ω]k: what is
needed is to check the divisibility by the characteristic of F of a finite number of binomial coefficients.

Using this method and applying duality we record the lattices of the closed submodules of F[Ω]k

2 for
k = 1,2.

The only proper closed G-submodule of FΩ
2 is the submodule of the constant functions F2 =

imα0,1 ∼= (S0)∗ and FΩ
2 /F2 ∼= (S1)∗ .
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For F[Ω]2

2 we have proper closed submodules (S2)0 = imα1,2 ⊕F2, imα1,2, F2 = imα0,2 and 0. We

have F[Ω]2

2 /(S2)0 ∼= (S2)∗ and imα1,2 ∼= (S1)∗ .
We now give some calculations of continuous cohomology groups of the infinite symmetric group

with coefficients in certain sections of F[Ω]k

2 (for k = 1,2) that will be useful in the sequel.
Let S be a set and E be a group of permutations acting transitively on S with the topology given

in the Introduction. Let H := E w be the stabilizer in E of a point w ∈ S . If F is a finite abelian group
considered as a trivial H-module and M is the profinite E-module F W then the continuous analogue
of Shapiro’s lemma [5, Proposition 2.2] implies that Hn

c (E, M) = Hn
c (H, F ) for every n ∈ N. Indeed, the

E-module M is a coinduced module from a finite module for the stabilizer of a point.

Lemma 3.1. Suppose Ω is infinite and let G = Sym(Ω). Consider F as a trivial G-module. Then

(i) Hn
c (G,F) = 0 for all n > 0.

(ii) Hn
c (G,FΩ) = 0 for every n > 0.

Proof. (i) This is by [5, Theorem 3.5].
(ii) Let a ∈ Ω . By Shapiro’s lemma Hn

c (G,FΩ) = Hn
c (Ga,F) and as Ga is isomorphic to Sym(Ω) the

result then follows from (i). �
We note without proof that Theorem 3.5 of [5] has the following generalization. Its main conse-

quence here is Corollary 3.3 below. Although this will not be used in the sequel, it seems to us to be
worth recording here. For definitions and notation we refer the reader to [5]: what is important for
applications is to that G = Sym(Ω) acting on � = Ω has a smooth strong type, and that the topology
on the symmetric group is the same whatever [Ω]k it is considered as acting on.

Lemma 3.2. Suppose G is a closed permutation group on � with a smooth strong type p. Suppose Q is a finite
group and F a finite abelian group (regarded as a trivial G-module and Q -module). Then, for n � 0

Hn
c (G × Q , F ) = Hn(Q , F ).

Corollary 3.3. Let G = Sym(Ω). Then for every k ∈ N and n � 1

Hn
c

(
G,F[Ω]k ) = Hn(Symk,F),

where Symk is the finite symmetric group of degree k.

Proof. By Shapiro’s lemma

Hn
c

(
G,F[Ω]k

p
) = Hn

c

(
Sym

(
Ω \ {1, . . . ,k}) × Symk,Fp

)
.

Applying Lemma 3.2 to Sym(Ω \ {1, . . . ,k}) × Symk we get the result. �
The following is Corollary 3.11 of [3].

Proposition 3.4. Let G = Sym(Ω) and K0 = F[Ω]k

2 . Then

H1
c

(
G,

(
Sl)∗) =

{
0 if l �= 2,

Z2 if l = 2.

Moreover, if K is a closed G-submodule of K0 , then H1
c (G, K0/K ) is trivial if (S2)∗ is not a composition factor

of K0/K , otherwise it has order 2.



D.M. Evans, E. Pastori / Journal of Algebra 330 (2011) 221–233 227
Lemma 3.5. Let G = S ym(Ω) and F = F2 . Then

Hn
c

(
G,

(
S1)∗) = 0

for n � 1.

Proof. Take the short exact sequence

0 → F2 → FΩ
2 → (

S1)∗ → 0.

We have the long exact sequence

· · · → Hn
c (G,F2) → Hn

c

(
G,FΩ

2

) → Hn
c

(
G,

(
S1)∗) → Hn+1

c (G,F2)

and by Lemma 3.1 Hn
c (G,FΩ

2 ) = 0 for every n � 1. By Lemma 3.1 Hn+1
c (G,F2) = 0 and hence

Hn
c (G, (S1)∗) = 0. �

Only the first part of the following will be needed in the sequel, but the second statement provides
a complement to the above.

Lemma 3.6. Let S2 be the Specht module of F2[Ω]2 and (S2)0 = imα1,2 � F[Ω]2

2 . Then Hn
c (G, (S2)0) = {0}

and

Hn
c

(
G,

(
S2)∗) = Hn

c

(
G,F[Ω]2

2

) = Hn(F2,F2)

for n � 1.

Proof. Using the description of the submodules of F[Ω]2

2 we have a short exact sequence

0 → F2 ⊕ (
S1)∗ → F[Ω]2

2 → (
S2)∗ → 0

and (S2)0 ∼= F2 ⊕ (S1)∗ . Thus

Hn
c

(
G,

(
S2)0) ∼= Hn

c (G,F2) ⊕ Hn
c

(
G,

(
S1)∗) = {0}

using Lemmas 3.1 and 3.5.
Using this and the portion of the long exact sequence

→ Hn
c

(
G,

(
S2)0) → Hn

c

(
G,F[Ω]2

2

) → Hn
c

(
G,

(
S2)∗) → Hn+1

c

(
G,

(
S2)0) →

we get that Hn
c (G, (S2)∗) = Hn

c (G,F[Ω]2

2 ). The remaining statement then follows from Corol-
lary 3.3. �
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4. Full subgroups of Γk

Throughout, Ω will be an infinite set, k � 2 and G = Sym(Ω). As in Definition 1.1, we consider
the free finite cover of 〈[Ω]k;Sym(Ω)〉 with binding group Z2, fibre group Z4 acting regularly, and
canonical homomorphism given by the sign function. Existence and uniqueness of this comes from
Lemma 2.1.2 of [4] and we denote it by 〈Ck,Γk〉. We shall classify all minimally full subgroups of the
Γk: in the case k = 2 we show that Γ2 is itself minimal (Theorem 4.1); for k � 3 the result is that all
minimally full subgroups arise from a homomorphic image of Γ2 inside Γk (Theorem 4.8).

4.1. The case k = 2

The following answers the second part of Question 8.8 posed in [4].

Theorem 4.1. Suppose Γ � Γ2 is full. Then Γ = Γ2 .

Proof. The kernel of 〈C2;Γ2〉 is K0 = F[Ω]2

2 . Suppose that Γ < Γ2 is full. Then K = Γ ∩ K0 is a closed
G-submodule of K0 and so by the description of the closed submodules of K0 already given, K is
contained in K1 = (S2)0. Thus, by considering K1Γ , we may assume K = K1. The extension 0 → K0 →
Γ2 → G → 1 is non-split (essentially because Z4 does not split over Z2: cf. 2.1.5 of [4]). Thus the 2-
cocycle class e ∈ H2

c (G, K0) to which it gives rise is non-zero. Now, by Lemma 3.6, H2
c (G, K1) = {0}.

Thus by Theorem 2.1, there can be no full subgroup Γ of Γ2 with Γ ∩ K0 = K1. �
4.2. Submodule structure of F[Ω]k

2

Recall that for k � � we have defined αk,� : F[Ω]k

2 → F[Ω]�
2 by αk,�( f )(w) = ∑

y∈[w]k f (y). This is

the Pontryagin dual of β�,k and imαk,� = (kerβ�,k)
0. Note that if j � k � � then

αk,� ◦ α j,k =
(

� − j

k − j

)
α j,�.

By the dual of Gray’s results in [6], any closed G-submodule K of F[Ω]�
2 is a sum of certain sub-

modules imαk,� (with k � �) and (S2)∗ is not a composition factor of imαk,� iff 2|(�−2
k−2

)
.

Lemma 4.2. The submodule M = ∑{imαk,�: k � � and 2|(�−2
k−2

)} is the largest closed submodule of F[Ω]�
2

which does not have (S2)∗ as a composition factor.

Proof. We have αk,� ◦α2,k = (
�−2
k−2

)
α2,� . Thus if 2�

(
�−2
k−2

)
then imαk,� � imα2,� , and the latter has (S2)∗

as a composition factor.
On the other hand, if 2|(�−2

k−2

)
then imα2,k � kerαk,l . By Gray’s results, imα2,k has (S2)∗ as a

composition factor, and so imαk,� does not have (S2)∗ as a composition factor. Thus M does not have
(S2)∗ as a composition factor.

Conversely suppose K is a closed submodule which does not have (S2)∗ as a composition factor.
We can write K = ∑

k∈I imαk,� for some set I and by the first paragraph, if k ∈ I then 2|(�−2
k−2

)
. Thus

K � M . �
Lemma 4.3. If a closed submodule K of F[Ω]�

2 has (S2)∗ as a composition factor, then K � imα2,� .

Proof. As in the proof of the above, K � imαk,� for some k � � with 2�
(
�−2
k−2

)
. But then α2,� factors

through αk,� , as above, so K � imα2,� . �
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4.3. Explicit construction of the free covers Ck

Let Ω be any infinite set. It will be convenient to have an explicit description of the free finite
covers πk : Ck → [Ω]k . We fix some ordering � on Ω and let Z4 = {0,1,2,3} be the additive group
of integers modulo 4. Inside the latter, we identify F2 with {0,2}.

Definition 4.4. For k � 2, define functions εk : SymΩ × [Ω]k → Z4 as follows.

1. (k = 2) If g ∈ Sym(Ω) and w = {w1, w2} ∈ [Ω]2 with w1 < w2, then

ε2(g, w) =
{

0 if g w1 < g w2,

1 otherwise.

2. Suppose k � 3. Define εk : SymΩ × [Ω]k → Z4 by

εk(g, w) =
∑

y∈[w]2

ε2(g, y).

Now for k � 2 let

Γk = F[Ω]k

2 × Sym(Ω)

and

Ck = Z4 × [Ω]k.

Define μk : Γk × Ck → Ck by

μk
(
( f , g), (a, w)

) = (
a + f

(
g(w)

) + εk(g, w), g w
)
.

Thus any ( f , g) ∈ Γk defines a map μk(( f , g), .) : Ck → Ck , which can easily be seen to be a bijection.
Computing the composition of two such maps, we obtain

μk
(
(�,h), .

) ◦ μk
(
( f , g), .

) = μk
((

� + h f + ck(h, g),hg
)
, .

)
where

ck(h, g)(w) = εk(g, w) + εk(h, g w) − εk(hg, w)

and (h f )(w) = f (h−1 w). Note that ck(h, g) ∈ F[Ω]k

2 .
Thus if we define a product on Γk by

(�,h)( f , g) = (
� + h f + ck(h, g),hg

)
then Γk is a group and μk is a faithful action of Γk on Ck , so we may regard Γk as a subgroup of
Sym(Ck).

Define πk : Ck → [Ω]k by πk((a, w)) = w . It is clear that Γk preserves the fibres of πk and the

kernel of the action of Γk on the fibres is F[Ω]k

2 ×1. We shall show below that Γk is closed in Sym(Ck).
Thus 〈Ck;Γk〉 is a permutation structure and πk : Ck → [Ω]k makes it a finite cover of 〈[Ω]k,Sym(Ω)〉.
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It is easily checked (by direct calculation of the stabilizer of w ∈ [Ω]k in Γk) that the fibre group is
Z4 and the binding group is F2 Assuming that Γk is closed in Sym(Ck), we therefore have:

Proposition 4.5. The permutation structure 〈Ck;Γk〉 is the free finite cover of 〈[Ω]k;Sym(Ω)〉 with these
data.

So it remains to prove that Γk is closed in Sym(Ck). Note that if K is a closed normal subgroup
of a topological group Π and H is a subgroup of Π such that K ∩ H is closed, then H is closed
in Π if H ∩ K ⊆ H (where H is the closure of H in Π ). We want to apply this where H = Γk ,
Π is the permutations of Ck which preserve all fibres of πk , so a closed subgroup of Sym(Ck), and

K = Z[Ω]k

4 . We need to verify that any element of K which lies in the closure of H is in F[Ω]k

2 . But
this follows from the fact that if A is a finite subset of Ω and ( f , g) ∈ Γk fixes every element of A,

then f |[A]k ∈ F[A]k

2 .

4.4. Lifting the αk,�

Proposition 4.6. For k � 2, define γ2,k : Γ2 → Γk by γ2,k( f , g) = ( f̂ , g), where f̂ = α2,k( f ). Then γ2,k is a

continuous group homomorphism which extends α2,k : F[Ω]2

2 → F[Ω]k

2 , and imγ2,k is closed in Γk.

Proof. It is clear that γ2,k extends α2,k . To check that it is a group homomorphism we need to show
that for (�,h), ( f , g) ∈ Γ2 we have

α2,k
(
� + h f + c2(h, g)

) = �̂ + h f̂ + ck(h, g).

As α2,k is a G-homomorphism this reduces to showing that α2,k(c2(g,h)) = ck(g,h), and this follows
trivially from the definition of εk(h, g) and ck(h, g).

Continuity of γ2,k is routine and closedness of the image will be part of the next proposition. �
Proposition 4.7. Suppose 2 � k � � and 2�

(
�−2
k−2

)
. Then γk,� : Γk → Γ� given by γk,�(( f , g)) = ( f̂ , g), where

f̂ = αk,�( f ), is a continuous group homomorphism which extends αk,� and whose image imγk,� is closed
in Γ� .

Similarly to the previous result, we need to show that αk,�(ck(h, g)) = c�(h, g). Now, for v ∈ [Ω]�

c�(h, g)(v) =
∑

y∈[v]2

(
ε2(g, y) + ε2(h, gy) − ε2(hg, y)

)
.

Also

αk,�

(
ck(h, g)(v)

) =
∑

w∈[v]k

(
εk(g, w) + εk(h, g w) − εk(hg, w)

)

and this is equal to
(
�−2
k−2

)
c�(g,h)(v). As 2�

(
�−2
k−2

)
this is equal to c�(g,h), because we are working

in F2.
Closedness of the image is as at the end of the previous subsection, using the fact that if g fixes

every element of some finite subset A of Ω and w ∈ [A]k then εk(g, w) = 0.
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4.5. Minimally full subgroups of Γk

The main result is:

Theorem 4.8. Suppose k � 3. Then the conjugates of imγ2,k are the minimally full subgroups of Γk.

The proof is a series of lemmas. Let K0 � Γk be the kernel F[Ω]k

2 of the cover Ck . If Γ � Γk is full
we refer to K0 ∩ Γ as the kernel of Γ .

Lemma 4.9. The closed subgroup imγ2,k is a minimally full subgroup of Γk with kernel imα2,k.

Proof. It remains to see that imγ2,k is minimal. But by Theorem 4.1, Γ2 has no proper closed sub-
group which projects onto Sym(Ω). The same is therefore true of any continuous homomorphic image
of Γ2. �
Lemma 4.10. Suppose K is closed and imα2,k � K � K0 . Then there is exactly one Γk-conjugacy class of full
subgroups H of Γk with H ∩ K0 = K .

Proof. To see that there is some such subgroup, note that H = (imγ2,k)K is closed and satisfies
H ∩ K0 = K . To see that any two such closed subgroups are conjugate, it suffices to show that
H1

c (G, K0/K ) = {0}. This follows from Proposition 3.4 as (S2)∗ is a composition factor of K , and there-
fore not a composition factor of K0/K . �
Lemma 4.11. Suppose H is a minimally full subgroup of Γk with kernel K and K has (S2)∗ as a composition
factor. Then K = imα2,k and H is a Γk-conjugate of imγ2,k.

Proof. By Lemma 4.3, K � imα2,k . By Lemma 4.10, H contains a Γk-conjugate of imγ2,k . Therefore
minimality implies that H is a Γk-conjugate of imγ2,k . �
Proof of Theorem 4.8. By Lemma 4.11 it is enough to prove that if K � K0 does not have (S2)∗ as a
composition factor, then K is not the kernel of a full subgroup of Γk . So suppose for a contradiction
that H is a full subgroup of Γk whose kernel K = H ∩ K0 does not have (S2)∗ as a composition factor.
By Lemma 4.2

K � M =
∑{

imα j,k: j � k and 2|
(

k − 2

j − 2

)}

and so there is a full subgroup H M � Γk with kernel M . Thus, for our contradiction we may assume
that K = M .

Let η : M → K0 be inclusion and e ∈ H2
c (G, K0) the 2-cocycle class arising from the extension

0 → K0 → Γk → G → 1. Note that the construction of Γk gives an explicit continuous 2-cocycle in e,
namely ck . In the notation of Theorem 2.1, the existence of H implies that in the portion of the long
exact sequence

· · · → H2
c (G, M)

η∗−→ H2
c (G, K0)

ζ−→ H2
c (G, K0/M) → ·· ·

the class e is in the image of η∗ , therefore it is in ker(ζ ). The following lemma will allow us to embed

K0/M in some F[Ω]�
2 .
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Lemma 4.12.

1. There is � > k such that
(i) if j � k and 2|(k−2

j−2

)
then 2|(�− j

k− j

)
;

(ii) 2�
(
�−2
k−2

)
.

2. For � as in (1), kerαk,� = M.

Indeed, suppose � is as in the lemma and so αk,� : F[Ω]k

2 → F[Ω]�
2 has kernel M . By condition (ii)

on � and Proposition 4.7, αk,� extends to a homomorphism γk,� : Γk → Γ� which also has kernel M .
Now, imγk,� is a covering expansion of Γ� with kernel isomorphic to K0/M , and it is easily checked
that the fibre group in this expansion is Z4 and the binding group F2. In particular, the fibre group
does not split over the binding group and it follows (cf. [4, proof of Lemma 2.1.5]) that the extension

0 → K0/M → imγk,� → G → 1

is non-split. In particular the continuous 2-cocycle class in H2
c (G, K0/M) corresponding to this exten-

sion is non-zero. But this class is ζ(e), so we have a contradiction. This concludes the proof of the
theorem. �

It remains to prove Lemma 4.12. To do this we recall some information from [8, pp. 87–88] about
binomial coefficients.

Lemma 4.13. Suppose b � a ∈ N are written 2-adically as

a =
∑
i�r

ai2
i and b =

∑
i�r

bi2
i

with ai,bi ∈ {0,1}. Then

2|
(

a

b

)
⇔ ai < bi for some i � r.

Now we prove Lemma 4.12. For part (1), write a = k − 2 and e = � − k. We want to choose e so
that

(i) for all b � 1, if 2|(a
b

)
then 2|(e+b

e

)
;

(ii) 2�
(e+a

e

)
.

Suppose a = ar2r + · · · + a020 (with ai ∈ {0,1} and ar �= 0). So in binary notation, a = arar−1 . . .a0. Let
e = 2r+1 + ār2r + ār−12r−1 + · · · + ā0 where āi = 1 ⇔ ai = 0. So in binary notation, e = 1ārār−1 . . . ā0.
We claim that this works.

For (ii) note that a + e = 11 . . . 1 (in binary notation), so by Lemma 4.13, 2�
(a+e

e

)
. For (i) suppose

a > b = brbr−1 . . .b0 (in binary) and 2|(a
b

)
. Then bi > ai for some i � r, which we may take to be

a small as possible. Note that bi = 1 and ai = 0. We now compare the binary digits (e + b)i and
bi of e + b and b respectively. Note that ei = āi = 1. Furthermore, if j < i and e j = b j = 1, then

a j = 0 < b j , contradicting the minimality of i. It follows that (e + b)i = 0 < 1 = ei , and so 2|(e+b
e

)
, as

required.
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To prove part (2) of the lemma, suppose � satisfies the conditions in part (1). Recall that for
2 � j � k � � we have

αk,� ◦ α j,k =
(

� − j

k − j

)
α j,�.

If 2|(k−2
j−2

)
then 2|(�− j

k− j

)
, and therefore imα j,k � kerαk,� . So M � kerαk,� .

On the other hand, as 2�
(
�−2
k−2

)
we have αk,� ◦α2,k = α2,� �= 0. So imα2,k � kerαk,� and therefore by

Lemma 4.3, kerαk,� does not have (S2)∗ as a composition factor. It then follows from Lemma 4.2 that
kerαk,� = M , as required.
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