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Abstract

In this paper we study the problem of assigning transmission ranges to the nodes of a multi-
hop packet radio network so as to minimize the total power consumed under the constraint
that adequate power is provided to the nodes to ensure that the network is strongly connected
(i.e., each node can communicate along some path in the network to every other node). Such
assignment of transmission ranges is called complete. We also consider the problem of achieving
strongly connected bounded diameter networks.
For the case of n + 1 colinear points at unit distance apart (the unit chain) we give a tight

asymptotic bound for the minimum cost of a range assignment of diameter h when h is a �xed
constant and when h¿(1 + �) log n, for some constant � ¿ 0. When the distances between the
colinear points are arbitrary, we give an O(n4) time dynamic programming algorithm for �nding
a minimum cost complete range assignment.
For points in three dimensions we show that the problem of deciding whether a complete

range assignment of a given cost exists, is NP-hard. For the same problem we give an O(n2)
time approximation algorithm which provides a complete range assignment with cost within a
factor of two of the minimum. The complexity of this problem in two dimensions remains open,
while the approximation algorithm works in this case as well. c© 2000 Elsevier Science B.V.
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1. Introduction

A packet radio network is a network where the nodes consist of radio transmit-
ter/receiver pairs distributed over a region. Communication takes place by a node
broadcasting a signal over a �xed range (the size of which is proportional to the
power expended by the node’s transmitter). Any receiver within the range of the trans-
mitter can receive the signal assuming no other nodes are transmitting signals that
reach the receiver simultaneously. For a message to be sent to a node outside of the
range of the message originator, multiple “hops” may be required, whereby interme-
diate nodes pass on (re-broadcast) the message until the ultimate destination node is
reached.
Such networks have applications in many situations, over many di�erent scales,

where traditional networks are too expensive or even impossible to build. Some exam-
ples include: (1) setting up a LAN in a historic building where adding wiring would
destroy or obscure valuable features of the building; (2) battle�eld or disaster situations
where temporary WANs are required but the infrastructure for a traditional network
does not exist; (3) networks which include nodes in outer space (e.g., satellites, space
stations, the moon).
A key issue in setting up and running such a network is the amount of power

required by each of the nodes for its transmission. It is well-established [11] that the
power of the signal received at a node is inversely proportional to the distance the
receiver is from the transmitter, raised to an exponent known as the distance–power
gradient, i.e.,

Pr =
Po
d�
;

where Pr is the power of the received signal, Po is the power of the transmitted signal,
d is the distance between the receiver and the transmitter, and � is the distance–power
gradient. In an ideal situation � = 2. However, due to various environmental factors
such as building materials, street layouts, terrain characteristics, etc., the measured
value of � may vary from less than two to more than six. (Here we will assume � = 2
though all of our results are easily adjusted for any constant �¿1.) This distance–
power relationship implies there is a tradeo� between the power used by the nodes of
the network (i.e., the size of the node ranges) and the diameter of the network (i.e.,
the number of hops in a path between communicating pairs of nodes if such a path
exists).
In this paper we study the problem of assigning transmission ranges to the nodes of

a multi-hop packet radio network so as to minimize the total power consumed under
the constraint that adequate power is provided to the nodes to ensure that the network
is strongly connected (i.e., each node can communicate along some path in the network
to every other node). We also consider the problem of achieving strongly connected
bounded diameter networks.
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1.1. Terminology and problem statement

Let V = {x1; : : : ; xn} be a set of n points in a Euclidean space. For two points
xi; xj ∈ V , let d(xi; xj) denote their Euclidean distance. We also refer to the points of
V as vertices.
A broadcasting range assignment (or range assignment, for short) on the vertices

in V is a function from V into the set of nonnegative real numbers.
If R is a range assignment on V , the cost of R is de�ned to be the sum

∑
i(R(xi))

2.
(Note that the exponent 2 was chosen for convenience and our results are easily ad-
justed for other choices of the distance–power gradient.)
The communication graph associated with a range assignment R (denoted by GR)

is a directed graph with V as its set of vertices and a directed edge from xi to xj i�
R(xi)¿d(xi; xj). In other words, a directed edge (xi; xj) indicates that xj is within the
range of xi. A range assignment R is called complete i� GR is strongly connected. A
complete range assignment R has diameter h i� GR has diameter h.
The problems we consider in this work, which is an extended version of [10], are

those of �nding a minimum cost complete range assignment and a minimum cost range
assignment with a given diameter, for a given set of points.

1.2. Our results

The results described in this paper deal with range assignment problems in one- and
three-dimensional Euclidean space.
For the case of n+ 1 colinear points at unit distance apart (the unit chain) we give

a tight asymptotic bound for the minimum cost of a range assignment of diameter h
when h is a �xed constant and when h¿(1 + �) log n, where � ¿ 0 is a constant
(Section 2.1). When the distances between the colinear points are arbitrary, we give
an O(n4) time dynamic programming algorithm for �nding a minimum cost complete
range assignment (Section 2.2).
For points in three dimensions we show that the problem of deciding whether a com-

plete range assignment of a given cost exists, is NP-hard (Section 3.1). For the same
problem we give an O(n2) time approximation algorithm which provides a complete
range assignment with cost within a factor of two of the minimum (Section 3.2). The
complexity of this problem in two dimensions remains open, while the approximation
algorithm works in this case as well.

1.3. Related results

Studies of multi-hop packet radio networks have mainly concentrated on the problem
of scheduling communication so as to avoid simultaneous broadcast to the same receiver
which results in a scrambled signal. A number of authors have shown that the problem
of minimizing the number of rounds required to realize communication between an
arbitrary set of neighboring nodes is NP-hard and/or have provided heuristics for it
[2, 3, 6, 12, 13]. Sen and Huson [15] point out these previous authors assumed that the
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underlying graphs were arbitrary (and therefore the NP-hardness easily follows from
known graph coloring problems). They show that the problem remains NP-hard when
restricted to the domain of possible packet radio graphs and they give an O(n log n)
time algorithm for the case of vertices located on a line. Asymptotically e�cient algo-
rithms for the problem of scheduling a broadcast from a single source to all other nodes
of a packet radio network are discussed in [1, 4, 5, 7, 14]. Takagi and Kleinrock [16]
consider the problem of assigning transmission radii so as to maximize the expected
one-hop progress of a packet assuming randomly distributed packet radio terminals
are broadcasting packets with �xed probability of transmission. A survey of packet
radio network technology appears in [9, 11] contains useful background information on
wireless networks in general.

2. Range assignments in one dimension

In this section we study range assignments when the points are arranged on a line.

2.1. The unit chain

Consider a set N = {0; 1; : : : ; n} of n + 1 colinear points at unit distances. Let
Costh(n) be the minimum cost of a range assignment for N , of diameter at most h,
for a positive integer h. We establish the exact order of magnitude of Costh(n) for any
�xed integer h and construct a range assignment of diameter h corresponding to this
cost.

Lemma 2.1. There exists a range assignment for N of diameter at most h, with cost
Ch(n) ∈ O(nE(h)); where E(h) = (2h+1 − 1)(2h − 1); for any �xed positive integer h.

Proof. Induction on h. For h = 1 assign to every point its distance from the farthest end
of the segment N . This is a range assignment of diameter 1, with cost O(12+· · ·+n2) =
O(n3).
Suppose that the lemma is true for h. Choose k−1 equidistant points in the segment

N , for k = n1−2=E(h) (for simplicity assume that k divides n: it is easy to modify
the argument in the general case). To each of these points assign the range equal to
its distance from the farthest end of N . For each (closed) segment I between these
consecutive points choose a range assignment of diameter h with cost O(|I |E(h)). Since
there are k segments of length n=k, the total cost is at most

kn2 + kCh
(n
k

)
∈ O

(
k
(
n2 +

(n
k

)E(h)))

=O
(
kn2 + k

nE(h)

nE(h)−2

)

=O(kn2)
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Fig. 1. Chain.

= O(n3−2=E(h))

= O(nE(h+1)):

Let a ¡ b be integers. Consider a set M of x colinear integer points in the segment
(a; b). Call them senders. Let c be an integer point b + y, for y¿1 (cf. Fig. 1). Let
C(h; x; y) be the minimum cost of a range assignment for (a; b), for which c can be
reached from any sender in at most h hops.

Lemma 2.2. C(h; x; y) ∈ 
(xye(h)), where e(h) = (2h=2h − 1), for any �xed positive
integer h.

Proof. Induction on h. For h = 1, the point c must be in the range of every sender,
hence C(h; x; y)¿xy2.
Suppose that the lemma is true for h. Let C(h; x; y)¿chxye(h), where ch depends

only on h. Consider a range assignment r for (a; b), for which c can be reached from
any sender in at most h + 1 hops. Assume that there are l integers in the segment
(a; b) such that c is in the range of each of them. Call these integers transmitters. The
part of the cost of r charged for the transmitters is at least ly2. Let t1 ¡ · · · ¡ tl
be consecutive transmitters and let tl+1 = b. Let xi be the number of senders strictly
between ti and ti+1. Every sender in the segment (ti; ti+1) must reach one of its ends in
at most h hops. For at least xi=2 senders this end is common, without loss of generality
ti+1. Hence, at least xi=8 senders must reach the point ti+1 which is at distance at least
y = xi=4 from each of them, in at most h hops. The part of the cost of r charged for
those senders is at least

∑
i6l
C
(
h;
xi
8
;
xi
4

)
¿

∑
i6l
ch
xi
8

(xi
4

)e(h)
=

∑
i6l
dhx

e(h)+1
i ;

where dh = ch=22e(h)+3.
Since e(h) + 1¿ 1 and

∑
i6l xi¿x − l, the value of

∑
i6l dhx

e(h)+1
i is the smallest

when all xi are equal to (x − l)=(l). Hence, we get

C(h+ 1; x; y)¿ly2 + dhl
(
x − l
l

)e(h)+1
:

If l¿x=2 then

C(h+ 1; x; y)¿ly2¿ 1
2xy

e(h);
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which proves the inductive conclusion. Otherwise,

ly2 + dhl
(
x − l
l

)e(h)+1
¿ly2 + dh

x
2

( x
2l

)e(h)
:

The latter is smallest when the summands are equal. This implies

ly2 = dh
xe(h)+1

2e(h)+1le(h)
;

l=
d1=(e(h)+1)h x
2y2=(e(h)+1)

:

Hence,

C(h+ 1; x; y)¿2ly2 = d1=(e(h)+1)h xy2−2=(e(h)+1) = ch+1xye(h+1);

where ch+1 = d
1=(e(h)+1)
h . This proves the lemma by induction.

Theorem 2.1. Costh(n) ∈ �(nE(h)); where E(h) = (2h+1 − 1=2h − 1); for any �xed
positive integer h.

Proof. By Lemma 2.1. Costh(n) ∈ O(nE(h)). By Lemma 2.2,

Costh(n)¿C
(
h;
n
2
;
n
2

)
∈ 
(ne(h)+1) = 
(nE(h)):

The previous theorem deals with constant diameter range assignments. In the sequel
we consider the case when the size of the diameter is 
(log n). First we will need to
prove two lemmas.

Lemma 2.3. For any diameter h; Costh(n)¿n2=h.

Proof. Consider a range assignment of diameter k on the chain with vertices 0; 1; 2; : : : ; n.
By assumption, it should be possible to reach vertex n from vertex 1 in k hops, where
k6h. Let the sizes of the corresponding hops be x1; x2; : : : ; xk . By de�nition we have
that

Costh(n)¿x21 + x
2
2 + · · ·+ x2k :

By H�older’s inequality and since x1+x2+ · · ·+xk = n the right-hand side of the above
inequality must exceed n2=k. This completes the proof of the lemma.

The following lemma that will be used in the sequel concerns minimum cost range
assignments of at least logarithmic diameter.

Lemma 2.4. Costh(n) ∈ O(n2); where h¿dlog ne.

Proof. We construct a “tree-layout” (cf. Fig. 2) range assignment by induction on
n. Assume we have constructed the range assignment for the subchains 0::bn=2c and
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Fig. 2. Tree-layout on a chain.

bn=2c::n. We extend the range assignment by adding a station at vertex bn=2c with
range dn=2e. Regarding the cost we observe that

Costdlog ne(n)6
dlog ne∑
i=1

2i−1
( n
2i
+ 1

)2
∈ O(n2):

This completes the proof of Lemma 2.4.

Theorem 2.2. If h¿(1 + �) log n; for some constant � ¿ 0; then Costh(n) ∈ �(n2=h);

Proof. The lower bound of 
(n2=h) is immediate from Lemma 2.3. To prove the
upper bound we need to construct the corresponding range assignments for the chain.
Let x = h − log n. Construct a range assignment as follows. Divide the whole chain
into x subchains by placing stations in locations 1+ jn=x, where j6x each with range
n=x. In each subchain use the range assignment of Lemma 2.4. The resulting diameter
is

x + log(n=x) = h− log n+ log n− log x6h

and, by Lemma 2.4, the total cost is

Costh(n)6x
(n
x

)2
+ x Costlog(n=x)(n=x)62 · n

2

x
:

If we de�ne � = (1 + �)=� then

h¿(1 + �) log n =
�

�− 1 log n:

Multiplying out by �− 1 and simplifying we obtain that

x = h− log n¿1
�
h:

This shows that

Costh(n) ∈ O(n2=h)

and completes the proof of the theorem.
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2.2. Arbitrary point-arrangements on a line

Theorem 2.3. If the vertices in V lie on a line, then there is a O(n4) time algorithm
that �nds a minimum cost complete range assignment.

We will construct a minimum cost complete range assignment recursively. Suppose,
without loss of generality, that the vertices x1; : : : ; xn lie on the line from left to right
in the order indicated by their subscripts. A natural �rst attempt towards a recursive
de�nition of a minimum cost range assignment would be to assume that at a stage
k = 1; : : : ; n we know a minimum cost assignment Rk for x1; : : : ; xk and try to extend
Rk to include xk+1. Unfortunately, this does not work because the range that will be
assigned to xk+1 may render some of the ranges of Rk unnecessarily large. A second
approach would be to assume that at stage k, we know for any given vertex xl; l¿k an
assignment which is minimum cost among those that establish communication between
any pair in x1; : : : ; xk and, additionally, have the property that xl is within the reach of
at least one vertex from x1; : : : xk . Then, in order to establish communication between
any pair in x1; : : : ; xk+1, it would be su�cient to assign to xk+1 a range equal to
d(xk+1; xk). However, this also fails because for the recursive construction to be correct,
it is necessary to examine the case that xl is within the reach of xk+1. The range of
xk+1 that would guarantee this may, again, render some of the ranges of the x1; : : : ; xk
unnecessarily large. Fortunately, and despite the sometimes vicious circle of induction
strengthening, an even stronger recursive assumption carries through: we assume that
for any l¿k and any i6k, we have an assignment which is minimum cost among
those such that (i) in the communication graph, there is a path between any pair
from x1; : : : ; xk , (ii) xl is within the reach of a vertex in x1; : : : ; xk , and (iii) in the
communication graph, any backwards edge from xk up to xi is free of cost. (We note
that these edges enable connectivity without adding to the cost.) Below we formalize
and then prove the correctness of this approach.
We start with some de�nitions:
Let (V; E) be a directed (not necessarily strongly connected) graph with vertices V .

Let x be an additional vertex which may or may not belong to V and which we call
the receiver vertex. A range assignment R is called total for ((V; E); x) if (i) the graph
on V obtained by adding to the set E the set of edges {(xi; xj) : R(xi)¿d(xi; xj)} is
strongly connected, and (ii) there is a vertex xi ∈ V such that R(xi)¿d(xi; x). The
cost of such an assignment is

∑
i(R(xi))

2, as usual. An optimal assignment with re-
spect to ((V; E); x) is an assignment of minimum cost which is total for ((V; E); x).
Intuitively, such an assignment has zero cost for the edges in E and establishes com-
munication paths between any pair of vertices in V and also between a vertex in
V and the receiver vertex x, in this direction only. We de�ne R ∈ Feas((V; E); x)
i� R is total for ((V; E); x) and R ∈ Opt(V; E); x) i� R is optimal with respect to
((V; E); x).
If the points x1; : : : ; xn lie on a line from left to right in this order, and if xi; xj are any

two of them with j¿i then Ei;j is de�ned to be the set of edges {(xs; xr) : i6r ¡ s6j}.
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Intuitively, Ei;j is the set of edges from right to left which have their endpoints among
xi; xi+1; : : : ; xj.
We now prove the following two technical lemmas:

Lemma 2.5. Fix a k such that 16k6n. Let j; m be such that j6k+16m and let R
be an assignment on x1; : : : ; xk+1. Finally, let r = R(xk+1) and let Rk be the restriction
of R on the set {x1; : : : ; xk}. Assuming that not both r = 0 and j = k + 1 hold, then
• If r ¡ d(xk+1; xm) and r ¡ d(xk+1; xj); then

R ∈ Feas(({x1; : : : ; xk+1}; Ej;k+1); xm) i� Rk ∈ Feas(({x1; : : : ; xk}; Ej;k); xm):
• If r¿d(xk+1; xm) and r ¡ d(xk+1; xj); then

R ∈ Feas(({x1; : : : ; xk+1}; Ej;k+1); xm) i� Rk ∈ Feas(({x1; : : : ; xk}; Ej;k); xk+1):
• If r ¡ d(xk+1; xm) and r¿d(xk+1; xj); then if i is the least positive integer such
that r¿d(xk+1; xi); we have that

R ∈ Feas(({x1; : : : ; xk+1}; Ej;k+1); xm) i� Rk ∈ Feas(({x1; : : : ; xk}; Ei;k); xm):
• If r¿d(xk+1; xm) and r¿d(xk+1; xj); then if i is the least positive integer such that
r¿d(xk+1; xi); we have that

R ∈ Feas(({x1; : : : ; xk+1}; Ej;k+1); xm) i� Rk ∈ Feas(({x1; : : : ; xk}; Ei;k); xk+1):

Proof. We will only prove the third case and for this case we will only prove one
direction. All other cases are analogous and even easier. So assume that

R ∈ Feas(({x1; : : : ; xk+1}; Ej;k+1); xm):
We will prove that

Rk ∈ Feas(({x1; : : : ; xk}; Ei;k); xm);
where i is de�ned as in the statement of the lemma. Let ER be the set of edges in-
duced on {x1; : : : ; xk+1} by R, i.e., (x; y) ∈ ER i� R(x)¿d(x; y). De�ne similarly ERk .
We have to prove that (i) the set of edges ERk ∪Ei;k de�nes a strongly connected
graph on {x1; : : : ; xk} and (ii) there is a vertex in {x1; : : : ; xk} whose range is at least
equal to its distance from xm. The latter conclusion is obvious because r ¡ d(xk+1; xm)
and R ∈ Feas(({x1; : : : ; xk+1}; Ej;k+1); xm) (in this case the only possibility to reach
out to the receiver vertex xm is from a vertex in {x1; : : : ; xk}.) To prove that con-
clusion (i) also holds, consider a pair x and y of vertices in {x1; : : : ; xk}. Since R ∈
Feas(({x1; : : : ; xk+1}; Ej;k+1); xm), there is a path p from x to y which uses edges from
ER ∪Ej;k+1. Consider an occurrence of xk+1 in this path, say in the consecutive edges
(w; xk+1) and (xk+1; z). Then (w; xk+1) must belong to ER (the edges in Ej;k+1 are di-
rected left). Therefore, (w; xk) belongs to ERk . On the other hand, since r¿d(xk+1; xj),
we conclude that independently of whether (xk+1; z) is in ER or in Ej;k+1, r¿d(xk+1; z).
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Therefore, by the de�nition of i, z is to the right of xi, and hence (xk ; z) ∈ Ei;k . This
proves that p can be modi�ed to contain only edges in ERk ∪Ei;k . But then this shows
conclusion (i) and also concludes the proof of the lemma.

One more piece of notation: If y ∈ V and r is a positive real, then Opt((V; E); x;
(y; r)) is the class of assignments that have the least cost among the assignments R
that (i) belong to Feas((V; E); x) and (ii) R(y) = r.
The next lemma is an immediate corollary of the previous one.

Lemma 2.6. Using the notation of the previous lemma, we have that if r = 0 and
j = k + 1 then

Opt({x1; : : : ; xk+1}; Ej;k+1); xm; (xk+1; r)) = ∅;
otherwise we have:
• If r ¡ d(xk+1; xm) and r ¡ d(xk+1; xj), then

R ∈ Opt({x1; : : : ; xk+1}; Ej;k+1); xm; (xk+1; r))

i� Rk ∈ Opt({x1; : : : ; xk}; Ej;k); xm):
• If r¿d(xk+1; xm) and r ¡ d(xk+1; xj), then

R ∈ Opt({x1; : : : ; xk+1}; Ej;k+1); xm; (xk+1; r))
i� Rk ∈ Opt({x1; : : : ; xk}; Ej;k); xk+1):

• If r ¡ d(xk+1; xm) and r¿d(xk+1; xj), then if i is the least positive integer such
that r¿d(xk+1; xi), we have that

R ∈ Opt({x1; : : : ; xk+1}; Ej;k+1); xm; (xk+1; r))
i� Rk ∈ Opt({x1; : : : ; xk}; Ei;k); xm):

• If r¿d(xk+1; xm) and r¿d(xk+1; xj), then if i is the least positive integer such that
r¿d(xk+1; xi), we have that

R ∈ Opt({x1; : : : ; xk+1}; Ej;k+1); xm; (xk+1; r))
i� Rk ∈ Opt({x1; : : : ; xk}; Ei;k); xk+1):

We are now in a position to give our recursive construction:

Proof of Theorem 2.3. Assume that at stage k we know a range assignment in

Opt({x1; : : : ; xk}; Ei;k); xl)
for any i; l such that i6k6l. Under this assumption, for any j; m such that j6k+16m,
we will recursively construct a range assignment

R ∈ Opt({x1; : : : ; xk+1}; Ej;k+1); xm):
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Of course, this will prove the theorem, since an optimal assignment for V is one in

Opt({x1; : : : ; xn}; En;n); xn):
To construct the required R, we examine all possible values of R(xk+1). There are
k +2 of them as it only makes sense to have a range that extends from xk+1 to either
one of the x1; : : : ; xk or to xm or one which is zero (this second case occurs only
when xk = xk+1). For each such possible value r of R(xk+1), �nd an assignment (if
any) in Opt(({x1; : : : ; xk}; Ej;k+1); xm; (xk+1; r)) by making use of the recursion stack
and Lemma 2.6. The one with least cost among all of them is obviously the required
R. Notice that this algorithm takes time O(n4).

3. Range assignments in three dimensions

3.1. NP-hardness

This section is devoted to the proof that the problem of �nding a minimum cost
complete range assignment for a given set of points in the three-dimensional Euclidean
space is NP-hard. We formulate the corresponding decision problem as follows.

Problem RANGE
Instance: A set of points A in the three-dimensional space, a positive number q.
Question: Does there exist a complete range assignment for A of total cost at

most q?
We will show a reduction from the vertex cover problem for connected planar cubic

graphs, known to be NP-hard (cf. [8]). The decision version of it is formulated as
follows.

Problem COVER
Instance: An undirected connected planar cubic graph G, a positive integer k.
Question: Does G have a vertex cover of size at most k, i.e., is there a set of

vertices S of size at most k, such that each edge of G has at least one endpoint in S ?
We �rst need some auxiliary notions, facts and constructions. A subdivision of a

graph G is a graph H resulting from G by adding new vertices of order 2 on edges
of G (every edge is replaced by a chain and distinct edges are replaced by vertex
disjoint chains). The new vertices of order 2 are called subdivision vertices. An even
subdivision is a subdivision in which an even number of vertices are added on every
edge.

Lemma 3.1. Let G be a graph with edges e1; : : : ; ek . Let H be a subdivision of G
such that 2xi new vertices are added on edge ei; for all i6k. Let x =

∑k
i=1 xi. Then

G has a vertex cover of size 6r i� H has a vertex cover of size 6r + x.

Proof. Suppose that G has a vertex cover C of size 6r. Construct the following set
D of vertices of H . Take all vertices from C and on every edge ei of G take xi
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Fig. 3. Sector assignment.

subdivision vertices starting from the end belonging to C and skipping every other
vertex. The resulting set D is a vertex cover of H of size 6r + x.
Consider a vertex cover D of H of size 6s and consider any edge ei of G. If an

end of ei is in D then at least xi subdivision vertices of ei must be in D. If no end of
ei is in D then at least xi + 1 subdivision vertices of ei must be in D. In both cases
remove xi subdivision vertices of ei from D and in the latter case replace the remaining
subdivision vertex by one of the ends of ei. The resulting set C of vertices is a vertex
cover of G of size 6s− x.

Until the end of this section, G denotes a connected planar cubic graph. For any
such G consider a �xed planar representation P. Edges incident to any vertex yield
a division of the plane into 3 sectors. Take any vertex v1 of G and any edge e1
incident to it and assign to e1 one of the two neighboring sectors. Consider the other
end v2 of e1 and the other edge e2 neighboring the chosen sector. Assign to e2 the
other neighboring sector and go to the other end v3 of e2. Proceed in this way, at
each vertex trying to assign a free sector to the new edge neighboring the previously
assigned sector. This can be done i� the graph G is bipartite. If G is not bipartite, call
edges for which a conict occurred – special. In Fig. 3 we show a non-bipartite graph
and a sector assignment depicted by arrows, with the special edges e5 and e6. For any
planar representation of G this sector assignment can be constructed in polynomial
time with at most one special edge incident to each vertex.
Consider a rectangular grid on the plane with grid points having integer coordinates.

Call unit length grid edges – grid lines. Consider a planar representation of a graph
G such that vertices are mapped to grid points and edges are mapped to polygonal
lines composed of grid lines. Call this a Valiant representation of G. It follows from
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Fig. 4. Augmented chain in a normal picture.

Fig. 5. Companion points in the �-envelope. The �gure depicts the sector assigned to e and the chain
corresponding to e.

[17] that a Valiant representation of G always exists and can be constructed in poly-
nomial time. (We note that in a Valiant representation edges correspond to distinct
non-overlapping polygonal lines.)
Take a Valiant representation R of G. Subdivide every grid line in R into 8 equal

segments of length d = 1
8 . In the resulting �gure every edge ei of G is mapped to a

rectangular polygonal line ci consisting of an even number of segments. Take 2 middle
segments of each chain ci and replace them by a chain of 3 segments as shown in
Fig. 4.
Call the resulting �gure a normal picture of G. Every edge of G is mapped to a

polygonal line consisting of an odd number of segments, thus a normal picture of G
yields a graph P(G) which is an even subdivision of G.
Let P be a normal picture of G in the plane P. Let X be the set of vertices of P(G)

and � a positive number less than d. We de�ne the �-envelope of G as the set E = X∪Y ,
where Y is a set of points in the three-dimensional space constructed as follows.
First, construct a sector assignment corresponding to P (P is homeomorphic to a

planar representation of G). Next, for any segment S of P construct a companion point
c(S). This point is at distance d+� from both ends of S. If S is a segment corresponding
to a special edge in the sector assignment, c(S) is in the plane perpendicular to P,
containing S. Otherwise, c(S) is in one of the two sectors neighboring S, determined as
follows. If S is one of the end segments of its chain then c(S) is in the sector assigned
to the corresponding edge. For other segments sectors alternate (cf. Fig. 5). Recall that
each chain has an odd number of segments. The set Y consists of companion points
for all segments of P.
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It follows from the construction that the distance between any two points in the
�-envelope of G is at least d. Moreover, every point c(S) ∈ Y is at distance d+ � from
the ends s1, s2 of the segment S. Consider any point t in E, di�erent from c(S), s1
and s2. Considering all possible cases it is easy to see that the distance between c(S)
and t is smallest when t = c(S ′), segments S and S ′ are adjacent and perpendicular,
and one of the points c(S) or c(S ′) is in the plane perpendicular to P (situated there
because the corresponding edge was special). This smallest distance is then at least
�d, where

� =

√
2−

√
3
2

≈ 1:06:

Theorem 3.1. The problem RANGE is NP-hard.

Proof. We show a polynomial reduction from COVER. Let G be a connected planar
cubic graph and k a positive integer. Let N be the set of vertices of G. Let d and �
be as before. Let P be a normal picture of G in the plane P and H = P(G). Let X
be the set of vertices of P(G), |X | = m, X1 = X \ N , |X1| = 2x. Let � be a positive
number satisfying the following two conditions:

� ¡ (�− 1)d; (1)

� ¡
(�2 − 1)d2

(m+ 1)(2d+ 1):
(2)

Inequality (1) implies � ¡ 1. Hence inequality (2) implies

m(2d+ �)�+ 2d�+ �2 ¡ (�2 − 1)d2

and consequently for all y,

md2 + m(2d�+ �2) + y(d+ �)2 ¡ md2 + (y − 1)(d+ �)2 + (�d)2: (3)

By Lemma 3.1 G has a vertex cover of size at most k i� H has a vertex cover of
size at most z = k + x. Construct an �-envelope E = X ∪ Y of G. The following claim
concludes the proof of the theorem.

Claim. The graph H has a vertex cover of size at most z i� the envelope E has a
complete range assignment of cost at most

qz = md2 + z(2d�+ �2) + y(d+ �)2:

Proof. Suppose that H has a vertex cover C of size at most z. Assign range d + �
to all points in C ∪ Y and range d to all points in X \ C. Every point of X can be
reached from any other point of X via a path in H . Any end of a segment S is in
the range of c(S) and c(S) is in the range of the end of S belonging to the cover C.
Hence this is a complete range assignment for E. Its cost is clearly at most qz.
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Conversely, suppose we are given a complete range assignment for E, of cost at
most qz. Every point in X must have range at least d because it is at distance at least
d from any other point in E. Inequality (1) implies d+ � ¡ �d. Hence every point in
Y is at distance at least d + � from any other point in E. Consequently, the range of
every point in Y must be at least d+ �.
Suppose that some point c(S) in Y is in the range of a point u which is not an end

of S. Then the range of u is at least �d and hence the cost of the range assignment is
at least

md2 + (y − 1)(d+ �)2 + (�d)2:

(Here we put y = |Y |.) In view of inequality (3) this is larger than qm. Since m is an
upper bound on the size of any vertex cover of H , this yields a contradiction.
Hence every point c(S) in Y is in the range of at least one of the ends of segment

S. It follows that for every segment S of P one of its ends must have range at least
d+ �. Let C ⊂X be the set of vertices of P that have range at least d+ �. Hence C
is a vertex cover of H . The cost of the range assignment is at least

|C|(d+ �)2 + |X \ C|d2 + y(d+ �)2 = md2 + |C|(2d�+ �2) + y(d+ �)2 = q|C|:
It follows that q|C|6qz and consequently |C|6z, i.e., H has a vertex cover of size at
most z. This concludes the proof of the claim and of the theorem.

3.2. An approximation algorithm

As was noted above, the minimum cost complete range assignment problem for a
set of points in three dimensions is NP-hard. In this section we describe an O(n2) time
approximation algorithm for this problem with a ratio bound of 2, i.e., the algorithm
�nds a solution within a factor of 2 of the optimal.
Given a set V = {x1; : : : ; xn} of points in 3-space the algorithm proceeds as follows:

1. Construct an undirected weighted complete graph G(V ) with vertices V and where
the weight of the edge between xi and xj is d(xi; xj)2 for all i and j.

2. Find a minimum weight spanning tree T of G(V ).
3. For i = 1; : : : ; n assign the range of xi to be the maximum of d(xi; xj) over j such
that {xi; xj} is an edge in T .
Clearly, the algorithm runs in O(n2) time and the resulting range assignment is

complete (since at the very least it contains all of the edges of the spanning tree in
both directions). Further we can establish:

Theorem 3.2. Let OPT (V ) be the minimum cost of a complete range assignment for
V and let APP(V ) be the cost of the complete range assignment for V found by the
above algorithm. Then APP(V )¡ 2 · OPT (V ).

Proof. Let MST (V ) be the cost of the minimum weight spanning tree T of G(V ). The
theorem follows immediately from the following claims:
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Claim 1. OPT (V )¿ MST (V ).

Proof. From any optimal assignment we can construct a spanning tree of G(V ) by
choosing any vertex, constructing a shortest path destination tree with the chosen vertex
as the destination (i.e., a tree rooted at the chosen vertex, with all edges directed
towards the root representing a minimum hop path from each vertex to the root) and
changing the directed edges of the destination tree to the corresponding undirected
edges in G(V ). Since each of the n−1 vertices other than the root vertex must have a
range assigned which establishes the edges of the destination tree, OPT (V ) is greater
than the weight of the resulting spanning tree which in turn is greater than or equal to
MST (V ).

Claim 2. APP(V )¡ 2 ·MST (V ).

Proof.

APP(V ) =
n∑
i=1

max
{j|{xi ;xj}∈T}

d(xi; xj)2 ¡
n∑
i=1

∑
{j|{xi ; xj}∈T}

d(xi; xj)2 = 2 ·MST (V ):

4. Conclusion and open problems

In one dimension, we gave asymptotically tight bounds on the minimum cost of a
range assignment with diameter h on equidistant points when h is constant and when
h¿(1+ �) log n, for some constant � ¿ 0. When h is between these ranges the precise
bound is unknown. For the case of arbitrarily distributed points on a line we gave an
O(n4) algorithm for �nding the minimum cost complete range assignment. We believe
our techniques may be extendable to �nd the minimum cost assignment of a given
diameter.
In three dimensions we showed the problem of �nding the minimum cost complete

range assignment is NP-hard and gave an approximation algorithm optimal to within
a factor of two. We conjecture the problem remains NP-hard in two dimensions. Note
that the approximation algorithm works in two dimensions as well.
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