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Abstract

For a commutative ring R with set of zero-divisors Z(R), the zero-divisor graph of R is
�(R) = Z(R) − {0}, with distinct vertices x and y adjacent if and only if xy = 0. In this paper,
we show that �(T (R)) and �(R) are isomorphic as graphs, where T (R) is the total quotient
ring of R, and that �(R) is uniquely complemented if and only if either T (R) is von Neumann
regular or �(R) is a star graph. We also investigate which cardinal numbers can arise as orders
of equivalence classes (related to annihilator conditions) in a von Neumann regular ring.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let R be a commutative ring with 1, and let Z(R) be its set of zero-divisors. The
zero-divisor graph of R, denoted by �(R), is the (undirected) graph with vertices
Z(R)∗=Z(R)−{0}, the set of nonzero zero-divisors of R, and for distinct x; y ∈Z(R)∗,
the vertices x and y are adjacent if and only if xy=0. Thus �(R) is the empty graph if
and only if R is an integral domain. Moreover, a nonempty �(R) is =nite if and only if
R is =nite [4, Theorem 2.2]. The concept of a zero-divisor graph of a commutative ring
was introduced by Beck [7]. However, he let all elements of R be vertices of the graph
and was mainly interested in colorings. The present de=nition of �(R) and the emphasis
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on studying the interplay between graph-theoretic properties of �(R) and ring-theoretic
properties of R are from [4]. For example, in [4, Theorem 2.3] it was proved that �(R)
is connected with diam(�(R))6 3. The zero-divisor graph of a commutative ring has
also been studied in [5,3,9,18,19], and the zero-divisor graph concept has recently been
extended to noncommutative rings in [22] and commutative semigroups in [8].

In this paper, we continue the investigation begun in [18] of the zero-divisor graph
�(R) of a commutative von Neumann regular ring R. Recall that R is von Neumann
regular if for each x ∈R, there is a y ∈R such that x = x2y or, equivalently, R is
reduced and zero-dimensional [14, Theorem 3.1]. In the second section, we show that
R and its total quotient ring T (R) have isomorphic zero-divisor graphs. As a corollary,
we give necessary and suGcient conditions for two reduced Noetherian rings to have
isomorphic zero-divisor graphs. In Section 3, we determine which zero-divisor graphs
�(R) are complemented or uniquely complemented. If R is reduced, then �(R) is
uniquely complemented if and only if R is complemented, if and only if T (R) is von
Neumann regular. For a ring R with nonzero nilpotent elements, �(R) is uniquely
complemented if and only if �(R) is a star graph. (Recall that a graph G is a star
graph if there is a vertex which is adjacent to every other vertex and these are the only
adjacency relations.) We also show that if �(R) is complemented, then T (R=nil(R)) is
von Neumann regular. In fact, �(R) is complemented, but not uniquely complemented,
if and only if R ∼= D×B, where D is an integral domain and B is either Z4 or Z2[x]=(x2).
In the fourth section, we examine the equivalence relation on a commutative ring given
by a ∼ b if ann(a)=ann(b). If R is von Neumann regular, then each equivalence class
contains a unique idempotent. Thus to each element of the Boolean algebra B(R) of
idempotents of R is assigned a cardinal number equal to the order of the equivalence
class of the element. We investigate the converse of when an assignment of cardinal
numbers to each element of a Boolean algebra comes from the equivalence classes of
a von Neumann regular ring.

Throughout, R is a commutative ring with 1 �= 0, U (R) its group of units, nil(R) its
ideal of nilpotent elements, Z(R) its set of zero-divisors, Z(R)∗ = Z(R)−{0} its set of
nonzero zero-divisors, Spec(R) its set of prime ideals, minSpec(R) its set of minimal
prime ideals, and T (R) = RS , where S = R − Z(R), its total quotient ring. As usual, an
x ∈ S is called a regular element of R. We let N; Z; Q; Zn, and GF(pn) denote the
nonnegative integers, integers, rationals, Z modulo n, and the =eld with pn elements,
respectively. For any unde=ned ring-theoretic terminology, see [6,11,14,15] or [17].

2. �(T(R)) and �(R) are isomorphic

In this section, we show that �(T (R)) and �(R) are isomorphic as graphs. (Recall
that two graphs G and G′ are isomorphic, denoted by G ∼= G′, if there is a bijection
’ : G → G′ of vertices such that the vertices x and y are adjacent in G if and only if
’(x) and ’(y) are adjacent in G′.) Note that �(R) is an induced subgraph of �(T (R));
so this is not a natural isomorphism, but depends on the cardinality of equivalence
classes of vertices of the two graphs.

We =rst generalize a result from [18] which will be used in the proof of Corollary
2.5. The “in particular” part is [18, Corollary 2.4] (and [3, Theorem 4.1] for =nite
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products of =nite =elds). Note that if each Ai and Bj in Theorem 2.1 is a =eld, then
A and B are von Neumann regular rings. Also, the “⇐” implication in Theorem 2.1
is a special case of Theorem 2.2 when J = I and each Bi = T (Ai) since |T (R)| = |R|
for any commutative ring R.

Theorem 2.1. Let {Ai}i∈I and {Bj}j∈J be two families of integral domains, and let
A =

∏
i∈I Ai and B =

∏
j∈J Bj. Then �(A) ∼= �(B) if and only if there is a bijection

’ : I → J such that |Ai| = |B’(i)| for each i ∈ I . In particular, if �(A) ∼= �(B) and
each Ai is a ;nite ;eld, then each Bj is also a ;nite ;eld and Ai

∼= B’(i) for each
i ∈ I , and thus A ∼= B.

Proof. Since |T (R)|= |R| for any commutative ring R, the proof follows directly from
the proof of [18, Theorem 2.3 and Corollary 2.4]. For the “in particular” part, just note
that two =nite =elds are isomorphic if and only if they have the same cardinality.

Let R be a commutative ring. As in [19, (3.5)], for x; y ∈R, we de=ne x ∼ y if and
only if ann(x) = ann(y). Clearly ∼ is an equivalence relation on R, and restricts to
an equivalence relation on �(R) (=Z(R)∗). We next show that �(T (R)) and �(R) are
isomorphic by showing that there is a bijection between equivalence classes of �(T (R))
and �(R) such that the corresponding equivalence classes have the same cardinality.

Theorem 2.2. Let R be a commutative ring with total quotient ring T (R). Then the
graphs �(T (R)) and �(R) are isomorphic.

Proof. Let S = R − Z(R) and T = T (R). Denote the equivalence relations de=ned
above on Z(R)∗ and Z(T )∗ by ∼R and ∼T , respectively, and denote their respective
equivalence classes by [a]R and [a]T . Note that annT (x=s) = annR(x)S and annT (x=s)∩
R = annR(x); thus x=s ∼T x=t; x ∼R y ⇔ x=s ∼T y=s; ([x]R)S =[x=1]T , and [x=s]T ∩R=[x]R
for all x; y ∈Z(R)∗ and s; t ∈ S. Since Z(T ) = Z(R)S , by the above comments we
have Z(R)∗ =

⋃
�∈A [a�]R and Z(T )∗ =

⋃
�∈A [a�=1]T (both disjoint unions) for some

{a�}�∈A ⊂ R.
We next show that |[a]R|= |[a=1]T | for each a∈Z(R)∗. If [a]R is =nite, then [a]R =

[a=1]T . The inclusion “⊂” is clear. For the reverse inclusion, let x ∈ [a=1]T . Then
x = b=s with b∈ [a]R and s∈ S. Since {snb | n¿ 1} ⊂ [a]R is =nite, b = sib for some
integer i ¿ 1, and hence b=s = sib=s = si−1b∈ [a]R. Now suppose that [a]R is in=nite.
Clearly |[a]R|6 |[a=1]T |. De=ne an equivalence relation ≈ on S by s ≈ t if and only
if sa = ta. Then s ≈ t if and only if sb = tb for all b∈ [a]R. It is easily veri=ed that
the map [a]R × S= ≈→ [a=1]T , given by (b; [s]) → b=s, is well-de=ned and surjective.
Thus |[a=1]T |6 |[a]R‖S= ≈ |. Also, the map S= ≈→ [a]R, given by s → sa, is clearly
well-de=ned and injective. Hence |S= ≈ |6 |[a]R|, and thus |[a=1]T |6 |[a]R|2 = |[a]R|
since |[a]R| is in=nite. Hence |[a]R|=|[a=1]T |. Thus there is a bijection ’� : [a�] → [a�=1]
for each �∈A.

De=ne ’ : Z(R)∗ → Z(T )∗ by ’(x)=’�(x) if x ∈ [a�]. Clearly ’ is a bijection. Thus
we need only show that x and y are adjacent in �(R) if and only if ’(x) and ’(x) are
adjacent if �(T ); i.e., xy = 0 if and only if ’(x)’(y) = 0. Let x ∈ [a]R; y ∈ [b]R; w ∈
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[a=1]T , and z ∈ [b=1]T . It is suGcient to show that xy = 0 if and only if wz = 0. Note
that annT (x) = annT (a) = annT (w) and annT (y) = annT (b) = annT (z). Thus xy = 0 ⇔
y ∈ annT (x) = annT (w) ⇔ yw = 0 ⇔ w ∈ annT (y) = annT (z) ⇔ wz = 0. Hence �(R)
and �(T (R)) are isomorphic as graphs.

Corollary 2.3. Let A and B be commutative rings with isomorphic total quotient rings.
Then �(A) and �(B) are isomorphic as graphs. In particular, �(A) ∼= �(B) when A
and B have the same total quotient ring.

Proof. This is clear from Theorem 2.2.

Corollary 2.4. Let R be a reduced commutative Noetherian ring such that minSpec
(R) ={P1; : : : ; Pn}. Then �(R) ∼= �(K1 ×· · ·×Kn), where each Ki = T (R=Pi) is a ;eld.

Proof. This is also clear from Theorem 2.2 since T (R) ∼= K1 × · · · × Kn.

Corollary 2.5. Let A and B be reduced commutative Noetherian rings which are not
integral domains. Then �(A) ∼= �(B) if and only if there is a bijection ’ : minSpec
(A) → minSpec(B) such that |A=P| = |B=’(P)| for each P ∈minSpec(A).

Proof. Let minSpec(A)={P1; : : : ; Pm}; minSpec(B)={Q1; : : : ; Qn}, and each T (A=Pi)=
Ki and T (B=Qj) = Lj. Thus �(A) ∼= �(K1 × · · · ×Km) and �(B) ∼= �(L1 × · · · × Ln) by
Corollary 2.4.

(⇒) Suppose that �(A) ∼= �(B). Thus by Theorem 2.1, m = n and there is a
permutation p of {1; : : : ; n} such that |A=Pi|=|Ki|=|Lp(i)|=|B=Qp(i)| for each 16 i6 n.
Clearly p induces the required bijection ’.

(⇐) Suppose that such a bijection ’ exists. Then �(K1×· · ·×Km) ∼= �(L1×· · ·×Lm)
by Theorem 2.1, and hence �(A) ∼= �(B).

Note that if A and B are both integral domains, then �(A) = ∅ = �(B) with no
cardinality conditions needed on A and B.

3. Complemented graphs and von Neumann regular rings

In this section, we =rst give a graph-theoretic characterization of �(R) when T (R) is
von Neumann regular; namely, for a reduced ring R; �(R) is uniquely complemented
(see de=nition below) if and only if T (R) is von Neumann regular. We then show that
for a ring R with nonzero nilpotent elements, �(R) is uniquely complemented if and
only if �(R) is a star graph. Moreover, such a �(R) either has one or two edges or is
in=nite. Finally, we show that �(R) is complemented, but not uniquely complemented,
if and only if R ∼= D×B, where D is an integral domain and B is either Z4 or Z2[x]=(x2).

Let G be a (undirected) graph. As in [18], for vertices a and b of G, we de=ne
a6 b if a and b are not adjacent and each vertex of G adjacent to b is also adjacent
to a; and we de=ne a ∼ b if a6 b and b6 a. Thus a ∼ b if and only if a and b
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are adjacent to exactly the same vertices. Clearly ∼ is an equivalence relation on G.
For a; b∈Z(R)∗, we have a ∼ b in �(R) if and only if ann(a) − {a} = ann(b) − {b}.
(Hence the two equivalence relations de=ned in Sections 2 and 3 are the same for
reduced rings, cf. Remark 3.2.) Also, as in [18], for distinct vertices a and b of G, we
say that a and b are orthogonal, written a ⊥ b, if a and b are adjacent and there is
no vertex c of G which is adjacent to both a and b, i.e., the edge a − b is not part of
any triangle of G. Thus for distinct a; b∈Z(R)∗, we have a ⊥ b in �(R) if and only
if ab = 0 and ann(a) ∩ ann(b) ⊂ {0; a; b}. We say that G is complemented if for each
vertex a of G, there is a vertex b of G (called a complement of a) such that a ⊥ b,
and that G is uniquely complemented if G is complemented and whenever a ⊥ b and
a ⊥ c, then b ∼ c.

Our =rst two lemmas translate the above graph-theoretic concepts into ring-theoretic
terms. Example 3.6(b) shows that the reduced hypothesis is needed in Lemma 3.4.

Lemma 3.1 (cf. [18, Lemma 2.11]). Consider the following statements for a commu-
tative ring R and a; b∈Z(R)∗.

(1) a ∼ b.
(2) aR = bR.
(3) ann(a) = ann(b).
(a) If R is reduced, then statements (1) and (3) are equivalent.
(b) If R is von Neumann regular, then all three statements are equivalent.

Proof. (a) We have already observed that a ∼ b if and only if ann(a)−{a} = ann(b)−
{b}. Thus (1) and (3) are equivalent when R is reduced.

(b) Assume that R is von Neumann regular. Since a von Neumann regular ring is
reduced, it is enough to prove the equivalence (2) ⇔ (3). Clearly (2) ⇒ (3) holds
for any commutative ring. To show (3) ⇒ (2), let a = a2c for some c∈R. Then
1 − ac∈ ann(a) = ann(b), and hence b(1 − ac) = 0 yields b∈ aR. Thus bR ⊂ aR, and
similarly aR ⊂ bR.

Remark 3.2. Observe that when R is reduced, the equivalence relation ∼ de=ned on
Z(R)∗ can easily be extended to all elements of R by using (3) of the above lemma and
thus agrees with the equivalence relation de=ned in Section 2. Moreover, [1] =R −Z(R)
and [0] = {0}. For von Neumann regular rings, the partial ordering 6 also extends to
all elements of R with a6 b if and only if aR ⊂ bR, if and only if ann(b) ⊂ ann(a).
In this case [1] = U (R). We will use this more general de=nition in Section 4.

Lemma 3.3. Let R be a commutative ring and a; b∈Z(R)∗. Then the following state-
ments are equivalent.
(1) a ⊥ b; a2 �= 0, and b2 �= 0.
(2) ab = 0 and a + b is a regular element of R.

Proof. (1) ⇒ (2) Suppose that (1) holds. Then ab = 0 since a ⊥ b. Suppose that
(a + b)c = 0 for some c∈R. Let y = ac = −bc; then ya = yb = 0. Thus y ∈{0; a; b}
since a ⊥ b. If y = a, then a2 = ay = 0, a contradiction. Similarly, y = b yields b2 = 0.
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Hence y = 0. Then ac = bc = 0, and thus c∈{0; a; b} since a ⊥ b. If c = a, then
a2 = ac = 0, a contradiction. Similarly, b2 = 0 if c = b. Thus c = 0, and hence a + b is
a regular element of R.

(2) ⇒ (1) Suppose that (2) holds. First observe that a �= b since a + b is a regular
element of R. If a2 = 0, then a(a + b) = a2 + ab = 0, a contradiction. Thus a2 �= 0,
and similarly b2 �= 0. Suppose that ca = cb = 0 for some c∈R. Then c(a + b) = 0, and
hence c = 0 since a + b is a regular element of R. Since ab = 0, we have a ⊥ b.

Lemma 3.4. Let R be a reduced commutative ring and a; b; c∈Z(R)∗. If a ⊥ b and
a ⊥ c, then b ∼ c. Thus �(R) is uniquely complemented if and only if �(R) is
complemented.

Proof. Note that ab = ac = 0 since a ⊥ b and a ⊥ c. We =rst show that bc �= 0; so b
and c are not adjacent. If bc = 0, then either c = a or c = b since a ⊥ b and a ⊥ c.
Either choice contradicts that R is reduced; so bc �= 0. Now suppose that db = 0 for
some d∈Z(R)∗. Then (dc)a = d(ac) = 0 and (dc)b = (db)c = 0. Thus dc �= 0 implies
that the vertex dc is adjacent to both a and b (and dc �= a or b since R is reduced).
This is a contradiction since a ⊥ b; so dc = 0. Hence c6 b. Similarly, b6 c, and thus
b ∼ c. The “last” statement is clear.

Clearly star graphs are uniquely complemented. Suppose that R is von Neumann
regular. Then for each a∈Z(R)∗, we have a = ue, where u∈U (R) and e ∈R is idem-
potent [14, Corollary 3.3]. Clearly ue ⊥ (1 − e). Thus a von Neumann regular ring R
has �(R) complemented. In fact, �(R) is uniquely complemented by Lemma 3.4 since
a von Neumann regular ring R is reduced. Hence by Theorem 2.2, �(R) ∼= �(T (R)) is
uniquely complemented if T (R) is von Neumann regular. We next show in Theorem
3.5 that the converse holds when R is a reduced commutative ring. The key fact is that
T (R) is von Neumann regular if and only if for each x ∈R, there is a y ∈R such that
xy = 0 and x + y is a regular element of R [2, Theorem 2.3]. In Theorem 3.9, we will
show that if R has nonzero nilpotent elements, then �(R) is uniquely complemented
precisely when it is a star graph.

Theorem 3.5. The following statements are equivalent for a reduced commutative
ring R.
(1) T (R) is von Neumann regular.
(2) �(R) is uniquely complemented.
(3) �(R) is complemented.

Moreover, a nonempty �(R) is a star graph if and only if R ∼= D × Z2 for some
integral domain D.

Proof. (1) ⇒ (2) We give a proof that does not depend on Theorem 2.2. Suppose that
T (R) is von Neumann regular. Let a∈Z(R)∗. By the comments preceding Theorem
3.5, there exists b∈T (R), necessarily nonzero, such that a ⊥ b in �(T (R)). Choose
s∈R − Z(R) such that sb∈R. One can then easily verify that a ⊥ sb in �(R). Hence
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�(R) is complemented, and thus uniquely complemented by Lemma 3.4 since R is
reduced.

(2) ⇒ (3) This is true for any graph.
(3) ⇒ (1) Let x ∈R; we may assume that x ∈Z(R)∗. Then there is a y ∈Z(R)∗ such

that x ⊥ y. By Lemma 3.3, xy = 0 and x + y is a regular element of R. Hence T (R)
is von Neumann regular by [2, Theorem 2.31].

The “moreover” statement follows from the remarks after [4, Theorem 2.5].

We next consider the case when R has nonzero nilpotent elements. In this case,
we show in Theorem 3.9 that �(R) is uniquely complemented if and only if it is a
star graph. Moreover, either �(R) has one or two edges, or �(R) is an in=nite star
graph with center x, where nil(R) = {0; x}. Recall that a vertex of a graph is called
an end if there is only one other vertex adjacent to it. First some examples and a key
lemma.

Example 3.6. (a) Let R = Z[x]=(2x; x2) = Z[ Lx]. Then nil(R) = {0; Lx} and �(R) is an
in=nite star graph with center Lx.

(b) Let D be any integral domain and R = D×Z4. Then nil(R) ={(0; L0); (0; L2)}, and
it is easily veri=ed that �(R) is complemented. However, �(R) is not uniquely comple-
mented since (0; L2) ⊥ (1; L0) and (0; L2) ⊥ (1; L2), but (1; L0) � (1; L2). In a similar fashion,
if R=D×Z2[x]=(x2), then �(R) is complemented, but not uniquely complemented.

Lemma 3.7. Let R be a commutative ring with nil(R) nonzero.
(a) If �(R) is complemented, then either |R|=8; |R|=9, or |R|¿ 9 and nil(R)={0; x}

for some 0 �= x ∈R.
(b) If �(R) is uniquely complemented and |R|¿ 9, then any complement of the

nonzero nilpotent element of R is an end.

Proof. (a) Suppose that �(R) is complemented, and let a∈ nil(R) have index of nilpo-
tence n¿ 3. Let y ∈Z(R)∗ be a complement of a. Then an−1y=0=an−1a; so y=an−1

since a ⊥ y. Thus ann(a)={0; an−1}, since if za=0, then zan−1=0, and a ⊥ an−1. Sim-
ilarly ai ⊥ an−1 for each 16 i6 n−2. Suppose that n ¿ 3. Then an−2 +an−1 kills both
an−2 and an−1, a contradiction since an−2 ⊥ an−1 and an−2 + an−1 �∈ {0; an−2; an−1}.
Thus if R has a nilpotent element with index n¿ 3, then n=3. In this case, Ra2={0; a2}
since each z ∈Ra2 kills both a and a2, and a ⊥ a2. Also, ann(a2) = {0; a; a2; a + a2}.
(If za2 = 0, then za∈ ann(a) = {0; a2}; so either za = 0 or za = a2. If za = 0, then z = 0
or z = a2, while if za = a2, then (z − a)a = 0, and hence either z = a or z = a + a2.)
Thus R is local with |R| = 8; nil(R) = Z(R) = ann(a2) its maximal ideal, and �(R) is
a star graph with center a2 and two edges.

Now suppose that each nonzero nilpotent element of R has index of nilpotence 2.
Let 0 �= y ∈ nil(R) have complement z ∈Z(R)∗. Note that (ry)y = 0 = (ry)z for all
r ∈R. Thus Ry ⊂ {0; y; z}. First suppose that 2y �= 0. Then necessarily z = 2y since
2y ∈Ry ⊂ {0; y; z}. Also, ann(y) = {0; y; 2y} since y ⊥ 2y. Thus Ry = {0; y; 2y}; so
we have |R| = 9. In this case, R is local with maximal ideal Z(R) = nil(R) = ann(y)
and �(R) is a star graph with one edge.
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Next, suppose that each nonzero nilpotent element of R has index of nilpotence 2
and |R| �= 9. By above, we must have 2y = 0. We show that nil(R) = {0; y}. Suppose
that z is another nonzero nilpotent element of R; so z2 = 0. Then y + z is nilpotent of
index 2. First, observe as above that Ry ⊂ {0; y; y′} and Rz ⊂ {0; z; z′}, where y′ and
z′ are complements of y and z, respectively. Next, observe that yz = 0. For if yz �= 0,
then yz = y′ = z′. Thus Ry = ann(y) = {0; y; yz}, and hence |R| = 9, a contradiction.
Let w be a complement of y + z. Clearly w is neither y nor z. Then either wy = y
or wy = y′, since otherwise y kills both w and y + z. However, if y′ is a multiple of
y, then as above we must have |R| = 9, a contradiction. Thus wy = y, and similarly
wz = z. But then w(y + z) = wy + wz = y + z, which contradicts w ⊥ (y + z). Hence
R has a unique nonzero nilpotent element.

(b) Suppose that �(R) is uniquely complemented and |R|¿ 9. Let x be the unique
nonzero nilpotent element of R from part (a) above, and let y be a complement of x.
We =rst show that x + y is also a complement of x. Clearly x(x + y) = 0 since x2 = 0
and x ⊥ y. Note that x =−x, and thus x + y ∈Z(R)∗. Suppose that wx = 0 = w(x + y)
for some w ∈Z(R)∗. Then wy = 0, and hence either w = y or w = x since x ⊥
y. If w = y, then y2 = 0, a contradiction. Thus w = x, and hence x ⊥ (x + y).
By uniqueness of complements, we have x + y ∼ y. Suppose that zy = 0 for some
z ∈Z(R)∗−{x}. Then z �= y since y2 �= 0, and thus z(x+y)=0 since x+y ∼ y. Hence
zx = 0 since zy = 0. This contradicts that x ⊥ y. Thus no such z can exist; so y is
an end.

Remark 3.8. (a) The proof of Lemma 3.7(a) shows that if �(R) is complemented and
|nil(R)|¿ 2, then either |R| = 8 (with |nil(R)| = 4) or |R| = 9 (with |nil(R)| = 3). In
either case, �(R) is uniquely complemented; see Remark 3.12(a) for the commutative
rings R in Lemma 3.7(a) which have �(R) uniquely complemented and |R| = 8 or 9.
In all other cases, it follows that if �(R) is complemented and nil(R) is nonzero, then
|nil(R)| = 2.

(b) The rings in Example 3.6(b) have �(R) complemented and |nil(R)| = 2, but
�(R) is not uniquely complemented. In particular if R = Z2 × B, where B is either Z4

or Z2[x]=(x2), then |R| = 8; |nil(R)| = 2, and �(R) is complemented, but not uniquely
complemented. It is easily shown that (up to isomorphism) these are the only two
commutative rings with |R| = 8 and |nil(R)| = 2.

(c) Let R be a commutative ring with nil(R) = {0; x}. Then ann(x) is a maximal
ideal of R. In particular, if ab∈ nil(R) for a; b∈R, then either ax = 0 or bx = 0. In
graph-theoretic terms, this says that if the vertices a and b are adjacent in �(R), then
either a or b is adjacent to x. Moreover, if nil(R) = {0; x} is a prime ideal of R, then
Z(R) = ann(x).

Theorem 3.9. Let R be a commutative ring with nil(R) nonzero. If �(R) is uniquely
complemented, then either �(R) is a star graph with at most two edges or �(R) is
an in;nite star graph with center x, where nil(R) = {0; x}.

Proof. Suppose that �(R) is uniquely complemented and nil(R) is nonzero. If |R|6 9,
then either |R| = 8 or |R| = 9 by Lemma 3.7(a) and Remark 3.8(a) and (b). In either
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case, �(R) is a star graph with one or two edges, respectively (see the proof of Lemma
3.7(a)). Thus we may assume that |R|¿ 9. Hence nil(R) = {0; x} for some 0 �= x ∈R
by Lemma 3.7(a).

We =rst show that �(R) is in=nite. Let c be a complement for x; thus ann(c)={0; x}
by Lemma 3.7(b). We =rst show that c2 is also a complement for x. If not, then there
is a y ∈Z(R)∗ − {c2; x} such that xy = 0 = c2y. Thus (cy)2 = c2y2 = 0; so either
cy = 0 or cy = x. If cy = 0, then y ∈ ann(c) = {0; x}, a contradiction. Therefore cy = x.
But then cy2 = xy = 0. Hence y2 ∈ ann(c) = nil(R). Then y ∈ nil(R) = {0; x}, again a
contradiction. Thus c2 ⊥ x, and hence ann(c2) = {0; x}. Thus c2n ⊥ x for each integer
n¿ 1. Since ann(ci) ⊂ ann(cj) for all integers 16 i6 j, we have ann(cn) ={0; x} for
all integers n¿ 1. Hence each cn is an end. Next, note that the cn’s are all distinct.
For suppose that ci =cj for some 16 i ¡ j. Then ci(cj−i −1)=0, and thus cj−i −1=x
since ann(ci) = ann(c) and c∈Z(R)∗. But then cj−i = 1 + x ∈U (R) since x ∈ nil(R),
and hence c∈U (R), a contradiction. Thus �(R) is in=nite.

We next show that �(R) is a (in=nite) star graph with center x. Let c be a com-
plement of x; thus ann(c) = {0; x} since c is an end by Lemma 3.7(b). By way of
contradiction, suppose that �(R) is not a star graph. Then by Lemma 3.7(b), there is
an a∈Z(R)∗ − {c; x} with ax = 0 such that a is not a complement of x; thus {0; x}
is properly contained in ann(a). By hypothesis, a ⊥ y for some y ∈Z(R)∗. Note that
a; x; y, and c are all distinct. One can easily show that cy ∈Z(R)−{0; a; c; x; y} (use
ann(c2) = ann(c) to show that cy �= x) and a(cy) = (ay)c = 0 and x(cy) = (xc)y = 0.
By hypothesis, there is a z ∈Z(R)∗ such that z ⊥ cy. One can then also verify that
z �∈ {0; a; c; x; y; cy}. We show that zx = 0. Then zx = 0 = (cy)x, and hence z and
cy are not orthogonal, a contradiction. So suppose that zx �= 0. Then zx = x since
zx ∈ nil(R) = {0; x}. Hence (zy)c = z(cy) = 0 since z ⊥ cy, and thus either zy = 0 or
zy = x since ann(c) = {0; x}. If zy = 0, then xy = (zx)y = (zy)x = 0. But this is a
contradiction since ax = 0 and a ⊥ y. Similarly, zy = x implies (zx)y = (zy)x = x2 = 0,
and hence xy = (zx)y = 0, which again contradicts a ⊥ y. Thus �(R) is an in=nite star
graph with center x.

Corollary 3.10. Let R be a commutative ring. Then �(R) is uniquely complemented
if and only if either T (R) is von Neumann regular or �(R) is a star graph.

Proof. This follows from Theorem 3.5 for reduced rings and Theorem 3.9 for rings
with nonzero nilpotent elements.

Corollary 3.11. Let R be a ;nite commutative ring which is not a ;eld (i.e., ∅ �= �(R)
is ;nite). Then �(R) is uniquely complemented if and only if R is isomorphic to either
Z8; Z9; Z2[x]=(x3);Z3[x]=(x2), Z4[x]=(2x; x2 −2), or F1 ×· · ·×Fn, where each Fi is a
;nite ;eld and n¿ 2. Moreover, �(R) is a star graph if and only if R is isomorphic to
either Z8; Z9; Z2[x]=(x3); Z3[x]=(x2), Z4[x]=(2x; x2−2), or F×Z2 for F a ;nite ;eld.

Proof. This follows from Theorems 3.5 and 3.9 and the list of rings in Remark 3.12(a)
below.
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Remark 3.12. (a) The commutative rings for which �(R) is a star graph can be de-
scribed as follows: If �(R) has one edge, then R is isomorphic to either Z2 × Z2;Z9,
or Z3[x]=(x2); if �(R) has two edges, then R is isomorphic to either Z6;Z8, Z2[x]=(x3),
Z4[x]=(2x; x2−2) [3, Example 2.1(a)]. If �(R) is a =nite star graph with three or more
edges, then R ∼= F × Z2 for F a =nite =eld [4, Theorem 2.13]. (Hence a =nite star
graph has pn vertices for some prime number p and integer n¿ 1 [4, Corollary 2.7].)
If �(R) is an in=nite star graph, then either R ∼= D × Z2 for D an integral domain or
nil(R) = {0; x} is a prime ideal of R and Z(R) = ann(x) [9, Theorem 1.12; 19, (2.1)].

(b) Note that if �(R) is uniquely complemented, then the total quotient ring of
R=nil(R) is von Neumann regular. In fact, R=nil(R) is an integral domain when nil(R)
is nonzero by the comments in part (a) above. However, the converse is false even
for =nite rings. For an in=nite example, let T be any von Neumann regular ring and
R=T [x]=(x2). Then nil(R)=Z(R)=(x)=(x2) and R=nil(R)=T is von Neumann regular.
But �(R) is the complete graph on |T | − 1 vertices, which is uniquely complemented
if and only if T = Z=3Z.

(c) If �(R) is uniquely complemented and nil(R) is nonzero, then R=nil(R) is an
integral domain by (b). So in this case, �(R=nil(R)) is the empty graph.

(d) Note that Lemma 3.7(b) may fail if �(R) is just assumed to be complemented.
For example, let R = Z3 × Z4 (cf. Example 3.6(b)).

In our next theorem, we characterize those commutative rings R for which �(R)
is complemented, but not uniquely complemented. In particular, such rings are of the
form D × B, where D is an integral domain and B is either Z4 or Z2[x]=(x2). We =rst
give a lemma.

Lemma 3.13. Let R = A × B, where A is a reduced commutative ring and B is a
commutative ring with nil(B) nonzero. Then �(R) is complemented, but not uniquely
complemented, if and only if A is an integral domain and B is isomorphic to either
Z4 or Z2[x]=(x2).

Proof. Suppose that �(R) is complemented, but not uniquely complemented. Since
|nil(R)|= 2 by Lemma 3.7(a) and Remark 3.8(a) and nil(A × B) = nil(A)× nil(B), we
may assume that nil(B) = {0; b}. We =rst show that |B| = 4. Thus B is isomorphic to
either Z4 or Z2[x]=(x2). Since Bb = {0; b}, it is suGcient to show that ann(b) = {0; b}.
So suppose that there is an a∈ ann(b) − {0; b}. Then we claim that y = (1; b) has no
complement. Any complement of y has the form z =(0; c) for some 0 �= c∈B. If c=b,
then (0; a) is adjacent to both y and z; while, if c �= b, then (0; b) is adjacent to both
y and z. Thus the claim is proved, so we must have |B| = 4. We next show that A
is an integral domain. If not, then since A is reduced, there are nonzero c; d∈A with
cd = 0 and c �= d. Then we claim that y = (c; b) has no complement. Any complement
of y has the form z = (r; s), where cr = 0 and s = 0 or s = b. If r �= 0, then (0; b) is
adjacent to both y and z; while if r = 0, then s = b and (d; b) is adjacent to both y
and z. Thus A must be an integral domain. The converse has already been observed
in Example 3.6(b).
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Theorem 3.14. Let R be a commutative ring. Then �(R) is complemented, but not
uniquely complemented, if and only if R is isomorphic to D×B, where D is an integral
domain and B is Z4 or Z2[x]=(x2).

Proof. By Example 3.6(b), if R = D × B, where D and B have the stated forms, then
R is complemented, but not uniquely complemented. Conversely, suppose that �(R)
is complemented, but not uniquely complemented. We =rst show that R=nil(R) has a
nontrivial idempotent. By Lemma 3.4, Lemma 3.7(a), and Remark 3.8(a), nil(R) =
{0; b}. Since �(R) is complemented, but not uniquely complemented, there is a vertex
a with distinct complements y and z and a vertex w which is adjacent to y, but not z.
Thus wz �= 0. Since y(wz)=0; a(wz)=0; a ⊥ y, and wz �= 0, either wz = a or wz = y.
Thus either a2 = 0 or y2 = 0, and hence either a = b or y = b. Suppose that a = b.
Let v = w2 − w. Clearly vy = 0 since wy = 0. Since b ⊥ y, we have wb �= 0. Thus
wb = b, and hence vb = w2b−wb = b− b = 0. Since b ⊥ y, we must have v = 0; v = y,
or v = b. If v = y, then y2 = 0, a contradiction. Thus w2 − w = v∈ nil(R), and hence
w + nil(R) is the desired nontrivial idempotent. The case where y2 = 0, and thus y = b,
is similar; just let v = z2 − z. Thus R=nil(R) has a nontrivial idempotent, and hence R
has a nontrivial idempotent by [17, Corollary, p. 73]. Therefore, we may assume that
R = A × B. Since |nil(R)| = 2 and nil(A × B) = nil(A) × nil(B), we may assume that A
is reduced and nil(B) = {0; b}. The result now follows from Lemma 3.13.

Corollary 3.15. Let R be a commutative ring such that �(R) is complemented (either
uniquely or not). Then T (R=nil(R)) is von Neumann regular. Moreover, if nil(R) is
nonzero, then �(R=nil(R)) is either the empty graph or a star graph.

Proof. If R is uniquely complemented, this is just Remark 3.12(b). If R is not uniquely
complemented, then it follows from Theorem 3.14. The “moreover” statement follows
from Theorem 3.5.

Corollary 3.16. Let R be a ;nite commutative ring which is not a ;eld (i.e., ∅ �= �(R)
is ;nite). Then �(R) is complemented, but not uniquely complemented, if and only if
R is isomorphic to F × B, where F is a ;nite ;eld and B is either Z4 or Z2[x]=(x2).

4. Constructing von Neumann regular rings

There are natural conditions which are satis=ed by the idempotents of a von Neumann
regular ring. These conditions correspond to functions which can be de=ned for an
arbitrary Boolean algebra. In this section, our main objective is to obtain necessary
and suGcient conditions so that a Boolean algebra with such a function arises as the
idempotents of a von Neumann regular ring.

Given a commutative ring R, the set of idempotents of R forms a Boolean algebra,
denoted B(R), under the operations a ∧ b = ab and a ∨ b = a + b − ab, with largest
element 1, smallest element 0, and complement given by a′ = 1 − a. For a reference
on Boolean algebras and the Boolean algebra of idempotents, see [1] or [17].
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Before going into our main topic, we =rst recall some facts from [18] about �(R)
when R is von Neumann regular. Let the relations 6 and ∼ on R be de=ned as in
Section 3. Note that for nontrivial idempotents e and f of any commutative ring R, we
have e6f if and only if ef = e, if and only if Re ⊂ Rf (cf. Lemma 3.1 and Remark
3.2). Thus e ∼ f if and only if e = f. Hence if R is von Neumann regular, then each
equivalence class [a] contains a unique idempotent e. In fact, if a = ue with u∈U (R)
and e ∈R idempotent, then [a]=[e]={ve | v∈U (R)}={w ∈Re |w a unit of Re}. Also
note that a nontrivial idempotent e is minimal with respect to the partial order 6⇔ e
is an atom in the Boolean algebra B(R) ⇔ e is a primitive idempotent of R ⇔ Re is
a simple R-module, i.e., Re is a =eld.

Conversely, let B be a Boolean algebra and de=ne binary operations on B by a +
b=(a∧b′)∨ (a′∧b) and ab=a∧b. Then, as is well known, with these operations B is
a commutative von Neumann regular ring. In fact, B is a Boolean ring, i.e., x2 = x for
all x ∈B. However, in general, the von Neumann regular ring R is quite diOerent from
the ring B(R). (Note that while multiplication in B(R) is just multiplication in R, the
addition in B(R) is given by e + f−2ef for idempotents e and f of R.) For example,
if R is any direct product of =elds indexed by a set I , then B(R) is the direct product
of copies of Z2 indexed by I . This diOerence and the following two basic results are
the motivation behind the work in this section.

Theorem 4.1. Let R and S be commutative von Neumann regular rings. Then �(R)
and �(S) are isomorphic as graphs if and only if there is a Boolean algebra isomor-
phism ’ : B(R) → B(S) such that |[e]| = |[’(e)]| for each 1 �= e ∈B(R).

Proof. Assume the Boolean algebra isomorphism ’ exists. Let x; y ∈Z(R)∗, and let
ex; ey denote the unique idempotents of R such that ex ∈ [x] and ey ∈ [y]. Then the
vertices x and y of �(R) are adjacent if and only if exey = 0, i.e., as elements of the
Boolean algebra B(R); ex ∧ey =0, if and only if ’(ex)’(ey)= ’(ex)∧’(ey)=0. Thus,
if the cardinalities of the sets [ex] and [’(ex)] are equal for all x ∈Z(R)∗, then the
graphs �(R) and �(S) are isomorphic.

Conversely, let h : �(R) → �(S) be an isomorphism of graphs. For each a∈Z(R)∗,
observe that the image under h of every element in [a] is in the set [h(a)]. Hence, we
can de=ne a bijection ’ : B(R) → B(S) by setting ’(e) equal to the unique idempotent
in the set [h(e)] when e �= 0; 1; and setting ’(0) = 0 and ’(1) = 1. We =rst note
that ’(e′) = ’(e)′ for all e ∈B(R) since e′ is the unique element of B(R) which is
adjacent to e and has no element adjacent to both e and itself. Next we claim that
’ preserves the ordering on B(R). This follows since f6 e if and only if f is ad-
jacent to e′. Finally, since e ∧ f is the unique largest element which is smaller than
both e and f, it follows that ’(e ∧ f) = ’(e)∧ ’(f). Similarly, ’ distributes over ∨.
Hence ’ is an isomorphism of Boolean algebras. Clearly |[e]| = |’(e)| for each 1 �=
e ∈B(R).

Corollary 4.2. Let {Ai}i∈I and {Bi}i∈I be two families of integral domains with Ai a
subring of Bi and |Ai| = |Bi| for each i ∈ I , and let A =

∏
i∈I A and B =

∏
i∈I B. If R

is a subring of B containing A, then �(A) ∼= �(R) ∼= �(B).
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Proof. Note that B(A) = B(R) = B(B) and [e]A ⊂ [e]R ⊂ [e]B for each idempotent
e ∈A. It also follows from our assumptions and the de=nition that |[e]A|= |[e]B|. Thus
|[e]A| = |[e]R| = |[e]B|. The corollary now follows directly from Theorem 4.1.

Example 4.3. (a) With the same notation as in the corollary, suppose that each integral
domain Ai is in=nite. Then |Ai|=|Ai[x]| for each i ∈ I , and A=

∏
i∈I Ai ⊂ (

∏
i∈I Ai)[x] ⊂∏

i∈I (Ai[x]). Thus �(A[x]) ∼= �(A) by Corollary 4.2.
(b) Even though (

∏
i∈I Ai)[[x]]=

∏
i∈I (Ai[[x]]), the result in part (a) need not hold for

power series since we may have |R|¡ |R[[x]]| when R is in=nite. However, suppose
that A =

∏
n∈N R. Then |R[[x]]| = |R|, and thus �(A) ∼= �(A[x]) ∼= �(A[[x]]) by

Corollary 4.2.

Remark 4.4 (cf. [18, Example 2.8]). If the rings R and S are each the direct product
of =nite =elds, then �(R) ∼= �(S) if and only if R ∼= S by Theorem 2.1. If R and S are
arbitrary von Neumann regular rings, then by Proposition 4.1, �(R) ∼= �(S) implies that
B(R) ∼= B(S); however, R and S need not be isomorphic. For example, let S =

∏
i∈N Fi,

where each Fi = GF(32), and let R be its subring R =
∏

i∈N Ki +
∑

i∈N Fi, where each
Ki =Z3. Then R and S are each von Neumann regular, and B(R) = B(S) is isomorphic
to the direct product of copies of Z2 (indexed over N). Thus �(R) ∼= �(S) by Theorem
4.1 (using an easy cardinality argument). However, R and S are not isomorphic rings
since S contains a square root of −1, but R does not.

Recall that the equivalence relation ∼ was de=ned for any undirected graph G. Note
that G= ∼ is also an undirected graph in the natural way with [x] and [y] adjacent in
G= ∼ if and only if x and y are adjacent in G. We next show that if R is von Neumann
regular, then �(R)= ∼ is also the zero-divisor graph of a von Neumann regular ring,
namely B(R).

Proposition 4.5. Let R be a commutative von Neumann regular ring. Then �(R)= ∼
and �(B(R)) are naturally isomorphic as graphs.

Proof. De=ne ’ : �(B(R)) → �(R)= ∼ by ’(e) = [e]. By the previous comments, ’
is bijective and preserves adjacency.

Let R be a von Neumann regular ring. For each a∈R, we denote by nR(a) the
cardinality of [a]. It follows that if a is an atom of B(R), then, since Ra is a =eld,
nR(a) is either an in=nite cardinal or nR(a) = pi − 1 for some prime number p and
some integer i¿ 1. Furthermore, if ab = 0 for some b∈R, then nR(a ∨ b) = nR(a +
b) = nR(a)nR(b), since in this case (a + b)R ∼= aR × bR. Also note that nR(0) = 1 and
nR(1) = |U (R)|.

Now let B be a Boolean algebra. Suppose that n is a function which assigns to each
element b∈B a nonzero cardinal number n(b) with the following properties:

(i) If b is an atom of B, and n(b) is =nite, then n(b)=pi −1 for some prime number
p and some integer i¿ 1.
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(ii) If a; b∈B with a ∧ b = 0, then n(a ∨ b) = n(a)n(b).
(iii) n(0) = 1.

Then we call n a labeling of B, and we say that (B; n), or B, if n is clear, is a labeled
Boolean algebra. If R is a von Neumann regular ring, then from the above comments
the function nR is a labeling of B(R). We refer to (B(R); nR) as the labeled Boolean
algebra associated with R and say that such a labeled Boolean algebra is realizable
as a von Neumann regular ring.

Theorem 4.1 may be rephrased as: for commutative von Neumann regular rings R and
S, the graphs �(R) and �(S) are isomorphic if and only if there is a Boolean algebra
isomorphism ’ : B(R) → B(S) such that nS(’(e)) = nR(e) for each 1 �= e ∈B(R).
We next give an example that shows that nR and nS may agree on the atoms in case
B(R) = B(S), and yet be diOerent labelings. This also shows that condition (ii) in the
de=nition of a labeling does not extend to in=nite sups even if B is a complete Boolean
algebra.

Example 4.6. Let K be a sub=eld of a =eld F with |K | = . and |F | = �, where
.! ¡ � ¡ �!. Such cardinals exists by Koenig’s Lemma (see, for example [16]). Let
R =

∏
n∈N Kn +

∑
n∈N Fn and S =

∏
n∈N Fn, where Fn = F and Kn = K for each n∈N.

Then B(R) = B(S) =
∏

n∈N Z2 is a complete Boolean algebra, and nR(ei) = nS(ei) = �
for each atom ei ∈B(R). For any in=nite I ⊂ N, let eI be the idempotent with 1 in all
coordinates i ∈ I and zero elsewhere. Then nR(eI ) = .! + � = � ¡ �! = nS(eI ). Hence,
nR(eI ) ¡

∏
i∈I nR(ei); so condition (ii) does not extend to in=nite sups. Also note that

nR and nS agree on atoms, but not on all elements of B(R), and �(R) and �(S) are
not isomorphic.

For the remainder of this section, we examine which labeled Boolean algebras are
realizable as von Neumann regular rings. We will do this by viewing an arbitrary
Boolean algebra topologically, by means of the Stone Representation Theorem (for a
proof, see [1, p. 207] or [6, p. 14]). Although we could state all of our results directly
in terms of Boolean algebras, it is easier and more natural to work with topological
spaces.

Theorem 4.7 (Stone Representation Theorem). If B is a Boolean algebra, then there
exists a compact Hausdor? space X having a basis of clopen sets such that B is
isomorphic to the Boolean algebra of clopen subsets of X .

We note that the space X associated to B is Spec(B) with the usual Zariski topology.
Furthermore, it follows that B is a subring of

∏
x∈X Fx, where Fx

∼= Z2 is the factor
ring of B modulo the maximal ideal x. We also note that the atoms of B correspond
to the isolated points of X .

Let (B; n) be a labeled Boolean algebra, and let X be the topological space associated
to B by the Stone Representation Theorem. Then n de=nes a function on the clopen
sets (i.e., sets that are both open and closed) of X , and we will talk about the labeled
space (X; n). If x ∈X is an isolated point, we write n(x) for n({x}). We =rst obtain
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some necessary conditions on n, so that (X; n) is realizable; then in Theorem 4.13, we
obtain a suGcient condition under the assumption that X is a metric space. We note
that a compact HausdorO space X having a basis of clopen sets is metrizable if and
only if X has a countable basis of clopen sets, if and only if B is a countable set. To
see this, note that a compact space X is metrizable if and only if it has a countable
basis [10, p. 260]. Since a clopen set in a compact HausdorO space is the union of
=nitely many elements from a basis, a compact metric space has only countably many
clopen subsets. For more on the basic de=nitions and results in topology, we suggest
the reader see [10].

We should note that [12,13,20,21] examine questions related to what we do here.
In [20], they de=ne a ‘labeled Boolean algebra’ though their de=nition is somewhat
diOerent than the one used here. In [13], they ask the following question: Given a
=xed =eld F , a topological space X that comes from a Boolean algebra, and a family
{Kx}x∈X of =eld extensions of F , does there exist a von Neumann regular F-algebra
R and a homeomorphism x �→ Px from X to Spec(R) such that R=Px

∼= Kx for each
point x in X ?

We =rst start with some examples of labeled spaces which will help motivate our
results.

Example 4.8. (i) Let X be a subspace of the real line consisting of a decreasing,
convergent sequence (ai)i∈N and its limit point a. Let p ¿ 2 be a =xed prime number,
and de=ne n(ai) = pi − 1 and n(U ) = ! for all in=nite clopen sets U of X , where the
topology on X is inherited from the real line. There is a unique way to extend n to all
clopen sets U of X so that n is a labeling on X . We now construct the von Neumann
regular ring R whose associated labeled Boolean algebra is the same as (X; n). Let
S =

∏
x∈X Fx, where Fx = GF(pi) if x = ai, and Fa = GF(p). Let R be the subring of

S generated by 1 and all functions in S which are zero on a neighborhood of a. Then
the elements of R consist of all elements of S which, except for a =nite number of
places oO the coordinate corresponding to a, are constant and an element of GF(p),
i.e., R = Zp · 1 +

∑
x �=a Fx. It is not diGcult to check that R is von Neumann regular

and realizes the labeled space (X; n).
(ii) Let X be as in (i) and de=ne n(ai) = 2 if i is odd and 4 if i is even.

Then, regardless of how we de=ne n on the other clopen sets, it is not possible to
construct a von Neumann regular ring that realizes (X; n). To see this, notice that
every clopen set of X is either =nite or co=nite, i.e., contains all but =nitely many
of the points of X . Therefore for any ring R that realizes (X; n), we must have that
for all idempotents e ∈R, either there are only =nitely many primitive idempotents f
with fe �= 0 or there are only =nitely many primitive idempotents f with fe = 0.
However, let R be such a ring. Let e ∈R be the idempotent with e ∼ 3 · 1, and let
ei be the idempotent corresponding to the clopen set {ai}. Then eie �= 0 if i is even,
while eie = 0 if i is odd.

Given a labeled space (X; n) and a prime number p, we say that an isolated point
x ∈X has characteristic p if n(x) = pi − 1 for some integer i¿ 1. For the remainder
of the paper, (X; n) will denote a labeled compact HausdorO space.
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Lemma 4.9. If (X; n) is realizable as a von Neumann regular ring, then for each
prime number p there exists a (possibly empty) clopen set U ⊂ X which contains
all the isolated points having characteristic p and the only isolated points with ;nite
characteristic contained in U have characteristic p.

Proof. Suppose that R is a von Neumann regular ring that realizes (X; n), and let e ∈R
be the idempotent such that e ∼ p · 1. Let U be the clopen set corresponding to the
idempotent 1 − e. Then U has the desired properties.

Corollary 4.10. If (X; n) is realizable as a von Neumann regular ring, then for each
prime number p there is a clopen subset Up ⊂ X such that Up contains all the
isolated points of characteristic p, and no other isolated points of ;nite characteristic.
Moreover, the sets Up can be chosen to be pairwise disjoint.

Proof. The existence of Up follows immediately from the previous result. To see the
last statement, let Ui denote the clopen set corresponding to the ith prime number. Let
V1 = U1, and for each i ¿ 1 we can replace Ui with Ui − (V1 ∪ · · · ∪ Vi−1).

Let (X; n) be a labeled Boolean algebra. We call a nonempty clopen set U ⊂ X
uniform relative to n (or merely uniform, if the n is clear), if n(V ) = n(U ) for all
nonempty clopen sets V contained in U . Clearly isolated points are uniform. Observe
that since a set of cardinal numbers is well-ordered, every clopen set contains a uniform
clopen set.

We next give a necessary condition for a labeled metrizable space to be realizable.

Theorem 4.11. Let (X; n) be a labeled metrizable compact Hausdor? space which can
be realized as a von Neumann regular ring R. Then n(U )6 �! for each clopen set
U ⊂ X , where

a = sup{n(V ) |V a uniform clopen set contained in U}:

Proof. By our assumption on X , every clopen set U contains a countable collection of
uniform clopen subsets {Vi}i∈N such that U is the closure of the set

⋃
Vi. For i ∈N,

let ei = eVi , where eV denotes the idempotent of R associated to V . Now let a∈ eU R.
Suppose that aei = 0 for all i ∈N; then we claim that a = 0. For if not, then there
exists an idempotent eW ∈R with W a nonempty clopen subset of U and a ∼ eW . This
implies that W ∩Vi =∅ for all i ∈N. However, this is impossible since U is the closure
of

⋃
Vi. Therefore, a = 0. Also note that if a is a regular element of eU R, then aei is

a regular element of eiR. If b is another regular element of eU R, then aei �= bei for
some i. Note that for each i ∈N, there are at most � choices for aei. Hence the result
follows.

Corollary 4.12. Let (X; n) be as in Theorem 4.11. If U is a clopen set such that
1 ¡ n(U ) is ;nite, then the set I of isolated points a∈U such that n(a) ¿ 1 is ;nite
and nonempty. Furthermore, n(U ) =

∏
a∈I n(a).
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Proof. It follows from the de=nition of a labeling and the fact that n(U ) is =nite that
I is a =nite set (which is necessarily clopen). Thus W =U −I is a clopen set of X . We
claim that n(W ) = 1, which proves that I must be nonempty. The last statement then
follows from the de=nition of a labeling. By Theorem 4.11, we can assume that W is
uniform. If W consists of a single point, then the result follows from the de=nition of
W . Otherwise, we can write W as the disjoint union of nonempty clopen sets V and
V ′. (Pick two distinct points in W , then we can =nd a clopen neighborhood of one
that misses the other.) Thus n(V )n(V ′)= n(W ). Hence, if n(W ) ¿ 1, then one of n(V )
or n(V ′) is less than n(W ), a contradiction to the fact that W is uniform; so the claim
is proved.

We now give a suGcient condition for (X; n) to be realizable by a von Neumann
regular ring.

Theorem 4.13. Let (X; n) be a metrizable labeled compact Hausdor? space, and let
A denote the set of isolated points of X . Suppose that all points a∈A with n(a) ;nite
have been assigned a characteristic as previously described. Furthermore, assume the
following conditions hold.
1. If U is a uniform clopen set which is not a point, then n(U ) is either 1 or an

in;nite cardinal.
2. If U is any clopen set, then n(U ) = sup{n(V ) |V ⊂ U is either a uniform clopen

set or a =nite set of isolated points}.
3. The set {pi} of primes, each of which is assigned as the characteristic to in;nitely

many isolated points, is ;nite.
4. For each characteristic pi in condition 3, there exists a clopen set Upi which

contains all the isolated points a such that char(a) = pi, and if a∈Upi ∩ A, then
either char(a) = pi or n(a) is an in;nite cardinal. Additionally, Upi − A does not
contain a clopen set W with n(W ) = 1.

5. There exists a clopen set Ut disjoint from each Upi such that Ut ∩A contains only
;nitely many points of any one characteristic and Ut −A does not contain a clopen
set W such that n(W ) = 1.

Then (X; n) is realizable as a von Neumann regular ring.

Proof. To each point x of X we want to assign a characteristic, denoted char(x). For
some of the points in X we have already done this. If x ∈Upi , we assign char(x) = pi,
and if x ∈Ut − A, then declare char(x) = 0. To the points of X which have not yet
been assigned a characteristic, we assign the characteristic 2. Next, to each x ∈X we
assign a =eld Fx which has the same characteristic as x and such that

|Fx| = min{n(U ) |U a clopen neighborhood of x} + 1:

First note that if W is a nonempty clopen set that contains no isolated points, then
by conditions 1 and 2, n(W ) is either 1 or an in=nite cardinal. We next claim that if
x ∈Upi − A, then |Fx| is either 2 or in=nite. If x ∈U2 − A is a limit point such that
n(W ) = 1 for some clopen neighborhood of x, then clearly |Fx| = 2. Otherwise, every
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neighborhood U of x contains either in=nitely many isolated points a with n(a) ¿ 1
or a nonempty clopen subset W of Upi − A. In the former case, n(U ) is in=nite by
the de=nition of a labeling. In the latter case, n(W ), and hence n(U ), is in=nite by
our assumption on Upi − A in 4. Thus |Fx| is in=nite. A similar argument shows that
if x ∈Ut − A, then |Fx| is in=nite; so the claim is proved. Furthermore, we can pick
these =elds so that for any x; y ∈X , if char(x) = char(y) and !6 |Fx|6 |Fy|, then
Fx ⊂ Fy, with the =elds being equal if they have the same cardinality. Since any set
of cardinals has a smallest element, any nonempty clopen set U which is disjoint from
all the Upi and Ut contains a point x such that Fx is contained in Fy for all y ∈U .
This is also true if U is contained in either Upi − A or Ut − A.

Let S =
∏

x∈X Fx, and for each clopen set U , let eU denote the element of S which is
one at all x ∈U and zero at all other coordinates. Let R be the subset of S consisting
of all elements of the form

∑
aieVi +

∑
bjeWj +

∑
mk eSk + f, where {Vi}; {Wj},

and {Sk} are clopen sets with the following properties: Each Vi is disjoint from Upi

and Ut ; so all the points in each Vi have characteristic 2. Each ai is from one of
the =elds Fx, where x ∈Vi and Fx ⊂ Fy for all y ∈Vi. Each Wj is a subset of either
Upi − A for some i or Ut − A, and bj is chosen like ai. Each mk is an integer and Sk

contains a nonisolated point and is contained in either Upi for some i or in Ut . Finally,
f ∈∑

x∈A Fx. We note that every clopen set of X is the union of =nitely many of
the Vi’s, Wj’s, Sk ’s with =nitely many isolated points. Then it is not diGcult to see
that R is a subring of S and the idempotents of R are precisely those elements of
the form eU , where U is a clopen set of X . Thus B(R) is isomorphic to the Boolean
algebra of clopen sets of X . As in Example 4.8(i), one checks that R is a von Neu-
mann regular ring. Hence we only have to show that n(U ) = |[eU ]| for each clopen
set U .

First suppose that U is uniform and disjoint from any Upi and from Ut . Thus every
element in U has characteristic 2 and all the =elds Fx; x ∈U , are the same; we denote
this =eld by F . An element of eU R has the form a1eU1 + a2eU2 + · · · + areUr , where
the Ui are clopen sets that partition U and each ai is an element of the =eld F . Hence
|F | = n(U ) + 1. Now suppose that U is an arbitrary clopen set disjoint from any Upi

and from Ut . Then by condition 2, it follows that n(U ) = sup{∏x∈I (|Fx| − 1)}, where
I runs through the =nite subsets of U . (We have to word the equation in this awkward
manner because of the possibility that n(U ) = 1, in which case |Fx|= 2.) Again, every
element of eU R has the form a1eU1 + a2eU2 + · · · + areUr , where the Ui partition U
and each ai is an element of some Fx, where x ∈Ui and Fx is contained in each =eld
Fy; y ∈Ui. Thus it follows that n(U ) = |[eU ]|. If U is a subset of either Upi or Ut

which contains a nonisolated point, then essentially the same proof will work. Finally,
if U is a =nite set of isolated points, then it is immediate that |[eU ]|=n(U ). Since any
clopen subset of X is the =nite disjoint union of such sets, the result is proved.

We next present some examples to show how our results can be applied. For the
following, let C denote the Cantor set.

Example 4.14. By Theorem 4.13, if � is any in=nite cardinal, or if � = 1, the labeling
of C given by n(U ) = � for each clopen set U is realizable.
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Example 4.15. C can be viewed as the interval I =[0; 1] with countably many pairwise
disjoint open intervals I1; I2 : : : ; each contained in (0; 1), removed in such a way that
what is left has no isolated points. For each k ∈N, let pk be an element of Ik , and let
X =C∪{pk | k ∈N}. Then X has a dense set of isolated points, namely, S={pk | k ∈N},
and the subspace X \S consisting of the set of nonisolated points has no isolated points.
If the sequence (sk)k∈N is a subset of S which converges to 0, then there is no realizable
assignment n such that

n(sk) =

{
2 if k is even;

4 if k is odd;

(see Corollary 4.10). However, if L = {s∈ S | s6 1
2} and R = {s∈ S | s ¿ 1

2}, then
Theorem 4.13 implies that there is a realizable assignment n such that n(s) = 2 if s∈L
and n(s) = 4 if s∈R.

Notice the distinction between the necessary condition in Theorem 4.11 and the
suGcient condition in Theorem 4.13(2). Our next example will show that this gap
cannot be closed.

Example 4.16. Let X be a convergent decreasing sequence (ai)i∈N along with its limit
point a as in Example 4.8. De=ne a labeling on X by n(U ) = ! if U is a =nite
nonempty clopen subset of X; n(U ) = c, the continuum, if U is an in=nite clopen set,
and n(∅) = 1. We claim that this labeled space is realizable as a von Neumann regular
ring.

Let B be a transcendence basis for the reals over the rationals. For each b∈B, =x
a sequence of rationals {bi} that converges to b. Let Y = X − {a}, and let S be the
product of copies of Q indexed by Y . For each b∈B, let Lb∈ S be de=ned by Lb(ai)=bi.
Let R be the (unital) subring generated by { Lb | b∈B} ∪∑

x∈Y Fx, where each Fx =Q.
We view elements of R as sequences of rationals. Note that a clopen subset of X is
any set which is either =nite and does not contain a or co=nite and does contain a.
For the purpose of this example, for a =nite or co=nite subset U of X − {a}, let eU

denote the element of S which is 1 at all coordinates ai ∈U and zero elsewhere. Then
each such eU corresponds to a clopen set of X .

Every element r ∈R has the form r = f + g, where g∈∑
x∈Y Fx and f = P(b(1); : : : ;

b(m)) for some integer m¿ 1 and some polynomial P(x1; : : : ; xm)∈Z[x1; : : : ; xm]. Fur-
thermore, each element of R converges to a real number. Hence, if such an element r
of R had for its zero set an in=nite set, it would converge to 0. It would follow that
P(b(1); : : : ; b(m)) = 0. Since B is a transcendence basis, P(x1; : : : ; xm) = 0. Hence, r has
co=nite zero set. Therefore, R contains all the elements eU ; U a =nite or co=nite subset
of X − {a}, and these are the only idempotents in R. Thus B(R) is isomorphic to the
Boolean algebra of clopen sets of X .

Unfortunately, the ring R is not von Neumann regular. However, it is clear that for
any x ∈R, there exists y ∈R such that xy=0 and x+y is a regular element of R. Hence
by [2, Theorem 2.3], T (R) is a von Neumann regular ring. Furthermore, for each x ∈R,
one checks that the set U of coordinates where x is nonzero is either a =nite or co=nite
subset of Y . Hence the equivalence class [x] (under x ∼ y if ann(x)=ann(y)) contains
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the idempotent eU ∈R. Thus there are no new idempotents in T (R). Also, as we saw
in the proof of Theorem 2.2, the equivalence classes [x]R ⊂ R and [x=1]T (R) ⊂ T (R)
have the same cardinality. Hence we only have to show that n(U ) = |[eU ]| for each
clopen set U , and it will follow that (X; n) is realized by the von Neumann regular
ring T (R). But this follows as in Theorem 4.13.

We close this section with a couple of questions. Suppose that the compact metric
space X is the discrete union of two compact subspaces X1 and X2, that is, X =X1∪X2,
where X1∩X2 =∅. Let n be a labeling of the clopen subsets of X . Then the restrictions
n1 and n2 to the clopen subsets of X1 and X2 are labelings. It is not hard to show that if
(X1; n1) and (X2; n2) are realizable, then (X; n) is realizable. This fact suggests questions
of how the labelings of certain spaces inTuence the labelings of spaces constructed from
them.

For the following question, notice that if X is a compact zero-dimensional metric
space that has no isolated points and Y is a subset of X such that Y has an isolated
point p, we can de=ne a labeling n of Y by n(p) = 2 and n(U ) = ! for each clopen
set U �= {p}. However, there is no labeling m of X such that m(U )= n(U ∩Y ) for all
clopen subsets U of X because a labeling of a clopen subset of X assigns an in=nite
cardinal to each clopen set. However, we do not know the answer to the following
question.

Question 4.17. Suppose that X is a compact zero-dimensional metric space and Y is
a closed subset of Y such that Y has no isolated points. Does every labeling of Y
extend to a labeling of X ? More precisely, if n is a labeling of Y , does there exist
a labeling m of X such that m(U ) = n(U ∩ Y ) for each clopen subset U of X ?

We close with a question about a speci=c kind of labeling of a speci=c space. Recall
that by Example 4.16, it is not necessarily the case that if (X; n) is realizable, then n(U )
is the supremum of the cardinals n(V ) where V is a uniform subset, of U . However,
we do not know the answer to the following.

Question 4.18. Let X consist of a convergent sequence (ak)k∈N along with its limit
a. Does there exist a realizable labeling n for X such that n(ak) is ;nite for each
k ∈N, but n(U ) = c for each in;nite clopen subset U of X ?
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