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Abstract

We use detailed balance for a hadron composed of quark and gluon Fock states to obtain parton distributions in t
and pion on the basis of a simple statistical model.
 2005 Elsevier B.V. Open access under CC BY license.
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1. Introduction: parton distributions in the proton

There has been considerable interest in the fla
dependence of the proton’s quark and antiquark di
butions. The first measurement of thed̄ − ū asymmetry
was made by the NMC group[1]. The integral of this
distribution showed a violation of the Gottfried su
rule. Later, Drell–Yan[2,3] and deep inelastic scatte
ing [4] experiments determined the Bjorken-x depen-
dence of the asymmetry. The meson cloud model
the Sullivan process were used to explain the mom
tum fraction distribution ofd̄ − ū; many other models
have been proposed[5].

Most recently, Zhang and collaborators[6–8] have
used a simple statistical model to calculate thed̄ − ū

distribution in the proton. They consider the proton
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be an ensemble of quark–gluon Fock states, and
detailed balance[6,7] or “the principle of balance”[8]
to determine the distribution functions for all parto
of the proton. Despite its simplicity, the model do
reasonably well in predicting the distributions of pa
tons, as well as for that of̄d − ū. The excess of̄d over
ū comes about from the 2:1 ratio ofu :d , which pro-
vides an excess ofu quarks for the annihilation of̄u’s.

Zhang, Zou, and Yang (ZZY)[7] write a genera
Fock state expansion for the proton as

(1)|p〉 =
∑
i,j,k

cijk

∣∣{uud}{ijk}〉,
with i the number ofūu pairs, j the number ofd̄d

pairs andk the number of gluons. The states are n
malized such that the sum of the probabilitiesρijk =
|c |2 of finding a proton in the state|{uud}{ijk}〉,
ijk
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summed over alli, j , andk, is unity [6],

(2)
∑
i,j,k

ρijk = 1.

In ZZY statistical model, detailed balance betwe
any two Fock states requires that

ρijkN
(∣∣{uud}{ijk}〉 → ∣∣{uud}{i′j ′k′}〉)

(3)≡ ρi′j ′k′N
(∣∣{uud}{i′j ′k′}〉 → ∣∣{uud}{ijk}〉),

in whichN(A → B) is the transfer rate of stateA into
stateB. Transfer rates between states are assume
be proportional to the number of partons that can s
or recombine. Taking into account two processes,q ↔
qg andg ↔ qq̄, ZZY find that

(4)
ρijk

ρ000
= 1

i!(i + 2)!j !(j + 1)!k! .
This equation, together with the normalization con
tion (2), determines all theρijk . It is clear from this
equation thatuū states, labelled byi, are suppresse
relative todd̄ states, labelled byj . Summing over all
states, Zhang et al.[6] find d̄ − ū ≈ 0.124, remarkably
close to the experimental value of 0.118± 0.012[3].

ZZY determined parton distribution functions f
the proton by using a Monte Carlo simulation of t
distribution of momenta among then partons in each
Fock state. The phase space volumef F

n for n free par-
tons is determined by

(5)df F
n = δ4

(
P −

n∑
i=1

pi

)
n∏

i=1

d3pi

(2π)32Ei

,

with P andpi the 4-momenta of the proton and t
ith parton, respectively. The masses of the partons
neglected so thatEi = | �pi |, and

(6)df F
n = δ4

(
P −

n∑
i=1

pi

)
n∏

i=1

Ei dEi dΩi

2(2π)3
.

ZZY argue that this free parton phase space distr
tion should be multiplied by

∏
E−1

i because parton
with smaller momenta spend more time at the ce
of the proton where they are almost free; these par
are thus weighted with a higher probability. Thendfn,
the distribution for confined partons, is:

(7)dfn = δ4

(
P −

n∑
i=1

pi

)
n∏

i=1

dEi dΩi

2(2π)3
.

We have found that the effect of the weighting fac
is quite small, except for the very lowest and high
parton momenta.

From the Monte Carlo distribution of parton m
menta �pi , the parton distributions can be found
terms of the light cone variable Bjorken-x,

(8)xi = Ei − pzi

M
,

in which M is the proton mass. We used RAMB
[9] for our Monte Carlo event generator. Then for
n-parton state, for whichn = 3 + 2(i + j) + k, the
x-distributions forū andd̄ are

(9)ūijk(x) = fn(x)i, d̄ijk(x) = fn(x)j,

for u andd are

uijk(x) = fn(x)(2+ i),

(10)dijk(x) = fn(x)(1+ j),

and for the gluons is

(11)gijk(x) = fn(x)k.

Thus, we find, in accord with ZZY,

(12)ū(x) =
∑
i,j,k

ρijkūijk(x),

and corresponding equations ford̄(x), u(x), d(x) and
g(x), normalized so that

(13)

1∫
0

x
[
u(x) + d(x) + ū(x) + d̄(x) + g(x)

]
dx = 1.

The average number of partons in the proton,n̄, is
given by

n̄ =
1∫

0

[
u(x) + d(x) + ū(x) + d̄(x) + g(x)

]
dx

(14)≈ 5.6.

ZZY use the zeroth moment of their distributions
set the starting scaleµ0 ≈ Ē = M/n̄ ≈ 0.17 GeV for
Q2

0 = µ2
0. One might argue that it would be better

use the first and/or second moments, because of th
distributions’ divergence asx → 0, but their choice of
scale is irrelevant, because they did not evolve t
distributions. They note that the experimental data
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Fig. 1. Comparison of statistical model calculation with E866
perimental results[3] for d̄ − ū.

flavor asymmetry shows littleQ2-dependence. Th
Hermes results[4] at Q2 = 2.3 GeV2 are consisten
with the more precise E866 data[3] atQ2 = 54 GeV2.
ZZY point out that this can be understood because
vor asymmetry is due primarily to the non-perturbat
connection of “intrinsic” partons in the higher-ord
terms in the Fock state expansion to the leading
lence quark term. This non-perturbative connectio
Q2-independent, in contrast with theQ2-dependen
flavor symmetric generation of “extrinsic” partons
the lepton scattering process. The plot inFig. 1, which
reproduces ZZY’s results, shows that the experim
tally deducedd̄ − ū is fit qualitatively in this model,
but is low at smallx and high at largex. The discrep-
ancy with experiment shows up more starkly inFig. 2,
our plot of d̄(x)/ū(x). We find that these results a
changed very little if the phase space weighting fac∏

E−m
i are varied fromm = 1 to m = 3. Neverthe-

less, we believe that it is remarkable that such a sim
model does so well.

There are, of course, other explanations of the
cess ofd̄ over ū, which have been considered pr
viously, particularly the pion cloud[10–14] and ω

mesons[15]. The leading term in the Fock state e
pansion of the pion cloud model is a “bare” prot
which consists of valence quarks plusq̄q pairs due to
gluon splitting. It can be argued that this gluon sp
ting is what is being considered by ZZY and thus
perturbative sea in the “bare” proton should not
symmetric, i.e.,d̄ �= ū. The pion cloud, represented b
the higher-order terms in the expansion, would then
an additional effect. If this is the case, the pions m
have a larger role at highx where the fall-off of the ra-
Fig. 2. Comparison of statistical model calculation with E866
perimental results[3] for d̄/ū.

tio d̄/ū is not reproduced by the statistical model. W
will not pursue this argument further here.

2. Parton distributions in the pion

If the statistical model has some validity, then
should not only work for the proton, but also for th
pion. This distribution function is, in fact, require
in the pion cloud model. We have therefore inve
gated the valence and sea quark distributions for
π+ in the statistical model. The formulas are sim
lar to those for the proton, but because there is o
one valence quark of each flavor in theπ+, the sea is
flavor-symmetric.

We write the Fock state expansion for the pion a

(15)|π+〉 =
∑
i,j,k

cijk

∣∣{ud̄}{ijk}〉.
The analysis of Section1 is unchanged, except th
n = 2+ 2(i + j) + k, and the ratio of probabilities fo
different Fock states(4) is now

(16)
ρijk

ρ000
= 1

i!(i + 1)!j !(j + 1)!k! ,

so that theπ+ sea is symmetric, i.e.,̄u(x) = d(x). We
find n̄ = 4.7 in the pion.

The phase space distributionsfn(x) for the pion
are identical to those of the proton forn � 3. For the
2-parton state,f2(x) is a constant. We used the sam
weighting factor as for the proton,

∏
E−1

i , and again
found that our results were insensitive to the use of
weighting factor.



114 M. Alberg, E.M. Henley / Physics Letters B 611 (2005) 111–115

ese

-
i-

-
the

hed
tion.

ct
.
tion
ib-
nts

ib-
ng
s
ut
r

ent
ar-
ark
ns,

the
m

re-
rs of

r
er
th

s in
The quark distributions for a specificn-parton state
are

d̄ijk(x) = fn(x)(1+ j),

(17)uijk(x) = fn(x)(1+ i),

(18)ūijk(x) = fn(x)i, dijk(x) = fn(x)j,

and for the gluons is

(19)gijk(x) = fn(x)k.

The parton distributions are found by summing th
distribution functions over all values of{ijk}

(20)u(x) =
∑
i,j,k

ρijk uijk(x) = d̄(x),

(21)d(x) =
∑
i,j,k

ρijk dijk(x) = ū(x),

(22)g(x) =
∑
i,j,k

ρijk gijk(x).

The valence quark distribution function is

(23)v(x) = u(x) − ū(x) = d̄(x) − d(x).

Our results are shown inFig. 3. The valence quark dis
tributions are too high for largex because of the dom
nant contribution of then = 2, {ijk} = {000} state, the
leading term in the Fock expansion, for whichf2(x)

is a uniform distribution inx. The sea quark distrib
ution is flavor symmetric, as noted above. Unlike

Fig. 3. Our results for parton density distributionsxq(x) andxg(x)

for the pion. Solid curve: valence quark distribution; long-das
curve: sea quark distribution; short-dashed curve: gluon distribu
d̄ − ū or d̄/ū distributions of the proton, we expe
our valence quark distributions to beQ2-dependent
To compare to experiment, we carried out an evolu
in Q2. We determined the starting scale of our distr
utions by requiring that the first and second mome
of our valence quark distribution atQ2 = 4 GeV2 be
equal to those found by Sutton et al.[17]. This gave us
a starting scale ofQ2

0 = 1.96 GeV2. We used Miyama
and Kumano’s code BF1[18] for the DGLAP [19]
evolution. We compare our pion valence quark distr
ution with that obtained by E615 from pion scatteri
on tungsten[16] in Fig. 4. The dashed curve show
our results for the valence quark distributions, witho
any evolution, as inFig. 3. The solid curve shows ou
results evolved toQ2 = 16 GeV2 of the E615 experi-
ment. The agreement between theory and experim
is good. Other theoretical calculations of pion p
ton distribution functions have used constituent qu
models, the Nambu–Jona-Lasinio model, instanto
or the Dyson–Schwinger equations. Moments of
distributions can be calculated in lattice QCD, fro
which particular forms of the distributions can be
constructed. For references see the recent pape
Hecht, Roberts and Schmidt[20] and Detmold, Mel-
nitchouk and Thomas[21]. In Fig. 5 we compare ou
valence quark distribution to the Dyson–Schwing
calculation of Hecht et al. and to experiment. Bo

Fig. 4. Our calculation of the valence quark distributionxv(x) in the
pion, compared to the experimental results of Conway et al.[16].
The dashed curve shows our results without any evolution, a
Fig. 3, which correspond to a scale ofQ2

0 = 1.96 GeV2. The solid

curve shows our results evolved toQ2 = 16 GeV2 of the E615 ex-
periment.
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Fig. 5. Our results (solid curve) for the valence quark distribut
xv(x) in the pion, compared to the calculation of Hecht, Roberts
Schmidt[20] (dashed curve) and the experimental results of Con
et al.[16]. Both calculations were evolved toQ2 = 16 GeV2 of the
E615 experiment.

distributions were evolved toQ2 = 16 GeV2. We find
it remarkable that our simple statistical model agr
with experiment as well as the covariant, QCD-ba
model.

3. Conclusions

The calculation of parton distribution functions
an important goal of non-perturbative QCD. We ha
used the statistical model of Zhang et al., develo
for the calculation of parton distribution functions
the proton, to calculate the parton distribution fun
tions of the pion. We find that this simple model, w
no free parameters, is in good agreement with exp
ment and other calculations.
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