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We introduce the notion of generic examples as a unifying principle for various phenomena 
in computer science such as initial structures in the area of abstract data types, and Armstrong 
relations in the area of data bases. Generic examples are also useful in defining the semantics 
of logic programming, in the formal theory of program testing and in complexity theory. We 
characterize initial structures in terms of their genericity properties and give a syntactic 
characterization of first-order theories admitting initial structures. The latter can be used to 
explain why Horn formulas have gained such a predominant role in various areas of computer 
science. d: 1987 Academic Press, Inc. 

Verification by example has always been an alternative to formal deduction. 
Historically, in mathematics, it usually also preceded the development of formal 
deduction methods. The Babylonians “knew” that (x + y)’ = x2 + 2xy +y2 but they 
did not have a notational system which allowed them to carry out a formal, i.e., 
algebraic, proof. Instead they wrote (3 + 5)* = 3* + 2 x 3 x 5 + 52, from which they 
immediately concluded all the other instances of the general formula. The choice of 
the particular instance x = 3, ,v = 5 is important here. It is clear why x = 1, y = 2 
would confuse the matter, and we informally describe an appropriate choice of an 
instance as finding a “generic” example. The art of linding “generic” examples has 
been pushed to the extreme in Euclidean plane geometry, where we convince our- 
selves of many theorems by just drawing one picture of a non-degenerate case. The 
class of problems where this is possible, incidentally, has also a decision procedure 
which is much faster than the general decision procedure for Euclidean geometry, 
due to Wu [Wu83]. The generalization of this approach to other areas of reason- 
ing is usually highly non-trivial. In algebraic geometry, for example, a satisfactory 
definition of “generic points” was only found in this century. 

In computer science one is often concerned with the specification and analysis of 
algorithms and programs. Methods for formal specification and verification of 
programs have been developed intensively without leaving too much impact on the 
practical programmers. They are all very much in the spirit of formal deduction. 
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The use of “generic” examples can be observed occasionally with various degrees of 
explicitness. Strassen [Str74] and his school have used the generic points of 
algebraic geometry with considerable success to obtain results in algebraic com- 
plexity theory. Recent work in the mathematical foundation of program testing, as 
presented in the survey edited by Chandrasekaran and Radicchi [CR81], focuses 
on various notions of “generic” input (see also [DW83]). In data base theory 
Armstrong has introduced a kind of “generic” relation for functional dependencies 
and Fagin has investigated the possibilities of generalizing this for implicational 
dependencies [Fa82]. In [DS78] some notion of “genericity” is explored for formal 
evaluation and automated theorem proving. Last, but not least, there is Zloof’s 
approach to data base query languages where queries are specified by giving 
“generic” examples, an approach he most recently generalized to operate on more 
complex systems in office automation [Z182]. It is not surprising that specification 
and verification by example is more appealing to the computer engineer than for- 
mal deduction; a look at Euclidean geometry can be revealing again. People 
involved in surveying and drawing plans, in general, have very little use for formal 
deduction Euclidean style, but are very much aware of the role of the “generic” 
non-degenerate configuration. 

The purpose of this paper is to introduce some variation of notions of 
“genericity” which arise in abstract specification of data structures, in relational 
data bases and in logic programming. What these three areas of computer science 
have in common is the use of first-order logic as its basic specification language. In 
each of these areas Horn formulas play an important role. In algebraic specification 
of abstract data structures one first used pure equational logic with the semantics of 
initial structures as a specification language (hence algebraic) and later felt the need 
to extend this to conditional equations which are universal Horn formulas without 
relation symbols. In relational data bases various ad hoc specification languages 
where introduced, such as the arrow notation between finite sets of attribute names, 
to express functional and multivalued dependencies, but it was soon realized by 
Fagin, Beeri, and others, that implicational dependencies, which are Horn formulas 
without function symbols, could capture all the previously considered cases. In logic 
programming Horn formulas are used both as a specification and a programming 
language because, as Kowalski put it, they allow a procedural interpretation. 

Various attempts exist in the literature to explain why Horn formulas are the 
right class of formulas to be used in the respective contexts. Mahr and Makowsky 
[MM831 prove that under certain assumptions for the semantics of algebraic 
specifications (i.e., the existence of initial-term models) conditional equations form 
the largest specification language satisfying these assumptions. This result appears 
here, in a slightly modified version, as Theorem 3.9. Makowsky and Vardi [MV84] 
characterize various classes of data base dependencies in terms of preservation 
properties under operations on relations which come from data manipulation. In 
logic programming it was shown by Andreka and Nemeti [AN75], and indepen- 
dently, by Tarnlund [Tarn771 that Horn logic is enough to program every recur- 
sive function, a result, stated in slightly different form in a different context, proven 
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already by Aanderaa and independently by Borger; for an excellent survey see 
[Bo84]. Note, however, that the result is already implicit in Turing’s original 
papers, though Turing himself seemed to reject proof sequences as a computational 
model. The same result is also buried in [SH61], were a proof of Church’s theorem 
is given which uses only universal Horn formulas, though the concept of Horn for- 
mulas does not appear in the book. 

Our main result in this paper is a characterization of Horn formulas in terms of 
the existence of 3 +-generic structures. It simultaneously extends and unifies the 
results of [MM83], [Ma84], and [VM84] and remedies the objections raised to 
[MM831 by Tarlecki. It states that a first-order theory T admits initial 
(=I+-generic) models iff there is a set of definable partial functions such that 
adding those functions to the vocabulary of T gives us a theory T, which is 
equivalent to a universal Horn theory. Additionally, if T is finite, this set of 
definable partial functions can be chosen to be finite, too. The significance of this 
result for database theory and logic programming will be discussed in Section 7. 

In detail the paper is organized as follows: In Section 1 we characterize 
propositional Horn formulas via the existence of generic assignments, a simple 
result which seems new and is needed for our further investigations. 

In Section 2 we introduce A-genericity and 3 +-genericity and relate these 
definitions to initiality. We prove a basic definability theorem for initial models; we 
characterize initial-term models as A-generic models and initial models as 
3 +-generic pseudo-term models. 

In Section 3 we characterize first-order theories which admit initial-term models 
as the universal Horn theories. This theorem was already proved in [MM83], but 
here we present a different proof based on the results of Section 1 and therefore 
avoid the difficulties arising from the application of a theorem of Mal’cev, as in 
[MM83]. 

In Section 4 we establish the intersection property of first-order theories 
admitting 3 +-generic structures and review some classical model theoretic results 
on first-order theories with the intersection property. From this we get that theories 
admitting 3 +-generic models can always be axiomatized by universal-existential 
sentences. 

In Section 5 we apply a theorem of Rabin [Ra60], which characterizes first-order 
theories with the intersection property, to obtain our main result. We show that a 
first-order theory admits initial models iff it is a partially functional El-Horn 
theory. 

In Section 6 we discuss briefly an application of our main theorem to the 
simultaneous solvability of systems of equations and inequations. In Section 7, 
finally, we discuss the relevance of these characterizations for the working computer 
scientist and directions of further research. 
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1. CHARACTERIZING PROPOSITIONAL HORN FORMULAS 

In this section we introduce generic assignments for propositional logic and 
characterize propositional Horn formulas as the largest class of propositional for- 
mulas (up to logical equivalence) which admits generic assignments (Theorem 1.9). 
The main purpose of this section is to introduce the reader to the concepts of 
generic assignment, admitting generic assignments, and the type of reasoning which 
underlies the rest of the paper. We assume that the material presented in this sec- 
tion was well known among many logicians. At least Weisspfenning convinced me, 
after having read the manuscript, that he taught similar material in his logic courses 
in Heidelberg, at least since 1975. 

1.1. DEFINITIONS. Let p,, p2 ,..., pn ,... be propositional variables. A literal is a 
propositional variable pi or a negated propositional variable ipi. A clause is a 
(finite) disjunction of literals. A Horn clause is a clause with at most one non- 
negated literal. We also write Horn clauses in the form p, A pz A ... A pn + q, 
where q is either a propositional variable or the symbol false. 

Since every formula of propositional logic can be written in conjunctive normal 
form, every such formula is equivalent to a set of clauses. A propositional Horn for- 
mula is a (finite) conjunction of Horn clauses. 

1.2. DEFINITION. Let V be the set of propositional variables. A function 
z: V-t (0, 1) is called an eoaluation function or assignment. If 4 is a formula of 
propositional logic we define 4 (z ) inductively as 

(i) p,(z) = z(p,), false(z) = 0. 

(ii) If 4 is #1 A c,& then b(z) =min(b,(z), &(z)). 
(iii) If ~+4 is ~$i v & then d(z) =max(b,(z), &(z)). 
(iv) If 4 is -I$ then 4(z) = 1 -$(z). 
(v) If C is a set of propositional formulas we put C(z) =min,.z(~(z)}. 

1.3. DEFINITIONS. A formula 4 of propositional logic is 

(i) satisfiable if there is an assignment z such that 4(z) = 1. 
(ii) valid if for every assignment z, 4(z) = 1. 

A set C of formulas of propositional logic is 
(iii) satisfiable if there is an assignment z such that 4(z) = 1 for every 4 E C, 

or equivalently, if there is an assignment z such that C(z) = 1. 
(iv) A formula 4 is a consequence of a set of formulas Z if for every 

assignment z such that G(z) = 1 we also have 4(z) = 1. We write Z + 4 if +4 is a 
consequence of C. 
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(v) Let C,, Z, be two sets of propositional formulas. We write Z, + C, if 
C, /= 4 for every 4 E C2. We say that C, and Z, are equivalent, if both Z, + Z, and 
2, I= Cl. 

The next definition introduces the central notion of this paper. 

1.4. DEFINITIONS. Let C be a set of propositional formulas. 

(i) Let z be an assignment. We say that z is generic for C if C(z) = 1 and 
z(pi) = 1 iff ,Y b pi. In other words, z makes .Z true by giving only those variables 
the value 1 for which also all other assignments z’ with Z(z’) = 1 give the value 1. 

(ii) Let zi, iE Z, be a set of assignments. We define nie,zi to be the 
assignment z with z(p,) = min,, , z,(p,). 

(iii) Let zmin,= the assignment fizCz) =, z. 

1.5. EXAMPLES. (i) The formula p, A p2 has a generic assignment with z(p,) = 
z(p2) = 1. The generic assignment is the assignment Z,in,p, A pz. 

(ii) The formula p, v p2 has no generic assignment since neither pi nor p2 are 
consequences of p, v p2. 

The following is immediate from the definitions: 

or 
on~6ge~e~,O~~~~n~~nt. F 

every set of propositional formulas .Z there is at most . 

(ii) If a set C of propositional formulas has a generic assignment then it is 
equal t0 Z,in,Z. 

(iii) Let C be a set of Horn clauses. Then Z is satisfiable iff there is a generic 
assignment for C (which, by (ii) is equivalent to Z(Z,,,~~,~) = 1). 

Sketch of Proof: (i) and (ii) follow from the definition. (iii) follows easily from 
the fact that unit resolution is complete for testing satisfiability of Horn clauses, as 
shown by Henschen and Wos in [HW74]. 1 

1.7. DEFINITION. Let Z be a set of propositional formulas. We say that Z admits 
generic assignments if for every set A of non-negated literals either Cv A is not 
satisfiable or .E u A has a generic assignment. Note that a non-negated literal which 
appears in A may appear negated in Z. 

The next examples illustrate the difference between having a generic assignment 
and admitting a generic assignment. The difference resembles certain robustness 
assumptions in topology or statistics: A set of propositional formulas Z may have a 
generic assignment quite accidentally. If Z admits a generic assignment we require 
that Z has generic assignments in every extension of 2 by sets of atomic formulas A. 
The set A plays here the role of a neighborhood. 
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1.8. EXAMPLES. (i) By the above theorem every set C of Horn formulas admits 
generic assignments. 

(ii) Let 4 =pr v p2 v 1p3. Clearly z - 0 is a generic assignment for 4 and ~5 
is not a Horn formula. To see that 4 does not admit generic assignments we look at 
A = { p3}. The only candidate for a generic assignment for 4 A p3 is z’ defined by 
z’(p,) = z’(pZ) = 0 and z’(p3) = 1. But we easily verify that 4 A p3(z’) =O. 

The following theorem characterizes propositional Horn formulas in terms of 
generic assignments: 

1.9. THEOREM. Let C be a set of propositional formulas. Then Z admits generic 
assignments iff C is equivalent to the set Z:, of Horn formulas 9 such that C t= 8. 

Proof. Clearly, if Z, is equivalent to Z, for every assignment z, Z(z) = C,(z). 
So Z admits generic assignments iff C, does. But the latter is a set of Horn for- 
mulas and we can apply Theorem 1.6. 

Conversely, let 2 admit generic assignments and let 4 E C be such that 4 4 C,. So 
4 is not a Horn clause. We can assume 4 = p, v p2 v “.p,, v C, where C is a 
clause containing only negated literals. 

Without loss of generality we can assume that (1): for no i = l,..., n we have that 
Z’~pi.Forotherwise,ifZt=pp,,say,thenZu~+pp,vp3v ... vp,vC. 

We now put A = (pi: ipi~ C}. 

Claim. C u A has no generic assignment. 

Assume, for contradiction, that z is a generic assignment for ,IZ u A. So A (z) = 1 
and d(z) = 1. By (1) and Definition 1.4, we get that p,(z) = 0 for every i= l,..., n. 
From this we conclude that 4(z) = 0, a contradiction. 1 

1.10. INTERPRETATION. We can think of non-negated literals as facts and of 
Horn clauses as rules. A generic assignment then corresponds to a world where only 
those assertions are true which are either facts or follow from the facts by 
application of the rules. This is nothing else than the closed world assumption as 
introduced in [Re78]. The requirement that C admits generic assignments can be 
viewed as a robustness requirement: The existence of generic assignments is not 
affected by a change of the facts, though the nature of the generic assignment is. 

The purpose of the rest of this paper is to explore how Theorem 1.9 has to be 
generalized to first-order logic and what one can learn from this generalization. 
Two important points became apparent already in the discussion of propositional 
logic: The distinction between having and admitting generic assignments and the 
equivalence of generic assignments for Z and the minimal assignment zmin,=. These 
points will reappear in Sections 2 and 4, respectively. 
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2. INITIAL MODELS AND GENERICITY 

In this section we introduce various notions which are analogs to the generic and 
minimal assignments introduced in the previous section. Many of the complications 
encountered in this and the following sections stem from the fact that we allow both 
function and relation symbols to occur in the vocabulary of first-order formulas. As 
is well known, functions can be looked at as special cases of relations (and vice 
versa). We have to be careful in the choice of definitions to make them invariant 
under the translation between functions and relations. In the absence of relations 
the evolving picture is much simpler and is described completely in Section 3. Sec- 
tions 4 and 5 treat the case where relations are also allowed. 

Let us first recall some standard definitions. From this section on we deal with 
first-order languages with equality. Vocabularies ( = similarity types) are allowed to 
be many-sorted and may include function symbols, relation symbols, and constant 
symbols. Vocabularies are denoted by r, a. A z-structure A is a collection of univer- 
ses ( = sets) A i ,..., A,, for each sort in z one universe, together with interpretations 
for all the function, relation, and constant symbols in T. z-terms, atomic formulas, 
and z-formulas are defined as usual. If T is a set of z-formulas, 4 is a z-formula, and 
A is a t-structure, we write A + T if the universal closure of all the formulas 4 E T 
is true in A. We write T l= C$ if, in every r-structure A such that A l= T, we also 
have A + 4. We call sets of t-formulas theories and formulas without free variables 
also z-sentences. We call r-structures also models and denote by Mod(T) the class of 
r-structures A such that A + T. We write often t for a sequence of terms t, , f2,..., t, 
and 3X (VX) instead of 3x,, 3x, ,..., 3x, (Vx,, Vx, ,..., Vx,). 

A r-formula is universal (existential) if its prenex normal form is a formula with 
universal (existential) quantifiers only. We then speak of V-formulas and g-for- 
mulas, respectively. A T-formula is an V3-formula if its prenex normal form is a for- 
mula whose quantifier string is a string of universal quantifiers followed by a string 
of existential quantifiers. 

A first-order clause is a quantifier-free formula which is a disjunction of atomic or 
negated atomic formulas (literals) possibly containing the constant false. A (first- 
order) Horn clause is a clause with at most one non-negated literal. The Horn 
clause is strict if it contains at least one negated literal. A Horn formula is a formula 
in prenex normal form whose quantifier-free part is a conjunction of first-order 
Horn clauses. A strict Horn formula is a Horn formula whose quantifier-free part 
consists of a conjunction of strict Horn clauses. 

Let r, r’ be a vocabularies such that r c t’ and A be a r-structure. A ?-structure 
B is an expansion of A (A is the restriction of B) if for every sort in z, A and B have 
the same universes and for every relation, function, and constant symbol in T their 
respective interpretations in A and B are the same. 

2.1. DEFINITIONS. (i) Let K be a class of z-structures closed under 
isomorphisms and A E K. We say that A is initial in K (is an initial model for K) if 
for every structure B E K there is a unique homomorphism h,: A + B. 
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(ii) If K is of h f t e orm Mod(T), where T is some first-order theory, we also 
say that A is initial for T. 

(iii) A r-structure A is a term model (reachable model) if for every a E A there 
is a o-term t such that its interpretation A(t) in A is the element a. 

(iv) A is a prime model for K, if for every BE K there is an embedding 
h: A --+ B. 

(v) A is an initial (prime) term model for K if it is both an initial (prime) 
model for K and a term model. 

2.2. Remarks. (i) If A is initial for some K then A is rigid, i.e., there are no 
non-trivial automorphisms of A. 

(ii) If K has, up to isomorphisms, exactly one term model A then A is both 
initial and prime. 

(iii) Every prime term model A in K is also an initial term model, but not 
conversely. 

Prime models were introduced in model theory by Robinsons [Rob631 generaliz- 
ing the algebraic concept of a primefield. Initial objects originate in category theory 
generalizing the concept of free groups. The main difference between the two con- 
sists in the class of morphisms; in model theory one deals mainly with embeddings 
whereas in category theory one prefers homomorphisms. In computer science initial 
structures are introduced by the ADJ-group in the context of algebraic 
specifications of abstract data types in [ADJ75]. 

2.3. EXAMPLES. (i) Let f,,, consist of one unary function symbol f and one 
constant symbol c. The z,,,- structure (N, successor, 0) is an initial term model 
among all the z,,~- structures. It is not a prime model. 

(ii) Let bel consist of one binary relation symbol R and one constant sym- 
bol c. Let Tsucre, be the t,,,,,,- sentence asserting that R is the graph of a total 
function. (N, successorrelation, 0) is an initial model among all the t,,crel- 
structures satisfying Tsucrel, but it is neither a term model nor a prime model. Note 
that Lcrel has been obtained from the previous example by translating the function 
symbol into a relation symbol. 

(iii) Let rPeano consist of one unary function symbol f, two binary function 
symbols A, M, one binary relation symbol R, and one constant symbol c. Let 
T Peano be the usual Peano axioms for zp,,,,. The z,,,,,-structure (N, successor, + , 
*, <, 0) is an initial term model for T,,,,, which is also a prime model. 

(iv) Let TP(inf) consist of one unary function symbol f, two binary function 
symbols A, M, one binary relation symbol R, and two constant symbols c, d. Let 
TP(inf) be the usual Peano axioms for tp,,,, augmented by the set of atomic senten- 
ces f”(c) < d. The models of TPCinfj are non-standard models of TPeano. Their struc- 
ture is rather complex, cf. Smorynski’s survey [Sm84]. TPCinTj has no initial model, 
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no prime model and no term model. Note that we obtained Tp(inT) from TPrano by 
adding only atomic sentences. Note that in the non-standard models of TPeano the 
first-order induction scheme is still true, though second-order induction is false. The 
standard model of TPeano is the only model of TPeano in which “true” induction 
holds. 

tv) Let Tdense consist of one binary relation symbol R, and two constant 
symbols c, d. Let T,,,,, be the Set of r&nse- sentences which assert that R, is a linear 
dense ordering with c the first and d the last element. Tdense has a prime model, the 
rational interval [0, l] with the natural ordering, but no term model nor an initial 
model, since the rational interval is not rigid. 

Next we introduce the concept of generic structures for first-order theories and 
relate it to initial structures. 

2.4. DEFINITIONS. Let K be a class of r-structures closed under isomorphisms 
and A E K. Let C be a set of first-order sentences (i.e., formulas without free 
variables). 

(i) We say that A is generic in Kfor C if for every 4 E C we have that A k 4 
iff for every BEK we have that B k 4. 

(ii) If C is the set of atomic r-formulas we say A-generic instead of generic 
for C. 

(iii) Let 3 + be the set of r-formulas of the form 3X A :=, $i with each di an 

atomic formula and 3 be the set of r-formulas of the form 3X+(X) with $ quantifier- 
free. 

(iv) If C is the set of 3 +-sentences we say 3 +-generic instead of generic for 2. 

2.5. Remarks. (i) If Z, c .Z and A, is C-generic then A is also ,X,-generic. 
(ii) If A is prime for K then A is A-generic. 
(iii) If A is a A-generic term model then A is an initial-term model. 

2.6. EXAMPLES. (i) The ~~~~~ structure (N, successor, 0) is Cl +-generic in the 
class of all T,,, -structures. (N, successor, 0) is actually generic for all r,,,-sentences. 

(ii) Let T be any vocabulary containing only function symbols and at least 
one constant symbol for each sort. Let F, be the free-term structure for T, i.e., the 
structure consisting of all r-terms with the natural interpretation of all the symbols. 
F, is generic in the class of all r-structures for all r-sentences. 

(iii) We call a r-theory complete if T has a model and for every r-sentence ~,4 
either T /= 4 or T k 14. If T is a complete theory then every model of T is generic 
for the set of r-sentences. 

(iv) Let Tdense and Tdense be as in Example 2.3(v) and let T,in be the rdense- 
sentence asserting that R, is a linear ordering with c as its first and d as its last 
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element. The rdense- structure ([0, 11, <, 0, 1) is generic in Mod(T,,,,,) for C, the 
set of all r&se- sentences, since T,,,, is a complete theory. ([0, 11, <, 0, 1) is 
A-generic in MOd(T,i”) but not 3+-generic. The structure (10, 1 }, <, 0, 1) is 
3 +-generic in Mod( T,i”). 

(v 1 Let ~peano and Tpeano be as in Example 2.3(iii). The structure 
(IV, successor, + , *, <, 0) is 3 +-generic in Mod( TPeano), but not generic for all 
z,,,,,-sentences, by Godel’s incompleteness theorem. 

2.7. THEOREM (3 +-genericity). Let K be a class of z-structures closed under 
isomorphisms and A, be initial for K. Then A, is 3 +-generic. 

Proof Let 3.@(Z) be a r-sentence with 4 a conjunction of atomic formulas. We 
have to show that A, k 3X#(X) iff for every BEK we have that B l= 3@(Z). 
Assume, for contradiction, there is BE K with B + VZ 14(X). Since A, is initial 
there is a homomorphism h: A, + B. Let 8 E A, be such that A, b d(G) and 6 E B be 
the image of 6 under h. Since h is a homomorphism B + d(6), a contradiction. The 
other direction is trivial. 1 

2.8. COROLLARY. Let K be a class of T-structures closed under isomorphisms and 
A E K. Then A is an initial term model for K iff A is an A-generic term model. 

Proof Use Remarks 2.5(i), (iii), and Theorem 2.7. 1 

2.9. DEFINITIONS. Let T be a set of r-sentences, let A be a r-structure and a E A 
be an element of the universe of A. 

(i) a is definable ouer A if there is a z-formula 4,(x) with x the only free 
variable of 4 such that A k da(a) and if A + d,(b) for any b E A then A t= a = b. 
We call 4, the defining formula of a. 

(ii) a is 3 +-definable (j-definable, atomically definable) over A if a is 
definable over A and the defining formula is an 3 +-formula (Sformula, conjunction 
of atomic formulas). 

(iii) a is definable over T if there is a z-formula g),(x) with x the only free 
variable of 4, such that A + r$Ja) and T + Vx Vy (#Jx) A' d,(y) + x = y). 

(iv) a is 3 +-definable (I-definable, atomically definable) over T if a is 
definable over T and the defining formula is an 3 + -formula (Y-formula, conjunction 
of atomic formulas). 

(v) We say that A k T is a pseudo-term model (El-term model) of T if every 
element a E A is 3 +-definable @-definable) over T. 

Note that if an element a is definable over T, then it has a definition 4(x), which 
is only a definition (i.e., has a unique element satisfying 4) among models of T. By 
the compactness of first-order logic there is a finite subset T, of T, such that C$ is 
already a definition over T,. If A is a pseudo-term model of T, every element a of A 

511/34/2-3.9 
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is definable over some finite T,, but if A is infinite, it may well happen that for no 
finite T* c T is it the case that A is a pseudo-term model of T*. 

2.10. EXAMPLES. (i) In a term model every element is atomically definable. 
(ii) Let A be a r-structure which is a term model. Let r,,, be obtained from r 

by replacing every n-ary function symbol by an n + l-ary relation symbol and Are, 
be the r,,,-structure obtained from A by the natural interpretation of the relation 
symbols. Then A,,, is a pseudo-term model. 

(iii) Let Calg be the field of algebraic numbers. The definable elements of C,,, 
are exactly the rational numbers. An algebraic irrational number a is only weakly 
definable in the sense that there is an atomic formula 4(x) such that Calg + #(a) 
and only finitely many other elements b E Calg also satisfy Calg k b(b). 

(iv) Let Ralg be the field of real algebraic numbers. It is easy to see that Ralg 
is not a term model. The atomically definable elements of Ralg are again the rational 
numbers. Using the fact that the positive numbers x are exactly the numbers satisfy- 
ing 3y(x2 = y) it is easily verified that Ralg is a pseudo-term model. 

(v) Let A be a r-structure which is a pseudo-term model. One would 
naturally ask whether we can find new functions fi (i E I) on A such that (A, fi),, , 
is a term model. Example (iv) shows that this is not the case. However, if we allow 
the fi to be partial functions then the answer is yes. 

Note that we could transform the above example trivially into a term model by 
adding (infinitely many) constants. The advantage of adding partial functions lies in 
the possibility of adding only one such function of arity n + 3 for all polynomials of 
degree n whose value gives the smallest root of that polynomial in a given open 
interval, provided it exists. In this case the domain of this function is definable by a 
quantifierfree formula, as one can see from a constructive version of a special case 
of Sturm’s theorem (cf. [KK66, Chap. 41). 

The following theorem shows that in an initial model of a theory T is always a 
pseudo-term model. In the proof we make use of the method of diagrams, so we 
need two more definitions. 

2.11. DEFINITIONS. Let A be a z-structure and let t,, be the vocabulary obtained 
from r by adding a new constant symbol c, for every a~ A. 

(i) The atomic diagram D,, is the set of r,-atomic sentences true in A when 
every constant symbol c, is interpreted by a. 

(ii) The negatioe diagram DA is the set of negated r,-atomic sentences true in 
A when every constant symbol c, is interpreted by a. 

2.12. THEOREM (3 +-definability). Let T be a first-order theory and let A, be an 
initial model of T. Then every a E A is definable over T by a 3 +-formula 4,. In other 
words A, is a pseudo-term model. 
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Proof. Let A, be the initial model of T and a0 E A. For every a~ A let a be a 
constant symbol whose interpretation in A, is a. Let D, be the atomic diagram of 
A, and D,. the result of replacing every constant symbol a of D, by a’. 

Claim. Tu D, u D,, u (a0 #a;) is inconsistent. 

For otherwise, let B be a model of it. So B k T. We now define two 
homomorphisms f and f’ from A, to B, herewith contradicting the initiality of A,. 
Put f(a)= aB and f’(a)=afB. Since B j= D, uD,, this clearly defines 
homomorphisms. Since B t= a, # a; we clearly have f # f’. Therefore we conclude 
that 

TuD,uD,, k a,=ab. 

Now we use compactness to find a finite set of atomic formulas A,, A, ,..., A, and 
constant symbols ao, a, ,..., an, ab, a’, ,..., a; such that 

T+ i A,(a,,P)r\ 1;\ Ai(a&a’)-+ao=ab, 
i=O i=o 

where I = (al ,..., an), and a’ = (a; ,..., a;). Now put 

qh,, = 3x,, x2 ,..., x,, x;, x; ,..., x:, ; (Ai A’ Ai(x 
i=o 

Clearly 4, is the required formula. 1 

We now are in a position to characterize initial models as pseudo-term models 
which are 3 +-generic. 

2.13. THEOREM. Let T be a first-order theory and let A be a model of T, Then A 
is initial (for T) iff A is a 3 +-generic pseudo-term model. 

Proof. Assume A is initial. So, by Theorem 2.12, A is a pseudo-term model and, 
by Theorem 2.7, A is !I+-generic. So assume that A is a 3+-generic pseudo-term 
model, and let B be an arbitrary model of T. We define a unique homomorphism 
A + B in the following way: For every a E A and let dU(x) be the 3 +-formula which 
defines a over T. So A + 3!x$,(x). Since A is 3 +-generic also B + 3!x#,(x). Let 
b E B such that B b 4,(b). So we put h(u) = b. 1 

3. CHARACTERIZING FIRST-ORDER THEORIES 
WHICH ADMIT INITIAL TERM MODELS 

In this section we characterize first-order theories which admit initial-term 
models. Such a characterization was first given in [MM83], based on a theorem 
due to Mal’cev [Ma156]. In [Ma1561 there is a minor mistake as pointed out by 
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[Mo59], which propagated into [MM831 in as far as one had to assume that 
every first-order theory admitting initial-term models also has a trivial model. In 
this section we reprove the main result of [MM83], based on the characterization 
of propositional Horn formulas as presented in Section 1. A proof of the same 
theorem using a modified version of Mal’cev’s theorem was also given by Tarlecki 
[Tar84]. We first give the first-order version of a set of sentences admitting initial 
models. 

3.1. DEFINITIONS. Let K be a class of r-structures closed under isomorphisms. 

(i) We say that K admits initial-term models if for every Q and for every set A 
of atomic (variable free) o-sentences either A has no model in K or K n Mod(A) has 
an initial-term model (i.e., there is an initial-term model in K which satisfies A). 

(ii) We say that K strongly admits term models if for every cr and for every set 
A of atomic or negated atomic (variable-free) a-sentences either A has no model in K 
or there is an initial-term model in K which satisfies A. 

Note. In (i) and (ii) the sentences in A may contain relation, function, or con- 
stant symbols not occuring in t. 

(iii) We say that K is closed under substructures if whenever A E K and B c A 
is a substructure of A then BE K. 

(iv) Let T be a first-order theory. We ay that T is preserved under substruc- 
tures if whenever A /= T and B c A is a substructure of A then B b T. 

We first show that classes of structures admitting initial-term models are closed 
under substructures. This theorem was inspired by [Ma1561 and first stated in 
[MM83]. 

3.2. THEOREM (Mahr and Makowsky). Let K be a class of z-structures closed 
under isomorphisms. 

(i) If K strongly admits term models, then K is closed under substructures. 

(ii) rf K admits initial term models, then K is closed under substructures. 

Proof (i) Let A E K and B c A. Put A = D, to be the atomic diagram of B and 
put A- to be the negated atomic diagram of B. Clearly A can be expanded to a 
model of A u A- and AEK so Au A- has a term model BO in K. 

Claim. B = B, . 

We have that B c B, since B, is a model of A u A - and B = B, since B, is a term 
model. 

To prove (ii) we replace A u A- by A. The proof is essentially the same, except to 
show that B, c B in the claim we have to use that B, is an initial term model, and 
therefore, by Theorem 2.8, an A-generic model of A and therefore B, l= A-. 1 
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Classes of structures closed under isomorphisms and substructures were charac- 
terized by Tarski [Ta52]. 

3.3. THEOREM (Tarski). Let T be a first-order theory which is preserved under 
substructures. Then T is equivalent to a universal theory TV. Additionally, if T is finite 
so is TV. 

3.4. COROLLARY. Let T be a first-order theory. 

(i) If T strongly admits term models, then T is equivalent to a universal 
theory TV. 

(ii) If T admits initial term models, then T is equivalent to a universal 
theory TV. 

Additionally, in both cases, if T is finite so is TV. 

Proof Immediate from Theorems 3.2 and 3.3. 1 

The next theorem characterizes first-order theories which admit initial-term 
models. A similar theorem was proved in [MM83], but there the proof was based 
on a theorem due to Mal’cev [Ma56], which led to confusion, due to an oversight 
in [Ma156], pointed out in [Mo59]. The proof here is based on the same idea as 
the proof of Theorem 1.9 and is self-contained. 

3.5. THEOREM. Let T be a first-order theory which admits initial-term models. 
Then T is equivalent to a universal Horn theory Tn. Additionally, if T is finite so 
is Tn. 

Proof Since T admits a term model, T is equivalent to a universal theory TV, 
by Corollary 3.4. Now let T, be the set of all universal Horn sentences $ such that 
Tl= 4. 

Claim. TH is equivalent to TV. 

Assume, for contradiction, that there is VX$ E TV such that T, u (3X 1 tj} has a 
model. W.1.o.g. $ is a clause of the form 

J/(X)= A,(,%) v .*. v A&?) v lA,+,(i) v ... v lA,(Z) 

with k > 2. Let I,Q~ be obtained from + by omitting Ai( W.1.o.g. we can assume 
that tj is minimal, i.e., for no tji do we have that T + J/i. Let X = (x1,..., x,) and let 
c= (c,, t-z,..., c,) be new constant symbols. Let A be (Ak+ 1(C),..., A,(E)}. 

Clearly, TH u (3X l$} u A has a model. (1) 

Subclaim 1. Tu A has a model. Assume, for contradiction, that this is not true. 
So we have T + VX -IA~+~(X) v ..* v iA,( But VZ TA~+~(X) v ... v 
1 A,(Z) is a universal Horn formula, so VX 1 Ak+ 1(X) v .. v 1 A,(.%) is in T,, 
which contradicts ( 1). 
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Subclaim 2. Tu A has no initial-term model. Assume, for contradiction, that A 
is an initial-term model for T u A. By Theorem 2.8, A is A-generic. Since we have 
chosen tj to be minimal, for no i= O,..., k do we have that T + Ai( So, by the 
A-genericity of A we have that 

A /= TA,(F)A ... A l/&(C). 

But we also have that A b II/ and A /= A, so we get 

(21 

A b A,(E)v ... v Ak(C) (3) 

But clearly, (2) and (3) are a contradiction. We conclude therefore that k 6 1 and 
that T is equivalent to T,. If, additionally, T is finite, a standard compactness 
argument gives that T, can be chosen to be finite, too. 1 

3.6. DEFINITIONS. Let K be a class of r-structures closed under isomorphisms. 

(i) We say that K is closed under products if whenever A, E K (i E 1) is a family 
of s-structures then nj,, Ajc K. 

(ii) Let T be a first-order theory. We say that T is preserved under products if 
whenever Ai + T (iE I) is a family of z-structures then nisi Ai + T. 

The following characterization of universal Horn formulas is due to McKinsey 
[McK43]. 

3.7. THEOREM (McKinsey). A first-order theory T is equivalent to a universal 
Horn theory ifs T is closed under products and substructures. 

We can now give an easy proof of the fact that every universal Horn theory 
admits initial term models. 

3.8. THEOREM. Let T be a universal Horn theory (over a vocabulary z containing 
at least one constant symbol). Then T admits initial-term models. 

Proof We first show that T has an initial-term model. By Corollary 2.8 it suf- 
fices to show that T has an A-generic-term model. Let Ai (ic I) be a list of all the 
atomic sentences which are not consequences of T and let Ai be a model of 
Tu { 1 Ai}. Put B = nie, Ai. Since T is a universal Horn theory, by Theorem 3.7, 
B l= T. By the definition of the product B /= 1 A, for every i E I. Now let B. be the 
term submodel of B. Since T is a universal theory, by Theorem 3.3, B, l= T and, 
since 1 Ai is quantilier-free, B. k 1 Ai for every i E Z. Therefore B, is an A-generic- 
term model of T. 

To see that T admits initial-term models it suflices to observe that for every set of 
atomic sentences A and every universal Horn theory T the theory T u A is again a 
universal Horn theory. 1 

We can now collect the results of this section into one theorem. 
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3.9. THEOREM. For a first-order theory T the following are equivalent: 

(i) T admits initial-term models; 

(ii) T is preserved under products and substructures; 

(iii) T is equivalent to a universal Horn theory. 

Proof (i) -+ (ii) Use Theorems 3.5, 3.7, and 3.8. 
(ii) + (iii) This is Theorem 3.7. 
(iii) + (i) This is Theorem 3.8. 1 

4. FIRST-ORDER THEORIES WITH THE INTERSECTION PROPERTY 

In this section we show that first-order theories admitting initial models have the 
intersection property. This will allow us to use Theorem 4.7 of Rabin [Ra60, Ra62] 
here, together with the results of Sections 2 and 3, to characterize, in Section 5, 
first-order theories which admit initial models. 

CONVENTION. Let X=x,, ,..., x, and y = y, ,..., y,. We write in this and the 
following sections 3! &S(X) for the conjunction of the two formulas 314(X) and 
v1 Vjqfj(Xj A 4(y) + A;:;; xi = y;). 

4.1. DEFINITIONS. (i) Let K be a class of structures closed under isomorphisms. 
K is said to have the Intersection Property if for every A, A,, A, E K with Aic A 
(i = 1, 2) either the intersection A, n Az E K or A, n A, = empty. 

(ii) A first order theory T is said to have the Intersection Property if Mod(T) 
has the Intersection Property. 

(iii) A first order theory T is said to have the Znfinite Intersection Property if 
witheveryfamily A,(i~Z)such that AicB,Bk Tand Ai+ Teither niEIAik T 
or ni,,Ai=empty. 

In the case of K = Mod(T) for some first order theory T if K has the Intersection 
Property then it has also the Infinite Intersection Property, cf. [Ro63]. 

4.2. THEOREM (Robinson). A first-order theory T has the intersection property ifjf 
T has the infinite intersection property. 

4.3. EXAMPLES. (i) The class of all groups, abelian groups, rings, fields, 
algebraically closed fields all have the intersection property. 

(ii) The theory T,,,,, from Example 2.6(iv) does not have the intersection 
property. We can easily find two dense subsets of the interval [0, l] whose intersec- 
tion is discrete. 
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(iii) If T is preserved under substructures then T has the intersection 
property. Therefore, by Theorem 3.3, every universal theory has the intersection 
property. 

4.4. THEOREM. Let T be a first-order theory which admits initial models. Then T 
has the intersection property. 

ProoJ Let B = A, n A, and let D, be the atomic diagram of B. 

Claim 1. For every C k T u D, we have 

(i) BcC; 
(ii) if d E B and C k 3! x4(x, b), where 4 is a conjunction of atomic formulas, 

then B + 3! x&x, 6). 

(i) follows since we require C t= D,. To see (ii) we can asume that C is initial for 
Tu D,. Clearly A, A,, A, have expansions A, A,, A, satisfying TuD, and there 
are unique homomorphisms h, h,, hz, respectively, mapping C into the 
corresponding structure. By the uniqueness of these homomorphisms and since 
A,cA (i= 1,2) we have that Rg(h,) =Rg(h,)=Rg(h). Now let 3! x&x, 6) as 
required and CEC be such that C k +(c, 6). So h(c)EA, n A, = B. This proves 
Claim 1. 

Claim 2. Assume that C is initial for TuD,. Then Br C. 

To see this we use the 3+-definability theorem 2.12 and Claim 1. 1 

First-order theories which have the intersection property were studied in the 
early days of model theory by Robinson and Rabin CRab62, RobSl]. Then those 
theories were called convex theories, and they were studied mainly with an eye on 
classical algebra and possible generalizations of algebraic concepts to models of 
arbitrary first-order theories. We need two theorems of this work for our charac- 
terization of theories admitting initial models. 

4.5. THEOREM (Robinson, Chang, and Los and Suszko, cf. [Rob63]). Let T be 
a first-order theory with the intersection property. Then T is equivalent to a set of 
El-sentences. 

The above theorem is a condensed form of two theorems: Robinson’s theorem 
asserts that a theory with the intersection property is a theory which is preserved 
under unions of chains; and the theorem of Chang and, independently, of Los and 
Suszko asserts that a theory which is preserved under a union of chains is 
equivalent to a set of El-sentences. 

4.6. COROLLARY. Let T be a theory which admits initial models. Then T is 
equivalent to a set of M-sentences. 

ProoJ Theorem 4.4 and Theorem 4.5. 1 
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The next theorem, due to Rabin [Rab60], characterizes theories with the inter- 
section property. 

Notation. Let 4(X, j) be a first-order formula with free variables 2 = x,, x2,..., x, 
and j= y,, y2,..., y, and let k be a natural number. We denote by N(k, j, 4(X, j)) 
the first-order formula which says that there are exactly k different n-tuples j 
satisfying the formula 4(Z, j). 

4.7. THEOREM (Rabin [Rab60]). A necessary and sufficient condition for a first- 
order theory T to have the intersection property is that for every H-sentence 
VR 3j $(Z, j) which is a consequence of T, there exist two sequences of quantifier-free 
formulas 

and 

0,(-c Y, 3,0*(-f, y, 2) ,..., e,(x, y, 4 

and a sequence of natural numbers k, , k2 ,..., k, such that 

- - - - - - 
T t= t’X(VU ol(x, u) v Vii (T*(x, u) v ... v VU 0,(x, u)), (a) 

and for 1 < i < m, 

T b VX(VU oi(X, ii) + N(ki, j, E(I&, j) A’ 13,(x, j, 2))). (b) 

In the next section we want to give a similar characterization for first-order 
theories admitting initial models. Our proof will depend on Rabin’s theorem 
together with the 3 +-definability theorem 2.12, Theorem 3.5, and Theorem 4.6. 

Our next goal is to show the existence of initial models for certain theories which 
have the intersection property and which are preserved under products. For this we 
need some more definitions. 

4.8. DEFINITIONS. Let T be a first-order theory with the intersection property. A 
model A, of T is a core model if there is no proper submodel B c A,, such that 
B i= T. If A is a model of T and A, c A, A,. k T is a core model we say that A, is a 
T-core of A. 

4.9. LEMMA. Let T be a first-order theory with the intersection property and at 
least one constant symbol. Then every model A of T has a T-core A,. 

Proof. Let A, be the intersection of all submodels of A which satisfy T. The 
constant symbol is needed to ensure that this intersection is not empty. 1 
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4.10. PROPOSITION. Let T he a first-order theory with the intersection property. 
Then every core model of T is an j-term model. 

ProoJ: The proof is a slight modification of the proof of Theorem 2.12. Let A be 
a core model of T and a,,EA. For every aE A let a be a constant symbol whose 
interpretation in A, is a. Let D, be the atomic diagram of A, and D,, the result of 
replacing every constant symbol a of D, by a'. Let Diff,,, Diff,, be the set of 
negated atomic formulas (a # b: a, b E A }, {a’ # b’: a, b E A }, respectively. 

Claim. Tu D, u D,, u Diff, u Diff,. u (a,, # a;} is inconsistent. 

For, otherwise, let B be a model for it. The sets of sentences Diff,, Diff,, guaran- 
tee that there are two isomorphic copies of A contained as submodels in B. The for- 
mula a, #aA guarantees that they are not identical and the intersection property 
guarantees that the intersection is isomorphic to a proper submodel of A satisfying 
T. But this contradicts the fact that A is a core model. Therefore we conclude that 

Tu D, u D,, k a, = a;. 

Now we use compactness to find a finite set of atomic formulas and inequalities 
A,, Al,..., A, and constant symbols a,, a, ,..., a,, a&, a; ,..., a; such that 

T+ i A,(ao,ii) A' i Ai(ab,ii')-+a,=ab, 
i=O i=o 

where zi = (a, ,..., a,), and a’ = (a; ,..., a;). Now put 

4, = 3x,, x2,.-, x,, x;, x; )...) xi i (Ai A Ai(Z 
I=0 

Clearly do, is the required formula. H 

In the above proof we had to use negated atomic formulas; this is why we could 
not get the core model to be an 3+-term model, i.e., a pseudo-term model. As we 
shall see below, what we really need are core models which are pseudo-term 
models. 

4.11. PROBLEM. Let T be a first-order theory with the intersection property 
which is also preserved under products. Are the core models then pseudo-term 
models? 

4.12. DEFINITION. A first-order theory T is pseudo-algebraic if T is preserved 
under products, has the intersection property and if every core model of T is a 
pseudo-term model. 

4.13. THEOREM. A pseudo-algebraic first-order theory T has an initial model A,. 
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Proof. By Theorem 2.13 it suffices to show that T has an 3+-generic pseudo- 
term model A,. So let ai (in I) be all the 3+-sentences which are not consequences 
of T and let Bi k Tu { lai}. Put B = ni, I Bi and let A, be the T-core of B. 

Claim 1. A, + T. 

Clear, since T has the intersection property and is preserved under products. 

Claim 2. A, is 3 +-generic. 

We have to show that A, k lai for every i E I. We tirst observe that B k lai. 
Assume, for contradiction, that B l= ai. It is easily checked that then for every j E Z, 
Bj b ai, since ai is an 3+-formula. So, in particular, Bi b ai, a contradiction. To 
conclude that A, l= lai it suffices to observe that ai is a universal formula and to 
apply Theorem 3.3. 

To conclude the proof use our assumption that every core model of T is a 
pseudo-term model. 1 

A converse of Theorem 4.13 will proved in the next section. 

5. CHARACTERIZING FIRST-ORDER THEORIES 
WHICH ADMIT INITIAL MODELS 

The purpose of this section is to characterize first-order theories which admit 
initial models. We first want to show that such a theory is equivalent to a El-Horn 
theory. 

5.1. THEOREM. Let T be a first-order theory which admits initial models. Then 

(i) T is equivalent to a El-Horn theory TvjH. 

(ii) Zf T is finite, so is Tv3”. 

To prove Theorem 5.1 we first construct an auxiliary theory T* in which every 
3 +-definable element is represented as a term. 

5.2. DEFINITIONS. Let T be a first-order theory over a vocabulary z. 

(i) We say that T has enough terms if for every 3 +-formula 32 a( y, Z) such 
that T i= 3! y(3Z a( y, Z)) there is a r-term t such that T k 32 a( t, 5). 

(ii) We define T* as follows: Let 32, ai( y, Zi) (i E I) be an enumeration of all 
the 3 +-formulas over z such that T l= 3! y(3Z a( y, Z)). Let ci be a set of constant 
symbols not in T’. Put C = { 3Fi ai(ci, ti): i E Z}. Now we put T* = Tu C. 

5.3. LEMMA. T* has enough terms. 

Proof: We have to show that for every 3+-formula 32a(y, Z, C) such that 
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- - 
T /= 3! y(3Z a(y, z, c)) there is a z*-term t such that T + 32 a(t, Z, C). Assume for 
simplicity that C = (c,, cZ). Put 

p(y) = 3u, 3u,(3Z a(y, 2, ul, uJ A 32, al(u,, Z1) A 32, a,(u,, 2,)). 

But /I(y) = ai for some in I. 1 

5.4. LEMMA. Let T be a first-order theory which admits initial models and T* the 
theory obtained from T. Then 

(i) Every model A* of T* is also a model of T; 

(ii) Every model A of T has a unique expansion to a z*-model A* of T*; 

(iii) T* admits initial term models. 

Proof: (i) and (ii) are trivial. To prove (iii) we first observe that T* admits 
initial models since T admits initial models and every initial model is 3 +-generic by 
Theorem 2.7. Now we use Theorem 2.7 together with Lemma 5.3 to conclude that 
the initial models of T* are term models. 1 

Proof of Theorem 5.1. (i) Let T be a first-order theory which admits initial 
models. So, by Lemma 5.4, T* admits initial-term models. Now we apply 
Theorem 3.5 and obtain a r*-theory T, which is universal Horn and equivalent to 
T*. Next we eliminate the newly introduced constant symbols from TH and replace 
them by their defining formulas. One easily checks that in this way we obtain an 
El-Horn theory TV, over the vocabulary r. It is also easily verified that T and TV, 
are equivalent. 

(ii) is a standard compactness argument. 1 

Next we want to state a generalization, or rather an analog of Rabin’s 
Theorem 4.7 for theories which admit initial models. 

5.5. THEOREM. Let T be a first-order theory which admits initial models. Then for 
every M-sentence VX 3j II/(x, j) which is a consequence of T, there exist two sequen- 
ces of formulas, 

- - - - 
OIL% a c*(x, u),..., cJ&, u) 

and 
- - - - 

XI@, Y, z), x*(-f, y, z),..., x,(-% Y, 2) 

where o,. are quantifier free formulas and xi are 3 +-formulas, such that 
- - 

T + VX(VU o,(X, U) v VU oz(x, u) v ... v V’u CT,&, U)), 

and for 1~ i G m, 

(a) 

T j= VX(VU oi(X, U) + El! j(3Z(t& j) A xi@, J, 2)))). lb) 
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Proof. We first apply Theorem 4.4 to establish the intersection property and 
then Theorem 4.5. This gives us that T is equivalent to an El-theory TV3. 

Now let V13J @(x, J) E TV,. Using Theorem 4.7 we can find quantifier-free 
formulas 

and 

81(-T, y, Z), w, y, 3 ,... , -k(X y, 3, 

and a sequence of natural numbers kl, k2,..., k, such that 
- - 

TV3 + VX(VU a,(%, ii) v VU oz(x, u) v ... v Vii CT,,& ti)), 

and for 1 <iGm, 

(4 

TV3 + VX(Vii 0,(X, U) + N(ki, jt 3Z($(X, j) A 0,(X, jj, 2))). (b) 

Our next goal is to show that we can w.1.o.g. assume that k, = k2 = . . . = k, = 1. 
Let k, > 1. Let A, be the initial model of T and let ti,, iI*,..., &, be distinct tuples 

of A, such that 

A, k VX(VU oi(X, ii) + 3Z(i,b(X, ~3; A 0,(X, ai, 2))). 

for every j = l,..., k, . By Theorem 2.12 there is an 3 +-formula aj(ti) defining tij, i.e., 
such that A, b aj(j(ij,.) and if b E A, and A, b aj(6j) then ti = 6. 

Now we define Bij = ei(x, jj, 5) A aj( jj). Clearly we have 

A, k Vi?(Vti o,(X, ii) + 3! j(3Z($(X, j)) A 8,(X, J, 5))). 

Using argument similar to that in 2.12 we conclude that 

TV3 k VX(Vii o,(X, U) + 3! j(%(lc/(X, j)) A 6,(X, j, 2))). 1 

5.6. DEFINITION. We call a first-order theory which satisfies the conclusion of 
Theorem 5.5 partiulZyfunctional. This is justified since Theorem 5.5 says that every 
El-formula which is a consequence of T can be Skolemized with finitely many par- 
tial functions. 

5.7. COROLLARY. Let T be a first-order theory which admits initial models. Then 
every j-term model A is a pseudo-term model. 

Proof: Let aE A and let a(x) be its I-formula defining it. Now we use 
Theorem 5.5 with x = y for II/. Clearly Vx 3y (x = y) is a consequence of T. Now we 
apply (a) and (b) of Theorem 5.5. 1 

We need another well-known result from model theory, see, e.g., [CK73]. 
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5.8. THEOREM. Let T he an Q&Horn theory. Then T is preserved under products. 

Putting everything together we obtain 

5.9. THEOREM (main theorem). Let T be a first-order theory. The following are 
equivalent: 

(i ) T admits initial models; 
(ii) T is equivalent to a partially functional Q3-Horn theory. 

(iii) T is pseudo-algebraic. 

Proof: (i) + (ii) Use Theorems 5.1 and 5.5. 
(ii) + (iii) Clearly T is preserved under products, by Theorem 5.8. To see, that 

T has the intersection property we use Theorem 4.7. To verify that every I-term 
model is a pseudo-term model we use Corollary 5.7. 

(iii) + (i) This is Theorem 4.13. 1 

6. THE INDEPENDENCE PROPERTY FOR INEQUALITIES 

In this section we give an application of our characterization of admitting initial 
models to the simultaneous solvability of inequations. A similar problem is 
addressed in [Co1841 in the context of unification algorithms which also preserve 
inequations. 

Let ,E be a partially functional VI-Horn theory and let 

I= {tj, ft,: iEw} 

be an infinite set of inequations. Assume further that I and C have only finitely 
many free variables x, ,..., x,. We are interested in the satisfiability of 2 u I. In the 
case that C consists only of a set of equations E, this is the problem of finding a 
simultaneous solution (c, ,..., c,) of E and I. Our result shows that this is possible iff 
it can be done for each inequation separately. More precisely, we have 

6.1. THEOREM. Let Z and I be as above. Then .Z v I is satisfiable iff for every 
i E CO C u { til # ti2} is satisfiable. 

ProoJ: The only if part is trivial. For the if part let c, ,..., c, be new constant 
symbols not occuring in C u Z and let C*, I* be obtained from Z; and Z respectively 
by substituting the free variables xi by cj. Clearly, .E* is still a partially functional 
Q3-Horn theory. Therefore, C* admits an initial model A, by Theorem 5.9. By 
Theorem 2.13, A is an 3 + pseudo-term model. 

Now assume that for every i E o, C u { ti, # t,} is satisfiable. So it is not the case 
that ,Y* j= ti, = t,*. Therefore A /= ti, # ti2 for every iE w and A ,!= I*. 1 
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The same proof shows that we can add to I a set of negated atomic formulas or 
even to a set of negated 3 +-formulas. 

7. CONCLUSIONS 

We have given a characterization of universal Horn theories in terms of the 
existence of initial, or equivalently, A-generic term models (Theorem 3.9) and a 
characterization of partially functional Q-Horn theories in terms of the existence of 
initial, or equivalently, 3 +-generic pseudo-term models (Theorem 5.9). 

The significance of this characterization can be explained as follows: 
We singled out a property of the class of universal Horn formulas (admitting 

initial term models) which characterize this class of formulas (Sect. 3). 
We analyzed the notion of an initial (term) model and show that it is equivalent 

to the notion of a Cl+-generic (A-generic) model. This property (admitting initial- 
term models, admitting A-generic models) garantees that 

(i) the “closed-world assumption” for databases and “negation as failure” 
for logic programming are reasonable concepts; 

(ii) logic programs allow a procedural interpretation, because there is a uni- 
que “generic” mathematical structure in which to interprete logic programs; 

(iii) we have the independence property for the simultaneous solution of 
inequations (Theorem 6.1); 

(iv) that the three previous advantages are preserved under the addition of 
new facts to a databasis or a logic program. 

We then discussed (Sects. 45) what happens if we drop the requirement that the 
initial model has to be a term model and show that in this latter case the class of 
formulas characterized by this liberalized property is almost the class of universal 
Horn formulas in the following sense: The only way it can fail to be universal Horn 
is by a wrong choice of the primitive symbols involved, namely that the sorts 
overlap in the wrong way and that certain functions were represented by their 
graphs (as relations). Our main theorem (5.9) really says that if a first-order theory 
admits initial models, then the sorts and relation and function symbols can be 
chosen in a natural way such that we obtain an equivalent theory which is universal 
Horn. Sets of first-order formulas of that latter type are called partially functional 
El-theories. 

We have, therefore, shown an intimate relationship between two semantic con- 
cepts (initially and 3 + -genericity) and a syntactic restriction (partially functional 
El-theories). We believe that it is this intimate relationship between these concepts 
which answers the question posed in the title of this paper. 

The paper also sheds more light onto the question why in [ADJ75] initial struc- 
tures were proposed as the framework for abstract data types. We have given in 
Theorem 2.13 a characterization of initial structures as 3 +-generic pseudo-term 
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models. For somebody not familiar with category theory this may be more appeal- 
ing since it relates directly to our concept of verification by example. However, this 
characterization has also its technical merits for it provides the missing link 
between the category-theoretic concept and the model-theoretic tools needed to 
prove 5.9. 

Last but not least, we have added yet another explanation as to why Horn for- 
mulas play such an important role in the various branches of computer science. We 
have shown that universal Horn theories (partially functional El-theories) are 
exactly the framework in which the notion of a generic example can be applied. 
This should prevent other researchers from trying to generalize logic programming 
or the semantics for abstract data types to larger classes of first-order formulas, as 
done in [CM80]. If it has to be generalized then the direction chosen by Burstall 
and Goguen in [GB84] seems to be much more appropriate. 

The reader should not misunderstand our point: We do not claim that one has to 
restrict oneself to Horn formulas when dealing with logic programming or 
databases. We only propose an explanatory paradigm: If there are reasons that the 
existence of initial models, 3 +-generic models, are crucial for the activity one has in 
mind then the restriction to Horn formulas is necessary. More elaborate model- 
theoretic variations of our characterization theorems may be found in [Vo85], 
which was written after our [Ma85]. 

Further research should pursue this and similar paradigms to identify the syntac- 
tic restrictions which come from semantic requirements. This amounts to exploring 
how far abstract model theory (as described in [BF85]) can be made more fruitful 
for computer science and to what extent the direction taken in [GB84] can be 
further pushed to encompass also the definition and specification of programming 
languages and programming environments in general. 
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