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1. Introduction

In this paper two lines of research converge, one related to the theory of Boolean algebras and the other one to Banach
spaces.

In the context of Boolean algebras, the topic goes back to Parovičenko’s theorem [12], which establishes that, under
CH, P (ω)/fin is the unique Boolean algebra of size c with the property that given any diagram of embeddings of Boolean
algebras like

S

R P(ω)/fin,

where R and S are countable, there exists an embedding S → P (ω)/fin which makes the diagram commutative. This
characterization is indeed equivalent to CH [4]. There has been a line of research [5–9,14] showing that many results about
P (ω)/fin under CH can be generalized to the ℵ2-Cohen model3 (and to a less extent to any Cohen model). The key point
was proven by Steprāns [14] and is that in that case P (ω)/fin is tightly σ -filtered. Later, Dow and Hart [5] introduced
the notion of Cohen–Parovičenko Boolean algebras. On the one hand, P (ω)/fin is Cohen–Parovičenko in Cohen models,
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and on the other hand there exists a unique Cohen–Parovičenko Boolean algebra of size c whenever c � ℵ2. Therefore this
property characterizes P (ω)/fin in the ℵ2-Cohen model in the spirit of Parovičenko’s theorem.

Our main result states that whenever c is a regular cardinal, there exists a unique tightly σ -filtered Cohen–Parovičenko
Boolean algebra. Essentially, we are proving that whenever c is regular, there exists a canonical Boolean algebra that behaves
like P (ω)/fin does under CH and in the ℵ2-Cohen model. By a result of Geschke [9], this Boolean algebra cannot be P (ω)/fin
when c > ℵ2. Hence, in the κ-Cohen model (κ > ℵ2), P (ω)/fin and our Boolean algebra are two non-isomorphic Cohen–
Parovičenko Boolean algebras, and this solves a question of Dow and Hart [5, Questions 2 and 3] about uniqueness for this
property.

We found that many notions being used in the literature on this topic can be reformulated using the concept of push-out
from category theory (see [1]). Apart from aesthetic considerations, this approach has an objective advantage: it allows us
to export ideas to other categories like we do with Banach spaces, where we have push-outs with similar properties.

In the context of Banach spaces, an analogue of Parovičenko’s theorem has been established by Kubiś [11]: Under CH,
there exists a unique Banach space X of density c with the property that given any diagram of isometric embeddings like

S

R X

where R and S are separable, there exists an embedding S → X which makes the diagram commutative. The existence of
such a space can be proven in ZFC but not its uniqueness [2]. In this paper we shall consider a stronger property than the
one stated above which will imply existence and uniqueness of the space X under the weaker assumption that c is a regular
cardinal.

In both situations the method of construction is the same as in [5,2] respectively, by a long chain of push-outs. The dif-
ficulty lies in proving that the algebra or the space constructed in this way is indeed unique. It would be nice to have
a unified approach for Banach spaces and Boolean algebras in the context of category theory, but our attempts to do so
seemed to become too technical and to obscure both subjects rather than to enlighten them. The reader will find, neverthe-
less, an obvious parallelism.

The paper is structured as follows: In Section 2 we prove the existence and uniqueness of our Boolean algebra B. In
Section 3 we do the same with our Banach space X. The two sections run parallel but they can be read independently, and
for the convenience of the reader they include a self-contained account of the facts that we need about push-outs in each
category. In Section 4 we consider the compact space K, Stone dual of B, we establish that X is isometric to a subspace
of the space of continuous functions C(K) and we also prove that K is homogeneous with respect to P -points, generalizing
the results of Rudin [13] under CH, Steprāns [14] in the ℵ2-Cohen model, and Geschke [9]. In Section 5 we state several
open problems and in Section 6 we point out more general versions of our results for different cardinals.

We would like to thank Wiesław Kubiś for some relevant remarks that helped to improve this paper.

2. Boolean algebras

2.1. Preliminary definitions

The push-out is a general notion of category theory, and the one that we shall use here refers to the category of Boolean
algebras. We shall consider only push-outs made of embeddings (one-to-one morphisms), although it is a more general
concept. For this reason, we present the subject in a different way than usual, more convenient for us and equivalent for
the case of embeddings.

The join and meet operations in a Boolean algebra B are denoted by ∨ and ∧, and the complement of r ∈ B by r.
The subalgebra generated by H is 〈H〉.

Definition 1. Let B be a Boolean algebra and let S and A be subalgebras of B . We say that B is the internal push-out of S
and A if the following conditions hold:

(1) B = 〈S ∪ A〉.
(2) For every a ∈ A and every s ∈ S , if a ∧ s = 0, then there exists r ∈ A ∩ S such that a � r and s � r.

We notice that condition (2) above can be substituted by the following equivalent one:

(2′) For every a ∈ A and every s ∈ S , if a � s, then there exists r ∈ A ∩ S such that a � r � s.

The same definition can be found in [9] as “A and S commute”.
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Suppose that we have a diagram of embeddings of Boolean algebras:

S B

R A.

We say that it is a push-out diagram if, when all algebras are viewed as subalgebras of B , we have that R = S ∩ A and
B is the internal push-out of A and S .

If B is the push-out of S and A, then B is isomorphic to (S ⊗ A)/V where S ⊗ A denotes the free sum of S and A, and
V is the ideal generated by the formal intersections r ∧ r, where r ∈ A ∩ S (viewing r ∈ S , r ∈ A). Also, given a diagram of
embeddings

S

R A

there is a unique way (up to isomorphism) to complete it into a push-out diagram, putting B = (S ⊗ A)/V where V is as
above.

If B is the push-out of S and A we will write B = PO[S, A]. Sometimes we want to make explicit the intersection space
R = S ∩ A, and then we write B = POR [S, A], meaning that B is the push-out of S and A and R = S ∩ A.

Definition 2. An embedding of Boolean algebras A → B is said to be a posex (push-out separable extension) if there exists
a push-out diagram of embeddings

A B

R S

such that S and R are countable.

If A ⊂ B , we can rephrase this definition saying that B is a posex of A if there exists a countable subalgebra S ⊂ B such
that B = PO[S, A].

Definition 3. We say that a Boolean algebra B is tightly σ -filtered if there exists an ordinal λ and a family {Bα: α � λ} of
subalgebras of B such that

(1) Bα ⊂ Bβ whenever α < β � λ,
(2) B0 = {0,1} and Bλ = B,
(3) Bα+1 is a posex of Bα for every α < λ,
(4) Bβ = ⋃

α<β Bα for every limit ordinal β � λ.

We shall see later that the definition of Koppelberg [10] of tightly σ -filtered Boolean algebra is equivalent to this one.

2.2. The main result

We are now ready to state the main result of this section.

Theorem 4. (c is a regular cardinal.) There exists a unique (up to isomorphism) Boolean algebra B with the following properties:

(1) |B| = c.
(2) B is tightly σ -filtered.
(3) For any diagram of embeddings of the form

B

A B,

if |A| < c and A → B is posex, then there exists an embedding B → B which makes the diagram commutative.
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2.3. Basic properties of push-outs

Before going to the proof of Theorem 4, we collect some elementary properties of push-outs of Boolean algebras.

Proposition 5. The following facts about push-outs hold:

(1) If B = PO[Sα, A] for every α, where {Sα: α < ξ} is an increasing chain of Boolean subalgebras of B, S0 ⊂ S1 ⊂ · · · , then
B = PO[⋃α Sα, A].

(2) If B = PO[S, A] and we have S ′ ⊂ S and A′ ⊂ A, then B = PO[〈S ∪ A′〉, 〈A ∪ S ′〉].
(3) If B1 = POS0 [S1, B0] and B2 = POS1 [S2, B1], then B2 = POS0 [S2, B0].
(4) Suppose that we have two increasing sequences of subalgebras of B, S0 ⊂ S1 ⊂ · · · and B0 ⊂ B1 ⊂ · · · , and Bn = POS0 [Sn, B0]

for every n. Then
⋃

n Bn = POS0 [
⋃

n Sn, B0].
(5) Suppose that we have two increasing sequences of subalgebras of B, S0 ⊂ S1 ⊂ · · · and B0 ⊂ B1 ⊂ · · · , and Bn+1 =

POSn [Sn+1, Bn] for every n. Then
⋃

n Bn = POS0 [
⋃

n Sn, B0].
(6) Suppose that A = ⋃

i∈I Ai ⊂ B, S = ⋃
j∈ J S j ⊂ B and 〈Ai ∪ S j〉 = PO[S j, Ai] for every i and every j. Then 〈A ∪ S〉 = PO[S, A].

Proof. (1) is trivial.
For item (2) it is enough to consider the case where S ′ = ∅, that is to prove B = PO[〈S ∪ A′〉, A], the general case being

obtained by the successive application of the cases S ′ = ∅ and its symmetric one A′ = ∅. Clearly B = 〈S ∪ A〉 = 〈(S ∪ A′)∪ A〉.
Let s ∈ S ∪ A′ and a ∈ A be such that a � s. If s ∈ S , our hypothesis guarantees that there is r ∈ A ∩ S ⊆ A ∩ (S ∪ A′) such
that a � r � s. If s ∈ A′ ⊆ A ∩ (S ∪ A′), take r = s and we are done.

For item (3), it is clear that S2 ∩ B0 = S0 and B2 = 〈S2 ∪ B0〉. On the other hand assume that a � s2 for some a ∈ B0
and s ∈ S2. Then, since a ∈ B1 and B2 = POS1 [S2, B1], there exists r1 ∈ S1 such that a � r1 � s. Since we also have B1 =
POS0 [S1, B0], we find r0 ∈ S0 with a � r0 � r1 � s.

Item (4) is evident (it holds even for transfinite sequences though we do not need to use that) and item (5) follows from
combining (3) and (4). Item (6) is also easy to see. �

We remark that some of the properties of push-outs of Banach spaces in Proposition 17 do not hold in the context of
Boolean algebras. Namely, suppose that A is freely generated by {xi: i ∈ I} and B is freely generated by {xi: i ∈ I} ∪ {y}.
If S = 〈y〉, then B = PO[S, A]. However, if we consider D = 〈xi, xi ∧ y: i ∈ I〉, then A ⊂ D ⊂ B but B �= PO[S, D] and
D �= PO[S ∩ D, A]. So, we don’t have an analogue of items (1) and (2) of Proposition 17.

Proposition 6. B is a posex of A if and only if the following two conditions hold:

(1) B is countably generated over A (that is, B = 〈A ∪ Q 〉 for some countable set Q ), and
(2) for every b ∈ B, the set {a ∈ A: a � b} is a countably generated ideal of A.

Proof. We suppose first that B is a posex of A, B = POR [S, A] for some countable S . It is obvious that B is countably
generated over A so we concentrate in proving the other property. It is clear that property (2) holds whenever b ∈ A (in
that case the ideal is just generated by b) and also when b ∈ S , since by the push-out property the ideal Ib = {a ∈ A: a � b}
is generated by Ib ∩ R , which is countable. Let us consider now an arbitrary element b ∈ B . We can express it in the form
b = (s1 ∧ a1) ∨ · · · ∨ (sn ∧ an) where a1, . . . ,an form a partition in A (that is, they are disjoint and their join is 1) and
s1, . . . , sn ∈ S . Pick now a ∈ A such that a � b. Then a ∧ ai � si for every i, so since a ∧ ai ∈ A and si ∈ S , there exists ri ∈ R
with a ∧ ai � ri � si . We have that

a = (a ∧ a1) ∨ · · · ∨ (a ∧ an) � (r1 ∧ a1) ∨ · · · ∨ (rn ∧ an) � (s1 ∧ a1) ∨ · · · ∨ (sn ∧ an) = b.

Notice that (r1 ∧ a1) ∨ · · · ∨ (rn ∧ an) ∈ A. It follows that the ideal {a ∈ A: a � b} is generated by the countable set

{
r = (r1 ∧ a1) ∨ · · · ∨ (rn ∧ an): ri ∈ R, r � b

}
.

We prove now the converse implication. So we assume that B = 〈A ∪ Q 〉 with Q countable, and for every b ∈ B , we fix a
countable set Gb ⊂ A that generates the ideal {a ∈ A: a � b}. We define an increasing sequence of subalgebras of B making
S0 = 〈Q 〉 and Sn+1 = 〈Sn ∪ ⋃

b∈Sn
Gb〉. All these are countably generated – hence countable – Boolean algebras. Taking

S = ⋃
n<ω Sn we get that B = PO[S, A]. Namely, if a � s with s ∈ S and a ∈ A, then s ∈ Sn for some n, and then there exists

r ∈ Gs with a � r � s. Just observe that r ∈ Gs ⊂ A ∩ Sn+1 ⊂ A ∩ S . �
Condition (2) of Proposition 6 is found in the literature under the following names: A is a good subalgebra of B [14];

A is an ℵ0-ideal subalgebra of B [5]; A is a σ -subalgebra of B [8,9]. We keep the latter terminology. So, B is a posex of A
if and only if A is a σ -subalgebra of B and B is countably generated over A. Conversely, A is a σ -subalgebra of B if and
only if every intermediate algebra A ⊂ C ⊂ B which is countably generated over A is a posex of A. After these equivalences,
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it becomes obvious that Koppelberg’s definition [10] of tightly σ -filtered algebra and our own are the same, cf. also [9,
Theorem 2.5].

Proposition 7. The following facts hold:

(1) If A ⊂ B and B is countable, then B is a posex of A.
(2) If B is a posex of A, A ⊂ B ′ ⊂ B, and B ′ is countably generated over A, then B ′ is a posex of A.
(3) If B1 is a posex of B0 and B2 is a posex of B1 , then B2 is a posex of B0 .
(4) If we have Bn ⊂ Bn+1 and Bn is a posex of B0 for every n < ω, then

⋃
n Bn is a posex of B0 .

(5) If Bn+1 is a posex of Bn for every n ∈ N, then
⋃

n Bn is a posex of B0 .
(6) If B is a posex of A and S0 ⊂ B is countable, then there exists a countable subalgebra S0 ⊂ S ⊂ B with B = PO[S, A].
(7) If we have B0 ⊂ B1 ⊂ B2 , B2 is a posex of B0 and B1 is countably generated over B0 , then B2 is a posex of B1 .

Proof. (1) is trivial, (2) follows from Proposition 6. We prove now (3). Suppose that B1 = POR0 [S0, B0] and B2 =
POT0 [U0, B1]. Our objective is to apply Proposition 5(3), so we need to overcome the difficulty that S0 �= T0. Inductively
on n, we will define countable subalgebras Rn, Sn, Tn, Un forming four increasing sequences so that B1 = PORn [Sn, B0] and
B2 = POTn [Un, B1] for every n. The inductive procedure is as follows: pick a countable set Q n ⊂ B0 such that Tn ⊂ 〈Sn ∪ Q n〉,
then define Sn+1 = 〈Sn ∪ Q n〉, Rn+1 = Sn+1 ∩ B0, Un+1 = 〈Un ∪ Sn+1〉 and Tn+1 = Un+1 ∩ B1. The push-out relations
B1 = PORn [Sn, B0] and B2 = POTn [Un, B1] follow from Proposition 5(2). Also notice that Tn ⊂ Sn+1 ⊂ Tn+1 for every n. Hence⋃

n Sn = ⋃
n Tn . On the other hand, by Proposition 5(4) we have that B1 = PO⋃

n Rn [
⋃

n Sn, B0] and B2 = PO⋃
n Tn [

⋃
n Un, B1].

By Proposition 5(3), B2 = PO⋃
n Rn [

⋃
n Un, B0], which proves that B2 is a posex of B0, since

⋃
n Un is countable.

Item (4) is proven easily using Proposition 6, and (5) is a consequence of (3) and (4). For (6), consider first a countable
subalgebra S1 ⊂ B such that B = PO[S1, A]. Then find a countable set Q ⊂ A such that S0 ⊂ 〈Q ∪ S1〉. From Proposition 5(2)
we get that B = PO[〈Q ∪ S1〉, A]. To prove (7), use (2) to get that B1 is a posex of B0 hence B1 = PO[S1, B0] for some
countable subalgebra S1. By (6) there exists a countable subalgebra S2 such that B2 = PO[S2, B0] and S1 ⊂ S2. By Proposi-
tion 5(2), B2 = PO[S2, 〈B0 ∪ S1〉] but 〈B0 ∪ S1〉 = B1. �

Consider again the example where A is freely generated by {xi: i ∈ I} with I uncountable, B is freely generated by
{xi: i ∈ I} ∪ {y} and D = 〈xi, xi ∧ y: i ∈ I〉. Then B = PO[〈y〉, A], so B is a posex of A. On the other hand, A ⊂ D ⊂ B but
neither D is a posex of A nor B is a posex of D . Indeed D is not countably generated over A, and {a ∈ D: a � y} is not a
countably generated ideal of D .

2.4. Proof of Theorem 4

The following definition, as well as Lemma 9 are due to Geschke [9]. A proof of Lemma 9 can also be obtained by
imitating the proof of Lemma 20.

Definition 8. Let B be a (uncountable) Boolean algebra. An additive σ -skeleton of B is a family F of subalgebras of B with
the following properties:

(1) {0,1} ∈ F .
(2) For every subfamily G ⊂ F , we have 〈⋃ G〉 ∈ F .
(3) For every infinite subalgebra A ⊂ B, there exists A′ ∈ F such that with A ⊂ A′ ⊂ B and |A| = |A′|.
(4) Every A ∈ F is a σ -subalgebra of B.

We will often use the following property of an additive σ -skeleton: If A ∈ F , A ⊂ A′ ⊂ B and A′ is countably generated
over A, then there exists B ∈ F such that A′ ⊂ B and B is countably generated over A′ . This is a direct consequence of
properties (2) and (3): Suppose that A′ = 〈A ∪ S〉 with S countable Boolean algebra. Then there exists a countable S1 ∈ F
with S ⊂ S1, and we can take B = 〈A ∪ S1〉.

Lemma 9 (Geschke). For a Boolean algebra B the following are equivalent:

(1) B is tightly σ -filtered.
(2) There exists an additive σ -skeleton F of B.

We can now prove Theorem 4. First we prove existence. We consider c = ⋃
α<c Φα a decomposition of the continuum

into c many subsets of cardinality c such that α � min(Φα) for every α. We define recursively an increasing chain of Boolean
algebras {Bα: α < c}, so that at the end B = ⋃

α<c Bα . We start with B0 = {0,1}. After Bα is defined, we consider a family
{(Rγ , Sγ ): γ ∈ Φα} such that:
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• For every γ ∈ Φα , Sγ is a countable Boolean algebra and Rγ = Bα ∩ Sγ .
• For every countable subalgebra R ⊂ Bα and every countable superalgebra S ⊃ R there exists γ ∈ Φα and a Boolean

isomorphism j : S → Sγ such that R = Rγ and j(x) = x for x ∈ R .

For limit ordinals β we define Bβ = ⋃
α<β Bα . At successor stages we define Bα+1 = PORα [Sα, Bα]. By construction,

it is clear that B is a tightly σ -filtered Boolean algebra of cardinality c. We check property (3) in the statement of the
theorem. Suppose that we have A ⊂ B with |A| < c, and B = POR [S, A] with S countable. By the regularity of c, we can
find α < c such that A ⊂ Bα . Then, there exists γ ∈ Φα such that R = Rγ and (modulo an isomorphism) S = Sγ , so that
Bγ +1 = POR [S, Bγ ]. Consider B̃ = 〈S ∪ A〉 ⊂ Bγ +1, so that B̃ = POR [S, A]. Since push-out is unique up to isomorphism, we
can find an isomorphism ũ : B → B̃ ⊂ B such that ũ(a) = a for all a ∈ A.

We prove now uniqueness. Suppose that we have two Boolean algebras like this, B and B′ . We consider their respective
additive σ -skeletons F and F ′ that witness that they are tightly σ -filtered. Let us suppose that B = {xα: α < c} and
B′ = {yα: α < c}. We shall construct recursively two increasing chains of subalgebras {Bα: α < c} and {B ′

α: α < c} and a
family of Boolean isomorphisms fα : Bα → B ′

α with the following properties:

(1) The isomorphisms are coherent, that is fβ |Bα = fα whenever α < β .
(2) For every α, Bα ∈ F and B ′

α ∈ F ′ .
(3) xα ∈ Bα+1 and yα ∈ B ′

α+1. In this way we make sure that B = ⋃
α<c Bα and B′ = ⋃

α<c B ′
α .

(4) Bα+1 is countably generated over Bα for every α. This implies that |Bα | = |α| for every α � ω.

After this, the isomorphisms fα induce a global isomorphism f : B → B′ . We proceed to the inductive construction. We
start with B0 = {0,1} and B ′

0 = {0,1}. If β is a limit ordinal, we simply put Bβ = ⋃
α<β Bα , B ′

β = ⋃
α<β B ′

α and the
isomorphism fβ is induced by the previous ones. Now we show how to construct Bα+1, B ′

α+1 and fα+1 from the pre-
vious ones. We construct inductively on n, sequences of subalgebras Bα[n] ⊂ B, B ′

α[n] ⊂ B′ and coherent isomorphisms
fα[n] : Bα[n] → B ′

α[n] as in the picture:

Bα = Bα[0] ⊂ Bα[1] ⊂ Bα[2] ⊂ Bα[3] ⊂ · · · ⊂ B

↓ ↓ ↓ ↓
B ′

α = B ′
α[0] ⊂ B ′

α[1] ⊂ B ′
α[2] ⊂ B ′

α[3] ⊂ · · · ⊂ B′

and we will make Bα+1 = ⋃
n<ω Bα[n], B ′

α+1 = ⋃
n<ω B ′

α[n] and fα+1 induced by the isomorphisms fα[n]. All the algebras
Bα[n + 1] and B ′

α[n + 1] will be countably generated over Bα[n] and B ′
α[n] respectively. The inductive procedure is as

follows. There are two cases:

Case 1. n is even. Then, we define Bα[n + 1] to be such that xα ∈ Bα[n + 1], Bα[n + 1] is countably generated over Bα[n],
and Bα[n + 1] ∈ F . Since Bα ∈ F which is an additive σ -skeleton, Bα[n + 1] is a posex of Bα , and by Proposition 7(7), also
Bα[n + 1] is a posex of Bα[n]. Hence, since B′ satisfies the statement of our theorem, we can find a Boolean embedding
fα[n + 1] : Bα[n + 1] → B′ such that fα[n + 1]|Bα [n] = fα[n]. We define finally B ′

α[n + 1] = fα[n + 1](Bα[n + 1]).

Case 2. n is odd. Then, we define B ′
α[n + 1] to be such that yα ∈ B ′

α[n + 1], B ′
α[n + 1] is countably generated over B ′

α[n]
and B ′

α[n + 1] ∈ F ′ . Since B ′
α ∈ F ′ which is an additive σ -skeleton, B ′

α[n + 1] is a posex of Bα , hence also a posex of
B ′

α[n], so since B satisfies the statement of our theorem, we can find an embedding gα[n + 1] : B ′
α[n + 1] → B such that

gα[n + 1]|Bα [n] = f −1
α [n]. We define finally Bα[n + 1] = gα[n + 1](Bα[n + 1]) and fα[n + 1] = g−1

α [n + 1].

Proceeding this way, we have that Bα[n] ∈ F for n odd, while B ′
α[n] ∈ F ′ for n even. At the end, Bα+1 =⋃

n<ω Bα[2n + 1] ∈ F and B ′
α+1 = ⋃

n<ω B ′
α[2n] ∈ F ′ , which concludes the proof. �

2.5. Remarks

Dow and Hart [5] say that B is (∗,ℵ0)-ideal, if for every κ < c there exists κ-cub of σ -subalgebras of B . If we have
an additive σ -skeleton F for B , then the algebras in F of cardinality κ form a κ-cub of σ -subalgebras of B . Hence, every
tightly σ -filtered Boolean algebra of cardinality c is (∗,ℵ0)-ideal.

Also, they say that a subalgebra A ⊂ B is ℵ0-ideal complete if for every two orthogonal countably generated ideals I, J
of A, there exists c ∈ B such that I = {a ∈ A: a � c} and J = {a ∈ A: a � c̄}. We have the following fact:

Proposition 10. A is an ℵ0-ideal complete subalgebra of B if and only if for every posex A → C there exists an embedding g : C → B
with g|A = 1A .

Proof. If the statement in the right holds, and we take two orthogonal countably generated ideals I, J ⊂ A, we can consider
R a countable subalgebra of A generated by the union of countable sets of generators of I and J . Take a superalgebra of the
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form S = 〈R ∪ {c}〉 where x � c for every x ∈ I and x � c̄ for every x ∈ J , and let C = POR [S, A]. Our assumption provides an
embedding g : C → B and the element g(c) is the desired one.

Assume now that A is ℵ0-ideal complete and consider f : A → C posex. It is enough to consider the case when C is
finitely generated over f (A), so suppose that C = 〈 f (A)∪{c1, c2, . . . , cn}〉 where {c1, . . . , cn} form a partition. For every i < n
find di ∈ B such that

{
a ∈ A: f (a) � ci

} = {a ∈ A: a � di},
{

a ∈ A: f (a) � ci
} = {a ∈ A: a � di}.

Define dn = 1. Convert the di ’s into a partition by setting d′
k = dk \ (

∨
i<n di) for k � n. Then it is possible to define the

desired extension g by declaring g(ck) = d′
k . �

Finally, Dow and Hart call a Boolean algebra B to be Cohen–Parovičenko if:

(1) |B| = c.
(2) B is (∗,ℵ0)-ideal.
(3) All subalgebras of B of cardinality less than c are ℵ0-ideal complete.

Dow and Hart prove that, if c � ℵ2, there is a unique Cohen–Parovičenko Boolean algebra of size c and they ask if
this is true in ZFC. The answer is negative. On the one hand, P (ω)/fin is Cohen–Parovičenko in any Cohen model, as they
show based on results of Steprāns [14]. On the other hand, as it follows from the comments above, items (1) and (3) are
equivalent to the corresponding items of Theorem 4, while (2) is weaker, which guarantees that the Boolean algebra of
Theorem 4 is Cohen–Parovičenko. As a consequence of a result of Geschke we get the following result, which guarantees
that the Boolean algebra of Theorem 4 is not P (ω)/fin, whenever c > ℵ2:

Theorem 11. If B = P (ω)/fin is the algebra of Theorem 4, then c � ℵ2 .

Proof. Geschke [9] proves that a complete Boolean algebra of size greater than ℵ2 cannot be tightly σ -filtered. Hence, if
c > ℵ2, P (ω) is not tightly σ -filtered. This implies that neither P (ω)/fin is such, because a tower of subalgebras witnessing
tight σ -filtration could be lifted to P (ω). �

Another property of the algebra B of Theorem 4 is:

Proposition 12. If A is a tightly σ -filtered Boolean algebra with |A| � c, then A is isomorphic to a subalgebra of B.

Proof. Let {Aα: α < κ} be subalgebras that witness that A is tightly σ -filtered. We can suppose that κ is the cardinality
of A, cf. [9]. Then, inductively we can extend a given embedding Aα → B to Aα+1 → B, by the properties of B. �
3. Banach spaces

3.1. Preliminary definitions

The push-out is a general notion of category theory, and the one that we shall use here refers to the category Ban1 of
Banach spaces, together with operators of norm at most 1. We shall consider only push-outs made of isometric embeddings
of Banach spaces, although it is a more general concept. For this reason, we present the subject in a different way than
usual, more convenient for us but equivalent for the case of isometric embeddings.

Definition 13. Let Y be a Banach space and let S and X be subspaces of Y . We say that Y is the internal push-out of S and
X if the following conditions hold:

(1) Y = S + X ,
(2) ‖x + s‖ = inf{‖x + r‖ + ‖s − r‖: r ∈ S ∩ X} for every x ∈ X and every s ∈ S .

Suppose that we have a diagram of isometric embeddings of Banach spaces like:

S Y
R X .
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We say that it is a push-out diagram if, when all spaces are seen as subspaces of Y , we have that R = S ∩ X and Y is
the internal push-out of X and S .

Note that Y being the push-out of S and X means that Y is isometric to the quotient space (S ⊕�1 X)/V where V =
{(r,−r): r ∈ X ∩ S}. In particular, Y = S + X = {s + x: s ∈ S, x ∈ X}. Also, given a diagram of isometric embeddings

S

R

u

v X,

there is a unique way (up to isometries) to complete it into a push-out diagram, precisely by making Y = (S ⊕�1 X)/R̃ and
putting the obvious arrows, where R̃ = {(u(r), v(−r)): r ∈ R}.

If Y is the push-out of S and X as above, we will write Y = PO[S, X]. Sometimes we want to make explicit the intersec-
tion space R = S ∩ X , and then we write Y = POR [S, X].

Definition 14. An isometric embedding of Banach spaces X → Y is said to be a posex if there exists a push-out diagram of
isometric embeddings

X Y

R S

such that S and R are separable.

If X ⊂ Y , we can rephrase this definition saying that there exists a separable subspace S ⊂ Y such that Y = PO[S, X].

Definition 15. We say that a Banach space X is tightly σ -filtered if there exists an ordinal λ and a family {Xα: α � λ} of
subspaces of X such that

(1) Xα ⊂ Xβ whenever α < β � λ,
(2) X0 = 0 and Xλ = X ,
(3) Xα+1 is a posex of Xα for every α < λ,
(4) Xβ = ⋃

α<β Xα for every limit ordinal β � λ.

3.2. The main result

Theorem 16. (c is a regular cardinal.) There exists a unique (up to isometry) Banach space X with the following properties:

(1) dens(X) = c.
(2) X is tightly σ -filtered.
(3) For any diagram of isometric embeddings of the form

Y

X X,

if dens(X) < c and X → Y is posex, then there exists an isometric embedding Y → X which makes the diagram commutative.

3.3. Basic properties of push-outs

Before entering the proof of Theorem 16, we collect some elementary properties of push-outs that we shall use. For the
sake of completeness, we include their proofs.

Proposition 17. The following facts about push-outs hold:

(1) Suppose Y = PO[S, X], S ⊂ S ′ ⊂ Y and X ⊂ X ′ ⊂ Y . Then Y = PO[S ′, X ′].
(2) Suppose Y = PO[S, X], and X ⊂ Y ′ ⊂ Y . Then Y ′ = PO[S ∩ Y ′, X].
(3) Suppose Y = PO[S, X], and S ⊂ Y ′ ⊂ Y . Then Y ′ = PO[S, X ∩ Y ′].
(4) Let X ⊂ Y ⊂ Z and S0 ⊂ S1 ⊂ S2 ⊂ Z be such that Y = POS0 [S1, X] and Z = POS1 [S2, Y ]. Then Z = POS0 [S2, X].
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(5) Let X0 ⊂ X1 ⊂ · · · and S0 ⊂ S1 ⊂ · · · be Banach spaces such that for every n ∈ N we have that Xn+1 = POSn [Sn+1, Xn]. Let

X = ⋃
n Xn and S = ⋃

n Sn. Then X = POS0 [S, X0].
(6) Suppose X = ⋃

i∈I Xi ⊂ Y , S = ⋃
j∈ J S j ⊂ Y and Xi + S j = PO[S j, Xi] for every i and every j. Then X + S = PO[S, X].

Proof. For (1) it is enough to consider the case when X = X ′ . The case S = S ′ is just the same, and the general fact follows
from the application of those two. So we have to prove that given x ∈ X , s′ ∈ S ′ and ε > 0 there exists t ∈ X ∩ S ′ such that

∥∥x + s′∥∥ + ε > ‖x + t‖ + ∥∥s′ − t
∥∥.

Write s′ = s + x′ where s ∈ S and x′ ∈ X . Then there exists r ∈ X ∩ S such that

∥∥x + s′∥∥ = ∥∥x + x′ + s
∥∥ >

∥∥x + x′ + r
∥∥ + ‖s − r‖ − ε = ∥∥x + (

x′ + r
)∥∥ + ∥∥s′ − (

x′ + r
)∥∥ − ε

so just take t = x′ + r.
Item (2) is immediate, simply notice that Y ′ = X + (Y ′ ∩ S), because if y ∈ Y ′ and y = x + s with x ∈ X and s ∈ S , then

s = y − x ∈ Y ′ ∩ S . Item (3) is symmetric to item (2).
For (4), consider ε > 0, x ∈ X and s2 ∈ S2. Then since Z = POS1 [S2, Y ], there exists s1 ∈ S1 such that

‖x + s2‖ > ‖x + s1‖ + ‖s2 − s1‖ − ε/2

and since Y = POS0 [S1, X] there exists s0 ∈ S0 with

‖x + s1‖ > ‖x + s0‖ + ‖s1 − s0‖ − ε/2

so finally

‖x + s2‖ > ‖x + s0‖ + ‖s1 − s0‖ + ‖s2 − s1‖ − ε � ‖x + s0‖ + ‖s2 − s0‖ − ε.

For (5), we know by repeated application of item (4) that Xn+1 = POS0 [Sn, X0]. Consider ε > 0, x0 ∈ X0 and s ∈ S . Then
there exists n and sn ∈ Sn such that ‖sn − s‖ < ε/3. Then, we can find r ∈ S0 such that

‖x0 + s‖ > ‖x0 + sn‖ − ε/3 > ‖x0 + r‖ + ‖sn − r‖ − 2ε/3 > ‖x0 + r‖ + ‖s − r‖ − ε.

Item (6) is proven similarly by approximation. �
Corollary 18. The following facts about posexes hold:

(1) If Y is a posex of X , then Y /X is separable.
(2) X ⊂ Y and Y is separable, then Y is a posex of X .
(3) If Y is a posex of X and X ⊂ Y ′ ⊂ Y , then Y ′ is a posex of X .
(4) If Y is a posex of X and X ⊂ X ′ ⊂ Y , then Y is a posex of X ′ .
(5) If Y is a posex of X and Z is a posex of Y , then Z is a posex of X .
(6) If Xn+1 is a posex of Xn for every n ∈ N, then

⋃
n Xn is a posex of X0 .

(7) If we have Xn ⊂ Xn+1 and Xn is a posex of X0 for every n ∈ N, then
⋃

n Xn is a posex of X0 .

A subspace X of a Banach space X will be called a σ -subspace of X, if for every X ⊂ Y ⊂ X, if Y /X is separable, then Y
is a posex of X .

Definition 19. Let X be a (nonseparable) Banach space. An additive σ -skeleton of X is a family F of subspaces of X with
the following properties:

(1) 0 ∈ F .
(2) For every subfamily G ⊂ F , we have span(

⋃
G) ∈ F .

(3) For every infinite-dimensional X ⊂ X there exists Y ∈ F with X ⊂ Y ⊂ X and dens(Y ) = dens(X).
(4) Each X ∈ F is a σ -subspace of X.

We will often use the following property of an additive σ -skeleton: If X ∈ F , X ⊂ Y ⊂ X and Y /X is separable, then
there exists Z ∈ F such that Y ⊂ Z and Z/Y is separable. The proof is a direct consequence of properties (2) and (3):
Suppose that Y = X + S with S separable. Then there exists a separable S1 ∈ F with S ⊂ S1, and we can take Z = X + S1.

We prove now a result for Banach spaces corresponding to Lemma 9.
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Lemma 20. For a Banach space X the following are equivalent:

(1) X is tightly σ -filtered.
(2) X has an additive σ -skeleton.

Proof. That (2) implies (1) is evident: it is enough to define the subspaces Xα inductively just taking care that Xα ∈ F
for every α. Now, we suppose that we have a tower of subspaces {Xα: α � λ} like in (2). For every α < λ we consider
separable subspaces Rα ⊂ Sα such that Xα+1 = PORα [Sα, Xα].

Given a set of ordinals Γ ⊂ λ, we define E(Γ ) = span(
⋃

γ ∈Γ Sγ ). We say that the set Γ is saturated if for every α ∈ Γ

we have that Rα ⊂ E(Γ ∩α). We shall prove that the family F = {E(Γ ): Γ ⊂ λ is saturated} is the additive σ -skeleton that
we are looking for.

It is clear that 0 = E(∅). Also, if we have a family {Γi: i ∈ I} of saturated sets, then span(
⋃

i E(Γi)) = E(
⋃

i Γi), so the
union of saturated sets is saturated.

Given any countable set Γ ⊆ λ, it is possible to find a countable saturated set � such that Γ ⊂ �: We define � =
{δs: s ∈ ω<ω} where (δs)s∈ω<ω is defined inductively on the length of s ∈ ω<ω as follows. Let Γ = {δ(n): n ∈ ω} and given
s ∈ ω<ω , let {δs�n: n ∈ ω} be such that δs�n < δs and Rδs ⊂ E({δs�n: n ∈ ω}). Notice that � is a countable and saturated set
which contains Γ and also sup(δ + 1: δ ∈ Γ ) = sup(δ + 1: δ ∈ �).

Now, suppose X ⊆ X and let us find a saturated set � such that X ⊆ E(�) and dens(X) = dens(E(�)). Since the union
of saturated sets is saturated, we can assume without loss of generality that X is separable and find a countable set Γ

such that X ⊂ E(Γ ). Take � as in the previous paragraph and notice that X ⊂ E(�) ∈ F and E(�) is separable since � is
countable.

It remains to prove that if X ∈ F and we have X ⊂ Y ⊂ X with Y /X separable, then Y is a posex of X . It is enough to
prove the following statement, and we shall do it by induction on δ1 = sup(δ + 1: δ ∈ �):

“For every saturated set Γ ⊂ λ and every countable set � ⊂ λ, E(Γ ∪ �) is a posex of E(Γ )”.

We fix δ1 < λ and we assume that the statement above holds for all saturated sets Γ ⊂ λ and for all countable sets
�′ ⊂ λ with sup(δ + 1: δ ∈ �′) < δ1.

Case 1. δ1 is a limit ordinal. This follows immediately from the inductive hypothesis using Corollary 18(7).

Case 2. δ1 = δ0 + 1 for some δ0 and � = {δ0}. We distinguish two subcases:

Case 2a. sup(Γ ) � δ0. Consider the chain of subspaces

E(Γ ) ⊂ E(Γ ) + Rδ0 ⊂ E
(
Γ ∪ {δ0}

)
.

The left hand extension is a posex extension by the inductive hypothesis, because there exists a countable set �′ such
that Rδ0 ⊂ E(�′) and sup(δ + 1, δ ∈ �′) � δ0 < δ1. The right hand extension is also posex, because we have the push-out
diagram

Sδ0 Xδ1

Rδ0 Xδ0

and since sup(Γ ) � δ0 (and δ0 /∈ Γ , otherwise it is trivial), we can interpolate

Sδ0 E(Γ ∪ {δ0}) Xδ1

Rδ0 E(Γ ) + Rδ0
Xδ0

where clearly E(Γ ∪ {δ0}) = E(Γ ) + Rδ0 + Sδ0 , so that the left hand square is a push-out diagram.

Case 2b. sup(Γ ) > δ0. For every ξ � λ, we call Γξ = Γ ∩ ξ . By Case 2a, there exists a separable space S such that

E
(
Γδ1 ∪ {δ0}

) = PO
[

S, E(Γδ1)
]
.

We can suppose that Sδ0 ⊂ S . We shall prove by induction on ξ that

E
(
Γξ ∪ {δ0}

) = PO
[

S, E(Γξ )
]

for δ1 � ξ � λ.
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If ξ is a limit ordinal, then E(Γξ ) = ⋃
η<ξ E(Γη), and we just need Proposition 17(6). Otherwise suppose that ξ = η + 1.

In the nontrivial case, η ∈ Γ and Γξ = Γη ∪ {η}. By the inductive hypothesis we have that

E
(
Γη ∪ {δ0}

) = PO
[

S, E(Γη)
]

and on the other hand Xξ = Xη+1 = PO[Sη, Xη].
Suppose that we are given x ∈ E(Γξ ), s ∈ S and ε > 0 and we have to find r ∈ E(Γξ ) ∩ S such that ‖x + s‖ � ‖x + r‖ +

‖s − r‖ − ε. We write x = sη + xη where sη ∈ Sη and xη ∈ E(Γη). Notice that xη + s ∈ E(Γη) + S ⊂ E(Γη ∪ {δ0}) ⊂ Xη since
Sδ0 ⊂ Xη (δ0 < η as δ1 < ξ ). Hence, using that Xξ = PO[Sη, Xη] we find rη ∈ Sη ∩ Xη such that

‖sη + xη + s‖ � ‖xη + s + rη‖ + ‖sη − rη‖ − ε/2.

Since η ∈ Γ and Γ is saturated, we have that Rη ⊂ E(Γη), therefore xη + rη ∈ E(Γη) and s ∈ S . Hence, using that
E(Γη ∪ {δ0}) = PO[S, E(Γη)] we get r ∈ S ∩ E(Γη) such that

‖xη + s + rη‖ � ‖s + r‖ + ‖xη + rη − r‖ − ε/2.

Combining both inequalities,

‖sη + xη + s‖ � ‖s + r‖ + ‖xη + rη − r‖ + ‖sη − rη‖ − ε � ‖s + r‖ + ‖xη + sη − r‖ − ε,

as desired.

Case 3. δ1 = δ0 + 1 for some δ0 ∈ � and |�| > 1. We consider the set � \ {δ0}. We have proven few paragraphs above in this
proof that we can find a countable saturated set �′ ⊃ � \ {δ0} such that sup(δ + 1: δ ∈ �′) � δ0. By the inductive hypothesis
E(Γ ∪�′) is a posex of E(Γ ). Since Γ ∪�′ is saturated, the already proven Case 2 provides that E(Γ ∪�′ ∪ {δ0}) is a posex
of E(Γ ∪ �′). Composing both posex extensions we get that E(Γ ∪ �′ ∪ {δ0}) is a posex of E(Γ ). Since E(Γ ) ⊂ E(Γ ∪ �) ⊂
E(Γ ∪ �′ ∪ {δ0}) we finally get that E(Γ ∪ �) is a posex of E(Γ ). �

We finally prove Theorem 16. First we prove existence. We consider c = ⋃
α<c Φα a decomposition of the continuum into

c many subsets of cardinality c such that α � min(Φα) for every α. We define recursively an increasing chain of Banach
spaces {Xα: α < c}, so that at the end X = ⋃

α<c Xα . We start with X0 = 0. After Xα is defined, we consider a family
{(Rγ , Sγ ): γ ∈ Φα} where:

• For every γ ∈ Φα , Sγ is a separable Banach space and Rγ = Xα ∩ Sγ .
• For every separable subspace R ⊂ Xα and every separable superspace S ⊃ R there exists γ ∈ Γ and an isometry

j : S → Sγ such that R = Rγ and j(x) = x for x ∈ R .

For limit ordinals β we define Xβ = ⋃
α<β Xα . At successor stages we define Xα+1 = PORα [Sα, Xα]. By construction, it

is clear that X is a tightly σ -filtered Banach space of density c. We check property (3) in the statement of the theorem.
Suppose that we have X ⊂ X with dens(X) < c, and Y = POR [S, X] with S separable. By the regularity of c, we can find α < c

such that X ⊂ Xα . Then, there exists γ ∈ Φα such that R = Rγ and (modulo an isometry) S = Sγ . Then Xγ +1 = POR [S, Xγ ].
Consider Ỹ = S + X ⊂ Xγ +1, so that Ỹ = POR [S, X]. Since push-out is unique up to isometry, we can find an isometry
ũ : Y → Ỹ ⊂ X such that ũ(x) = x for all x ∈ X .

We prove now uniqueness. Suppose that we have two spaces like this, X and X′ . We consider their respective additive
σ -skeletons F and F ′ that witness that they are tightly σ -filtered. Let us suppose that X = span{xα: α < c} and X′ =
span{yα: α < c}. We shall construct recursively two increasing chains of subspaces {Xα: α < c} and {X ′

α: α < c} and a
family of bijective isometries fα: Xα → X ′

α with the following properties:

(1) The isometries are coherent, that is fβ |Xα = fα whenever α < β .
(2) For every α, Xα ∈ F and X ′

α ∈ F ′ .
(3) xα ∈ Xα+1 and yα ∈ X ′

α+1. In this way we make sure that X = ⋃
α<c Xα and X′ = ⋃

α<c X ′
α .

(4) Each quotient Xα+1/Xα is separable. This implies that dens(Xα) = |α| for every α � ω.

After this, the isometries fα induce a global isometry f : X → X′ . We proceed to the inductive construction. We start with
X0 = 0 and X ′

0 = 0. If β is a limit ordinal, we simply put Xβ = ⋃
α<β Xα , X ′

β = ⋃
α<β X ′

α and the isometry fβ is induced
by the previous isometries. Now, we show how to construct Xα+1, X ′

α+1 and fα+1 from the previous ones. We construct
inductively on n, sequences of subspaces Xα[n] ⊂ X, X ′

α[n] ⊂ X′ and coherent isometries fα[n] : Xα[n] → X ′
α[n] as in the

picture:

Xα = Xα[0] ⊂ Xα[1] ⊂ Xα[2] ⊂ Xα[3] ⊂ · · · ⊂ X

↓ ↓ ↓ ↓
X ′ = X ′ [0] ⊂ X ′ [1] ⊂ X ′ [2] ⊂ X ′ [3] ⊂ · · · ⊂ X′
α α α α α
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and we will make Xα+1 = ⋃
n<ω Xα[n], X ′

α+1 = ⋃
n<ω X ′

α[n] and fα+1 induced by the isometries fα[n]. All the quotient
spaces Xα[n + 1]/Xα[n] and X ′

α[n + 1]/X ′
α[n] will be separable. The inductive procedure is as follows. There are two cases:

Case 1. n is even. Then, we define Xα[n +1] to be such that xα ∈ Xα[n +1], Xα[n +1]/Xα[n] is separable, and Xα[n +1] ∈ F .
Since Xα ∈ F which is an additive σ -skeleton, Xα[n + 1] is a posex of Xα[n], so since X′ satisfies the statement of our
theorem, we can find an into isometry fα[n + 1] : Xα[n + 1] → X′ such that fα[n + 1]|Xα [n] = fα[n]. We define finally
X ′

α[n + 1] = fα[n + 1](Xα[n + 1]).

Case 2. n is odd. Then, we define X ′
α[n +1] to be such that yα ∈ X ′

α[n +1], X ′
α[n +1]/X ′

α[n] is separable, and X ′
α[n +1] ∈ F ′ .

Since X ′
α ∈ F ′ which is an additive σ -skeleton, X ′

α[n + 1] is a posex of X ′
α[n], so since X satisfies the statement of our

theorem, we can find an into isometry gα[n + 1] : X ′
α[n + 1] → X such that gα[n + 1]|Xα [n] = f −1

α [n]. We define finally
Xα[n + 1] = gα[n + 1](Xα[n + 1]) and fα[n + 1] = g−1

α [n + 1].

Proceeding this way, we have that Xα[n] ∈ F for n odd, while X ′
α[n] ∈ F ′ for n even. At the end, Xα+1 =

⋃
n<ω Xα[2n + 1] ∈ F and X ′

α+1 = ⋃
n<ω X ′

α[2n] ∈ F ′ . �
3.4. Universality property

Let X denote the space in Theorem 16.

Theorem 21. If X is a tightly σ -filtered Banach space with dens(X) � c, then X is isometric to a subspace of the space X.

Proof. Let {Xα: α � κ} be subspaces that witness that X is tightly σ -filtered. By the proof of Lemma 20, we can suppose
that κ is the cardinal dens(X). Then, inductively we can extend a given isometric embedding Xα → X to Xα+1 → X, by the
properties of X. �
4. Compact spaces

Along this section and the subsequent ones, X will always denote the Banach space in Theorem 16 and B the Boolean
algebra in Theorem 4.

4.1. The compact space K

Definition 22. Suppose that we have a commutative diagram of continuous surjections between compact spaces,

K
f

g

L

v

S
u

R.

We say that this is a pull-back diagram if the following conditions hold:

(1) For every x, y ∈ K , if x �= y, then either f (x) �= f (y) or g(x) �= g(y).
(2) If we are given x ∈ S and y ∈ L such that u(x) = v(y), then there exists z ∈ K such that f (z) = y and g(z) = x.

Again, the notion of pull-back is more general in category theory, and in particular pull-back diagrams of continuous
functions which are not surjective can be defined, but for our purposes we restrict to the case defined above.

If we are given two continuous surjections u : S → R and v : L → R between compact spaces, we can always construct a
pull-back diagram as above making K = {(x, y) ∈ S × L: u(x) = v(y)} and taking f and g to be the coordinate projections.
Moreover any other pull-back diagram

K ′ f ′

g′

L

v

S
u

R

is homeomorphic to the canonical one by a homeomorphism h : K → K ′ with f ′h = f and g′h = g .
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Proposition 23. A diagram of embeddings of Boolean algebras

A B

R S

is a push-out diagram if and only if the diagram of compact spaces obtained by Stone duality,

St(A) St(B)

St(R) St(S),

is a pull-back diagram.

Proof. Left to the reader. �
Proposition 24. Let Y be a Banach space and X, S, R subspaces of Y such that Y = POR [S, X]. Then the diagram obtained by duality
between the dual balls endowed with the weak∗ topology,

BY ∗ B X∗

B S∗ B R∗

is a pull-back diagram.

Proof. We can suppose that Y = (X ⊕�1 S)/V where V = {(r,−r): r ∈ R}, and then BY ∗ ⊂ B(X⊕�1 S)∗ = BY ∗ × B S∗ and it is
precisely the set of pairs which agree on R . �
Definition 25. A continuous surjection between compact spaces f : K → L is called posex if there exists a pull-back diagram
of continuous surjections

K
f

L

S R

with R and S metrizable compact spaces.

Definition 26. A compact space K is called pull-back generated if there exists a family {Kα: α � ξ} of compact spaces and
continuous surjections { f β

α : Kβ → Kα: α � β � ξ} such that:

(1) K0 is a singleton and Kξ = K .
(2) f α

α is the identity map on Kα .

(3) f β
α f γ

β = f γ
α for α � β � γ � ξ .

(4) f α+1
α : Kα+1 → Kα is posex for every α < ξ .

(5) If γ � ξ is a limit ordinal and x, y ∈ Kγ with x �= y, then there exists β < γ such that f γ
β (x) �= f γ

β (y) (this means that
Kγ is the inverse limit of the system below γ ).

We can prove again a theorem about existence and uniqueness of a compact space in a similar way as we did for Banach
spaces and Boolean algebras. But it is not worth to repeat the procedure because we would obtain just the Stone compact
space of the Boolean algebra B of Theorem 4. Hence, we just denote this Stone space by K = St(B).

Lemma 27. Let K be a pull-back generated compact space. Then there exists a zero-dimensional pull-back generated compact space L
of the same weight as K and such that there is a continuous surjection from L onto K .

Proof. Assume that we have an inverse system { f β
α : Kβ → Kα}α�β�ξ as above witnessing that K is pull-back generated.

We produce our compact space L and the continuous surjection h : L → K by constructing inductively a similar inverse
system {gβ

α : Lβ → Lα}α�β�ξ together with continuous surjections hα : Lα → Kα satisfying hα gβ
α = f β

α hβ for α � β . We
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need that each Lα is zero-dimensional and the weight of Lα equals the weight of Kα . The key step is providing Lα+1, f α+1
α

and hα+1 from Lα and hα . Since f α+1
α is posex there exist metrizable compact spaces S and R and a pull back diagram

Kα+1 Kα

S R.

Consider S ′ a metrizable zero-dimensional compact space and u : S ′ → S a continuous surjection. We have a larger diagram

Lα

hα

Kα+1 Kα

S ′ u
S R.

We can define Lα+1 and gα+1
α by making the pull back of the larger square above,

Lα+1
gα+1
α Lα

S ′ R.

The continuous surjection hα+1 : Lα+1 → Kα+1 can be obtained by applying the so-called universal property of pull-back.
In this case, the pull-back Kα+1 can be seen as a subspace of S × Kα and similarly Lα+1 ⊂ S ′ × Lα . One can define simply
hα+1(s, x) = (u(s),hα(x)). �
Proposition 28. For any diagram of continuous surjections between compact spaces

K

L K,

if f : K → L is posex and weight(L) < c, then there exists a continuous surjection K → K that makes the diagram commutative.

Proof. Without loss of generality, we suppose that we have a pull-back diagram

K L

S R

where S is metrizable and zero-dimensional. We can factorize into continuous surjections K → L′ → L such that L′ is zero-
dimensional and weight(L′) = weight(L). Consider then K ′ the pull-back of K , L and L′ , which is zero-dimensional because
it is also the pull-back of S , R and L′ ,

S K K ′

R L L′ K.

Then we have a similar diagram as in the statement of the theorem but all compact spaces are zero-dimensional. By Stone
duality and property (3) of B in Theorem 4 there is a continuous surjection K → K ′ that completes the diagram, and this
provides the desired K → K . �
4.2. The relation between X and C(K)

Theorem 29. X is isometric to a subspace of C(K).
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Proof. Let {Xα: α � ξ} be an increasing chain of subspaces of X witnessing the fact that X is a push-generated Banach
space. Then, by Proposition 24 the dual balls {B X∗

α
: α � ξ} form an inverse system that witness the fact that BX∗ is a

pull-back generated compact space. By Lemma 27 there exists a zero-dimensional pull-back generated compact space L of
weight c that maps onto BX∗ . By Stone duality, using Proposition 23, we get that the Boolean algebra B of clopens of L
is a tightly σ -filtered Boolean algebra of cardinality c. Hence, by Proposition 12, we can write B ⊂ B. Therefore K maps
continuously onto L, which maps continuously onto BX∗ . And this implies that X ⊂ C(BX∗ ) ⊂ C(L) ⊂ C(K). �
4.3. P -points

Remember that a point p of a topological space K is called a P -point if the intersection of countably many neighborhoods
of p contains a neighborhood of p. The following result was proven by Rudin [13] under CH and by Steprāns [14] in the ℵ2-
Cohen model: for every two P -points p,q ∈ ω∗ there exists a homeomorphism f : ω∗ → ω∗ such that f (p) = q. Geschke [9]
proves that it is sufficient to assume that P (ω) is tightly σ -filtered. In this section we prove that this is a property of our
compact space K.

Theorem 30. Let p,q ∈ K be P -points. Then there exists a homeomorphism f : K → K such that f (p) = q.

In what follows, points of the Stone space of a Boolean algebra B are considered as ultrafilters on B . Given Q 1, Q 2 ⊂ B
we write Q 1 � Q 2 if q1 � q2 for every q1 ∈ Q 1 and q2 ∈ Q 2. If b ∈ B and Q ⊂ B , then b � Q means {b} � Q and Q � b
means Q � {b}.

Definition 31. If A is a subalgebra of B , Q ⊂ A and b ∈ B , then we write b �A Q if {a ∈ A: b � a} equals the filter generated
by Q in A. Similarly, we write Q �A b if {a ∈ A: a � b} equals the ideal generated by Q in A.

With this notation, the notion of push-out of Boolean algebras can be rephrased as follows: given Boolean algebras
R ⊂ A, S ⊂ B , then B = POR [S, A] if and only if for every b ∈ S , {a ∈ R: a � b} �A b �A {a ∈ R: b � a}.

Lemma 32. Let p ∈ K be a P -point, let A ⊂ B be a subalgebra with |A| < c and let Q ⊂ A ∩ p be countable. Then, there exists b ∈ p
such that {0} �A b �A Q .

Proof. Because p is a P -point and Q is countable, there exists b0 ∈ p such that b0 � Q . Since |A| < c, any posex extension
of A can be represented inside B. In particular, we can find b1 ∈ B such that {0} �A b1 �A Q in such a way that B1 =
〈A ∪ {b1}〉 is a posex of A. Observe that b0 ∪ b1 �A Q and b0 ∪ b1 ∈ p. By the same reason as before, we can find b2 ∈ B

such that {0} �B1 b2 �B1 {1}. Notice that we have {0} �A (b1 ∪ b0) ∩ b2 �A Q and {0} �A (b1 ∪ b0) \ b2 �A Q and since
b1 ∪ b0 ∈ p and p is an ultrafilter, either (b1 ∪ b0) ∩ b2 or (b1 ∪ b0) \ b2 belong to p. �
Lemma 33. Let A be a Boolean algebra with |A| < c, and u : A → B and v : A → B be Boolean embeddings with v being posex. Fix
P -points, p0 , p and q of A, B and B respectively such that u(p0) ⊂ p and v(p0) ⊂ q. Then there exists an embedding ũ : B → B such
that ũv = u and ũ(q) ⊂ p.

Proof. Suppose that B = POR [S, v(A)] where S is a countable subalgebra of B . We can produce a further posex super-
algebra B0 ⊃ B of the form B0 = 〈B ∪ {b0}〉 such that {0} �B b0 �B S ∩ q. By Lemma 32 we can find b1 ∈ p such that
{0} �u(A) b1 �u(A) u(R ∩ p0). Notice that {0} �v(A) b0 �v(A) v(R ∩ p0), and this allows to define a Boolean embedding
w : 〈v(A) ∪ {b0}〉 → B such that w v = u and w(b0) = b1. Since B0 is a posex of v(A) and 〈v(A) ∪ {b0}〉 is countably
generated over v(A), we have that B0 is a posex of 〈v(A) ∪ {b0}〉, so using the second property stated in Theorem 4, we
find w̃ : B0 → B such that w̃|〈v(A)∪{b0}〉 = w . We consider finally ũ = w̃|B . It is clear that ũv = u. On the other hand, since
ũ(b0) = w(b0) = b1 ∈ p and b0 � S ∩ q, we have that ũ(S ∩ q) ⊂ p. It is also clear that ũ(q ∩ v(A)) = u(p0) ⊂ p. Since
B = 〈S ∪ v(A)〉 the ultrafilter q is the filter generated by (q ∩ S) ∪ (q ∩ v(A)), so we finally get that ũ(q) ⊂ p. �

We can rephrase the statement of Theorem 30 as follows: “If B and B′ are Boolean algebras satisfying the conditions
of Theorem 4 and p and q are P -points in B and B′ respectively, then there exists an isomorphism f : B → B′ such that
f (p) = q”. In order to prove this, we just have to follow the proof of uniqueness in Theorem 4 and make sure that at each
step it is possible to choose the partial isomorphisms fα : Bα → B ′

α in such a way that f (p ∩ Bα) = q ∩ B ′
α . And what we

need for that is exactly Lemma 33 applied to B and B′ .

5. Open problems

5.1. When c is singular

Problem 1. Do Theorem 16 and Theorem 4 hold when c is singular?
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Here the point is that regularity looks essential to control all substructures of size less than c in the existence part of the
proof. Perhaps these theorems do not hold for singular c as they are stated, but it would be satisfactory any variation that
would allow us to speak about unique objects X and B defined by some properties in ZFC. We remark that if we restrict
below a given cardinal, existence can be proven. We state it for Boolean algebras, and leave the Banach space version to the
reader.

Proposition 34. Fix a cardinal λ < c. There exists a Boolean algebra B with the following properties:

(1) |B| = c.
(2) B is tightly σ -filtered.
(3) For any diagram of embeddings of the form

B

A B,

if |A| � λ and A → B is posex, then there exists an isometric embedding B → B which makes the diagram commutative.

Proof. Let λ+ be the successor cardinal of κ . Construct B in the same way as in the proof of Theorem 4 or Theorem 16,
but do it with a tower of length c · λ+ instead of length c. �
5.2. Properties of B reflected on Banach spaces

We know much more about B than about its Banach space relative X. So it is natural to ask whether certain facts that
hold for B in some models are reflected by analogous properties for X or for C(K).

For example, we mentioned that in the ℵ2-Cohen model, B = P (ω)/fin [5]. In this model, therefore, B has some addi-
tional properties of extensions of morphisms: given any diagram of arbitrary morphisms

S

R B

where R is countable and S is arbitrary, there exists a morphism S → B which makes the diagram commutative. The
analogous property for Banach spaces is called (1-)universally separably injectivity (we add a 1 if the operator S → X can
be found with the same norm as R → X), cf. [2]. This property implies that the space contains �∞ .

Problem 2. In the ℵ2-Cohen model, is the space X universally separably injective? Does it contain �∞?

Another observation is that in this model, P (ω)/fin does not contain any ω2-chain. Indeed, Dow and Hart [5] prove
in ZFC that no Cohen–Parovičenko Boolean algebra (in particular B) can contain ω2-chains. On the other hand, Brech and
Koszmider [3] prove that in the ℵ2-Cohen model, �∞/c0 does not contain the space C[0,ω2] of continuous functions on the
ordinal interval [0,ω2]. So the natural question is:

Problem 3. Is it true in general that C(K) (or at least X) does not contain C[0,ω2]?

Problem 4. Can spaces like �2(ω2) or c0(ω2) be subspaces of X?

Under (MA + c = ℵ2), Dow and Hart [5] prove that B does not contain P (ω) as a subalgebra. So we may formulate

Problem 5 (MA + c = ℵ2). Does C(K) contain a copy of �∞?

This question is already posed in [2]. A negative answer would solve a problem by Rosenthal by providing an F -space K
such that C(K ) does not contain �∞ . In [2] it is proven that, under MA+ c = ℵ2, there is an isometric embedding c0 → C(K)

which cannot be extended to an embedding �∞ → C(K).
The space X plays the role of B in the category of Banach spaces. But we do not have a Banach space playing the role

of P (ω)/fin, when it is different from B. This is related to the general question of finding intrinsic characterizations of
P (ω)/fin out of CH and ℵ2-Cohen models, that we could translate into other categories.

Problem 6. Is there a Banach space counterpart of P (ω)/fin?
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6. Other cardinals

We comment that a more general version of some of our results can be stated if we let arbitrary cardinals to play the
role of c and countability. We state it for Banach spaces, and leave the Boolean version to the reader. For an uncountable
cardinal τ , we say that an isometric embedding X → Y is τ -posex if Y = PO[S, X] for some S with dens(S) < τ . We say
that X is tightly τ -filtered if X is the union of a continuous tower of subspaces starting at 0 and such that each Xα+1 is a
τ -posex of Xα (in the case of Boolean algebras, such a definition is equivalent to the one given in [9]).

Theorem 35. Let κ be a regular cardinal, and τ an uncountable cardinal with κ<τ = κ . There exists a unique (up to isometry) Banach
space X = X(κ, τ ) with the following properties:

(1) dens(X) = κ .
(2) X is tightly τ -filtered.
(3) For any diagram of isometric embeddings of the form

Y

X X,

if dens(X) < κ and X → Y is τ -posex, then there exists an isometric embedding w : Y → X which completes the diagram.

The proof would be just the same. Our original space corresponds to X(c,ℵ1).
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