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A graph is stability critical (a-critical) if the removal of any edge increases the
stability number. We give an affirmative answer to a question raised by Chvatal,
namely, that every connected, critical graph that is neither K, nor an odd cycle
contains an even subdivision of K. 1993 Academic Press. Inc.

All graphs in this paper are assumed to be finite, simple, and undirected.
For graph G=(V, E), we also denote V(G)=V and E(G)=E. A set of
mutually nonadjacent nodes in a graph G is called a stable (independent)
set. A maximum stable set (MSS) is a stable set of maximum cardinality.
The stability number of G, denoted by «(G), is the cardinality of a maxi-
mum stable set in G. A stable set .S sarurates G if |.S| = «(G). The degree of
a node v in G is denoted by d(G, v) (whenever G is clear from the context,
it will be suppressed from the notation). A node with degree equal to zero
is said to be isolated. K, is the complete graph on #n nodes. A graph
G'=(V',E") is a subgraph of G=(V, E), denoted G’ =G, if V"<V and
E'cE If WcV, then G[W] denotes the subgraph induced by W,
i€, G[ W] has node set W and two nodes are adjacent in G[ W] if and
only if they are adjacent in G. If ve V, then G—v will also be used to
denote G[V\{v}]. If (u,v)eE, then G—(u,v) denotes the subgraph
(V, E\{(, 0)}).

An edge of G is said to be critical if its deletion increases the stability
number. G is a-critical if every edge of G is critical. Throughout this paper,
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critical will always mean a-critical. If (v, w) is a critical edge of G, then
there is a MSS in G that contains v and there is a MSS that contains w.
This follows by considering a MSS S in G — (v, w). Since (v, w) is critical,
S must have cardinality «(G)+ 1, which then implies that v, we S. Thus,
S\ {v} and S\{w} are MSS’s in G that contain w and v, respectively. If G
is a critical graph and (v, w)e E with d(v)+ d(w) > 2, then there is a MSS
in G that contains neither v nor w. To see this, assume, without foss of
generality, that (v, v)e E(G) with u#w and let S be a MSS in G — (i, v).
Then S\{v} is the desired MSS in G. Finally, if G is critical and ve V' with
d(v) =1, then v and its neighbor form a component of G, since every MSS
in G contains either v or its neighbor.

The number |V| —2a(G), denoted by 6(G), plays an important role in
the study of critical graphs, as demonstrated by the following theorem
given by Hajnal in 1965 [4] (8(-) will be used as generic notation
whenever the graph has not been specified).

THeoREM 1 (Hajnal). If G is a critical graph with no isolated nodes, then
dv) <G+ 1 Yoe V.

This theorem is useful in characterizing critical graphs with small values
of 8(-). Let I"? be the set of all critical graphs with §(-)=4 and let I"? be
the set of all connected graphs in I"°. If Ge I'°, then every node of G has
degree at most one, which implies that G is K,. If Ge I'}, then every node
of G has degree at most two. Since G is connected, G must be either a
simple path or a cycle. But §(G) < 1 for all simple paths and even cycles, so
G must be an odd cycle. A subdivision of a graph is obtained by replacing
its edges by simple paths, i.e., by inserting new nodes of degree two into the
edges. An even subdivision results when the number of new nodes inserted
into each edge is even. Hence, I"! consists of even subdivisions of K;. The
situation for /"2 is more complex, but Andrasfai [1] established the
following theorem in 1967.

THEOREM 2 (Andrasfai). If GeI'2, then G is an even subdivision of K,.

In 1978 Lovasz [6] established that for each fixed value of J there is a
finite set of graphs (a finite “basis”) such that every graph in /"¢ is an even
subdivision of one of these basis graphs. The preceding discussion together
with Theorem 2 imply that X, is the basis for I"? (in fact, K, is the only
graph in 7"%), K, is the basis for I} and K, is the basis for I"2. Further-
more, in [7] it is shown that there is a finite basis for /"2 using the more
general operation defined in the following theorem. (The basis for I"} is
given explicitly in [7].)

THEOREM 3 (Lovasz and Plummer). Let G be a critical graph and x a
node of degree two in G. Let y and z be the neighbors of x. If y and z are
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adjacent, then {x, y, z} forms a component of G. If y and z are not adjacent,
then no node different from x is adjacent to both of them and, furthermore,
if the edges (x, y) and (x, z) are contracted, the resulting graph G' is critical
with 2(G")Y=a(G)— 1 and o(G')=d(G). Conversely, suppose G' is a critical
graph and w is any node of G'. Split w into two nodes y and z, each of degree
at least one, create a new node x and connect it to both y and z. Then the
resulting graph G is critical with §(G)=6(G").

A subgraph H of G is said to be a dé-subgraph of G if H is critical,
V(HY=V(G), «(H)=a(G) (hence d(H)=0(G)) and H does not contain
any isolated nodes. In 1975 Suranyi [11] proved the following two results
concerning J-subgraphs.

LEMMA 4 (Suranyi). Let G be a critical graph and (v, w)e E(G). If H is
a S-subgraph of G —v, then d(H, w)=d(G, w) — 1.

THEOREM 5 (Suranyi). If G is a critical graph without isolated nodes and
ve V with d(v) > 1, then there exists a é-subgraph of G —v.

Harary and Plummer [5] showed that every critical graph with §(-)> 1
contains an odd cycle, i.e., an even subdivision of the basis graph for I'..
In 1975 Chvatal [3] proved that every connected, critical graph with
6(-)=2 contains a subdivision of K, and he posed the question of
whether every connected, critical graph with 6(-) > 2 must contain an even
subdivision of K,, i.e,, an even subdivision of the basis graph for /2. The
following theorem establishes an affirmative answer to this question.

THEOREM 6. If G=(V, E) is a connected, critical graph with 6(G) =2,
then G contains an even subdivision of K.

Proof. We first note that we may assume with no loss of generality that
d(G,v) =3, Yve V. To see this, note that G is connected, so G contains no
isolated nodes. Furthermore, if G had a node of degree one, then G could only
consist of a single edge, contradicting 8(G) > 2. Finally, if (G, x) =2, sup-
pose (¥, x), (z, x)e E with y#z. Then Theorem 3 implies (y, z) ¢ E. Thus,
again by Theorem 3, we can remove x and identify y and z to obtain a connec-
ted, critical graph G’ with 6(G') = 2. It is not difficult to see that G contains
an even subdivision of K, provided G’ does, so we replace G by G'. Repeated
application of this argument allows us to assume d(G, v) = 3, Vve V.

We may further assume that no proper subgraph of G satisfies the
assumptions of the theorem, ie., that G is minimal with respect to the
stipulations connected, critical, and §(G)>2 (else we could replace G by
such a subgraph and proceed with the proof). It follows that we need only
consider cubic graphs, for if d(G, w)>3 with (v, w)e E, then let H be a
d-subgraph of G — v (see Theorem 5). By Lemma 4, d(H, w)>= 3. If H' is the
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component of H containing w, then H' is connected and critical with 6(H') >
d(H', w)—122 (see Theorem 1), contradicting the minimality of G.

The proof thus reduces to showing that any connected, critical, cubic,
minimal graph G = (V, E) contains an even subdivision of K,. We denote
n=1\V|, x=a(G), and é = 6(G).

CrLamm 1. Suppose veV and H, is a S-subgraph of G—v. Let E =
ENE(H,). Then:

(i) a(H,)=a(G) and 6(H,)=956(G)— 1.
(1) H, consists of isolated edges and & — 1 odd cycles.
(1) If (v, w)€ E, then w is contained in an odd cycle in H,,.
(iv) o(G—v—e)=aVeeck,.
(v) If (v,w)EE, then E.nE, = {(v,w)}.
(viy VweV, some edge incident to w is in E,,.
(vil) Let C,,..,Cs_, be the odd cycles in H, and e,, .., e, be the

isolated edges. If I is a stable set in G with |I| =a and v¢ I, then I saturates
C,..Cs yandey, .. e,

Proof. (i) Since G is critical, there exists a MSS which does not
include v. Therefore, x(H,)=a(G —v)=0o and 3 H,)=(n—1)—2a(H,)=
n—1-20=06—1.

(1) H,is a é-subgraph, so there are no isolated nodes. Each compo-
nent of H, must be connected and critical; moreover, minimality of G
forces d(-) < 1 for each component of H,. Therefore, each component is an
isolated edge or an odd cycle (see the discussion preceding Theorem 2).
Furthermore, 5(H,) equals the sum of J(-) for each component, so H,
contains 0 — 1 odd cycles.

(iii) This follows from Lemma 4 and (ii).

(iv) Suppose ecE,. Then a(G—v—e)za(G—rv)=a and
w(G—v—e)<a(H,)=a.

(v) Suppose (v,w)e Eand ec E,n E,,. It is easy to see that (v, w)e
E,nE,, so suppose that e# (v, w). Let I be a stable set in G—e with
[I| =x+ 1. Clearly, I cannot contain both v and w, so without loss of
generality assume v ¢ J. Then I is a stable set in G —v—e with [I|=a + 1,
which is a contradiction to (iv).

(vi) Let we V. If no edge incident to w is in E,, then w has degree
three in H,, contradicting (ii).

(vil) Suppose [ is a stable set in G with |/| =a and v¢ I Then [ is
a stable set in H, with |I| =a(H,). Therefore, I induces a MSS in each
component of H,; ie., [ saturates C,,..,Cs_, and e, .., e,. |
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Py

FiG. 1. The structure of C,.

Now let xe V and let e, = (x, w), e, =(x, w,), €5 =(x, w;) be the three
edges incident to x. Let H,, H,, H,, and H, be d-subgraphs of G — x,
G—w,, G—w,, and G—w;, respectively. Let C, be the odd cycle in H,
that contains x, for i=1, 2, 3. Let P be the path from w, to w; on C,\{x},
where 1 <i, j, k <3 are distinct indices. Obviously, P, has odd edge-length.
Note that P, and P, have the same underlying undirected path. Now we
want to show that C, v C, U C, contains an even subdivision of K,. The
main difficulty is that the P,/s may intersect. The remainder of the proof
concentrates on finding nonintersecting subpaths of the P,’s that are of the
correct parity to form an even subdivision of K,. See Fig. 1.

In our subsequent development we let /; be a stable set in G —e,; with
(l=a+1,fori=1,2,3.

CrLamm 2. The nodes of P alternate between I, and I; (see Fig.2).

wy

e .- €2

w, B - = &} —— u,
FiG. 2. Distribution of /, on Cs.
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F16. 3. Alternation of the /s on Q,, and Q,,.

Proof. It is easy to see that |I;|=a+1, w, ¢, and a(H,)=«a imply
that |1, V(Cy)| = (IV(Cy)| + 1)/2. This implies the nodes on P, which are
of even distance from w, are in /,. Similar reasoning holds for w;, and 7;. 1|

Cramm 3. P contains exactly one edge, call it e;, such that neither of its

endnodes is in I, (see Fig.3).

ijs

Proof. The stable set I,\{w,} saturates C,, so C, contains exactly one
edge such that both of its endnodes are not in /. This edge must lie on P
because xe [, \{w,}. |

Let a; be the first node of ¢; encountered when traversing P, from
w, to w, and let Q; be the subpath of P, from w, to a;. Note that Q;
and @, are node-disjoint, whereas P; and P, specify the same underlying
undirected path. Note also that @, or Q,; may consist of a single node.

CiaM 4. [,nQ,=1,nQ; and I,nQ; =1, Qy; ie., the nodes of Q;
alternate between I, and I; ~ I, with the first and last node of Q; in I, (and
the nodes of Q,; alternate between I, and I, I,) (see Fig. 3).

Proof. Let P be the path from a,; to a; on C,\{e;}. Claim 3 implies
that alternate nodes of P must be in /,. Now, xel, implies w,¢ I, and
w; ¢ I,. Furthermore, a; ¢ I, and a, ¢ I;, by definition. Finally, by Claim 2,
Q,, alternates between /; and /,, and the result follows. [

We observe that the proof of Claim 4 also demonstrates that a, e /;, for
any distinct index pair.
CLaM 5. The path P, contains no node of Q,; (nor of Q) (see Fig.4).

Proof. Since P, alternates between nodes of I; and I, it contains no
node of I;n 1, nor any node of I\(/;ul,). But Q; alternates between
nodes in 7, and I,n17,. |

We now denote £, = E\E(H,) and E;= E\E(H,), for i=1, 2, 3.

582b 59°1-6
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alternation between [ and I, N [

intersection may occur

FiG. 4. The structure of the Q,s.

CLAM 6. Let the edges of P, be labeled d,, ..., d,. Then the edges with
odd index are not in E, and the edges with even index are in E_; i.e., the edges
of P are alternately in and not in E ., with the first and last edge not in E .

Proof. Let d,=(u,v) be an edge of P, with m odd (see Fig. 5a).
Suppose d, € E, and I is a stable set in G —d,, with |{| =« + 1. Then, by
Claim 1(iv), d,,€ E, implies x e I. Thus w, ¢ I, so Claim [{vii) implies both
I\{u} and I\{v} saturate C,. A simple parity argument shows that this
cannot happen, so d,,¢ E,. Now suppose m is even and consider the three
edges adjacent to v (see Fig. 5b). One of these edges is d,,,,, which is
not in E, by the above argument. Another one of the edges is in E, and
therefore not in £, by Claim 1(v). Hence, the remaining edge, 4,,,, must be
in £, by Claim 1(vi). |

u den v dma ¢ E:
wy c .
z € E;
d'ﬂ
w; u v w;
a b

FiG. 5. Distribution of edges in £, on P,.
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PlZ

Fi1G. 6. P,'s partitioned by the y/s.

Now let P,=v,,d,,v\,d,, .., d,,v,, where vo,=w, and v,=w,. For
i=1,2,3, let y, be the last node of P,,,, encountered when traversing
P, from w, to w, ,, where addition is performed modulo 3 (see Fig. 6).

CramM 7. The number of edges between w; and y, on P, , is even.

Proof. By symmetry it suffices to show this for the case of w,, y,, and
P,,. From Claim 5, P, cannot use any node on Q,, and P, cannot use
any node of Q;, so P,;nP,,S0,,n Q5. According to Claim 4, the
nodes of both Q,, and Q,; alternate between I, and I, ~I;. Therefore, if
a node lies on both P, and P,,, then its distance from w, along P, must
be of the same parity as along P,;. Suppose that y, is of odd (edge-)
distance from w, on P,; ie., y,=v,, with m odd (see Fig. 7). Then y, is
of odd distance from w, on P, and, by Claim 6, the next edge on P,; must
be in E.. (Note that v, =w, is impossible, since w,e& Q,,; thus 4, ,
exists.) However, the only edge incident to v, that is in E, is d,,,, (since
d,¢ E,.and f¢ E,, where fis the edge of  that is incident to y, and is not
on C,). Therefore, v,,,, is the next node on P, which contradicts the
choice of y as the last node on P, when following P, from w, to w;. |}

CLamm 8. Let R, be the subpath of P, from y, to y,. Let R, be the
subpath of P, from y, to y, and let Ry be the subpath of P, from y, to y,.
Let C be formed by adjoining R,, R,, and R;. Then C is an odd cycle.

Proof. The paths R,, R,, and R, are disjoint by construction (see
Fig. 8), except for their endnodes y,, y,, and y;, so C is a simple cycle.
Since y, is of even distance from w, on P,,, y, is of even distance from w,
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Um-1 dn ¢ E, h dmi1 € E; U4l

feEy= f¢E,

Fic. 7. The status of the edges adjacent to y,.

on P, and P, is an odd path, then R, must be an odd path. The same
holds for R, and R,. Thus, C has an odd number of edges. ||

CLamM 9. Let path S, be formed by adjoining (x, w,) to the subpath of
Py, from wy to y,. Let §, be formed by adjoining (x, w,) to the subpath
of Py from w, to y,. Let Sy be formed by adjoining (x, ws) to the subpath
of Py from ws to yy. Then S|, S,, S5, and C form an even subdivision
of K,.

Proof. Since y, is of even distance from w, on S;, S; must be an odd
path, i=1,2,3. By the choice of the y’s, the S§’s and C are mutually
disjoint, except for y,, v,, and y;. From Claim 8, C is an odd cycle and y,,
v,, ¥3 divide it into arcs of odd length. |}

Ry

wy

FiG. 8. The subpaths R, R,, and R;.
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Fi6. 9. An even subdivision of K, centered at x.

The determination of the even subdivision of K, depicted in Fig. 9
completes the proof of the theorem. ||

With the aid of Theorem 6, it is easy to see that if Ge I'® with § >2, then
G contains a graph in "%, I'!, and I"2. An interesting open question is
whether or not this can be generalized to the following: If Ge I'® with
8> 1, then G contains a graph in each of I'?, I'!, .., I'>~'. Of course, an
affirmative answer would imply that G contains an even subdivision of a
basis graph from each of 70, I'}, .., I'?" "

Berge [2] proved that every pair of adjacent edges in an a-critical graph
is contained in a chordless odd cycle. This result can be restated as every
pair of adjacent edges in an wa-critical graph is contained in a subgraph
which is in I"!. The above development shows that those graphs which are
minimal in the sense required in the proof of Theorem 6 satisfy the more
general stipulation that every triple of edges which share a common
endnode is contained in a subgraph which is in /"2, i.e.,, an even subdivision
of K,. We conjecture that this property remains valid for all a-critical
graphs.

We close by mentioning that the characterization of «-critical graphs
given in Theorem 6 is used in [10, 8] to show that every rank facet of the
stable set polytope, other than those derived from edges and odd cycles,
contains an even subdivision of K,. This leads to a polynomial time algo-
rithm to find a maximum cardinality stable set for the class of graphs
which do not contain an even subdivision of K,. While we are unaware of
a polynomial time algorithm to recognize graphs which do not contain an
even subdivision of K,, the algorithm from [10,87 can also take an
arbitrary graph as input and in polynomial time either produce a
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m

aximum cardinality stable set or prove that the graph contains an even

subdivision of K, (without actually finding the even subdivision of K,). We
also mention that in [8, 9] the concept of «-criticality is generalized to the
case where weights are assigned to the nodes, and a characterization
analogous to Andrasfai’s theorem (Theorem 2) for graphs in I'2 is
obtained.
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