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Abstract

In this paper, e/cient simultaneous strategies are presented for the optimization of practical problems
involving PDE-models. In particular, reduced sequential quadratic programming methods for problems with
only few in5uence variables and simultaneous quadratic programming iterations are discussed. As a result
we obtain algorithms whose overall computational complexity is reduced considerably in comparison to a
black-box approach.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction and motivational problem

The industrial acceptance of mathematical optimization methods not only depends on the com-
putational e:ort to achieve optimal solutions, but also on their implementational ease. In particular
in applications involving PDE-models, many practitioners still use the so-called black-box approach.
Here, simultaneous algorithmic approaches for real world problems are presented which possess a
low computational complexity but are nevertheless of implementational simplicity (at least in the
<rst part of the paper). Two applications are discussed: parameter identi<cation of Bingham 5ow
and topology design in electromagnetics.

The <rst practical problem to be considered is the material characterization of non-Newtonian
5uids on the basis of pressure measurements. The problem formulation is the outcome of a joint
project with the company Braun Inc. in Friedrichshafen, Germany, in collaboration with the research
group of Gabriel Wittum, IWR, University of Heidelberg, Germany.
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Braun Inc. produces forming dies for extrusion devices of pastes used in the production of ceramic
wafers for catalysts in automotives, power stations and medicine, as well as bricks and tiles and
similar things. There are high demands on material properties of ceramic bodies such as fracture
resistance, shape stability, porosity, heat conductivity, etc. The production of forming dies is very
expensive, therefore, numerical simulation methods which reduce the necessary number of hardware
prototypes have a natural economic appeal. Typically, the shaping of ceramic bodies is performed
by augers of extruders, where the actual shaping takes place in the pressing tool composed of a
die connected to a pressure head. The ceramic 5uid pressed through the die is considered as a
viscoplastic 5uid with wall slip and is characterized by a Bingham model involving four model
parameters. The stationary 5ow considered here is described by the following PDE for velocity u
and pressure p:

div u = 0;

−div(2�(D) ·D) +∇p = 0: (1)

Here, the nonlinear viscosity � depends on the strain tensor

D= 1
2 (∇u + (∇u)�)

in the way

�(D) = �B + �F(2ID)−1=2; (2)

where ID is the second invariant of D, ID = 1
2 (traceD2 − (traceD)2).

These Bingham 5ow equations involve two material parameters, the Bingham viscosity �B and the
yield stress �F. The nonlinear viscosity term (2) leads to severe numerical problems in regions of
small velocity variations. There, one should ideally switch to a 5ow with constant velocity, which
can be done, e.g., in the form of variational inequalities. Here we use an alternative approach, where
we regularize Eq. (1). This means that we introduce a small parameter � in the generalized viscosity
function �, so that

�(D) = �B + �F(� + 2ID)−1=2: (3)

Thus, we get an approximation of system (1) at which � is bounded. The solution of the regularized
system deviates from the unregularized Bingham solution. An exploration of the regularization error
in a model problem is carried out in [8], where, it is shown that this error tends to zero like O(

√
�).

In addition to these equations, the model of the ceramic pastes requires special boundary condi-
tions. The reason is a phenomenon called wall sliding. Microscopically, we have a two-phase 5ow
on the boundary yielding a lubrication e:ect. Macroscopically, this is described by sliding, resulting
in a Navier-type boundary condition that, in 2D, has the form

nTTt = kuTt + �G;

uTn = 0;
(4)

where t and n are the unit normal and unit tangent vectors to the boundary, respectively. Here we
assume that the tangential stress and the tangential velocity are codirected on the boundary. These
conditions include two additional scalar parameters: a wall sliding factor k and a sliding limit �G.



V. Schulz / Journal of Computational and Applied Mathematics 164–165 (2004) 629–641 631

Fig. 1. Scheme of the measurement device.

Thus, for the mathematical description of the 5ows of the ceramic pastes we have the system of
PDEs (1) with the boundary conditions (4) on walls. (Besides in5ow and out5ow boundary condi-
tions can be imposed on some parts of the boundary.) The whole model involves four parameters:
�B, �F, k, and �G. The aim of the parameter estimation procedure described here is to <nd these
values by using experimental data obtained by the device described in the next section. The nonlin-
earity of the PDE system together with its boundary conditions poses a considerable challenge to the
numerical treatment of the resulting parameter identi<cation problem. Additionally it is necessary to
note as well that the pressure p is de<ned by this system only up to a constant. Methods for the
discretization of this system and the numerical solution of the resulting nonlinear discrete equations
are considered in detail in [7,8].

The parameters are estimated by using data obtained from a device whose scheme is shown in
Fig. 1. This is a conical channel with rigid walls. The paste is pressed through this channel at a
constant velocity in the direction of the large arrow. During this process, we measure the normal
stress at seven <xed points on the upper wall (further referred to as measurement points). The values
of the normal stress, as well as the in5ow velocity of the paste, are then used for the parameter
identi<cation.

In order to model the 5ow of the paste inside the device we consider the interior (the polygon) as
a region 
 on which we impose the PDE system (1) with the generalized viscosity function. On the
part �0 ⊂ 9
 of the boundary corresponding to the rigid walls we assume boundary conditions (4).
On the in5ow boundary �in we impose Dirichlet boundary conditions for the velocity specifying the
constant in5ow velocity v0 along the whole segment. On the out5ow boundary �out we impose zero
vertical velocity as boundary condition and require

∫
�out

p ds=const. For every set q=(�B; �F; k; �G)T

of four parameters this system de<nes the velocity <eld u and the pressure <eld p. Besides, we write
all the partial di:erential equations comprising system (1) and the boundary conditions in the form

c(u; p; q) = 0: (5)

Denote the measurement points by P1; P2; : : : ; PK (in our case K = 7), in 5ow direction. For every
Pi we have a measured value �̂i of the normal stress. Simultaneously, for every given set q of the
parameters we can get the <elds u and p from Eq. (5) and compute the normal stress �P(u; p; q)
at every point P ∈�0:

�P(u; p; q) = nT
P TP(u; p; q) nP;

where nP and TP(u; p; q), respectively, are the unit normal vector to the boundary and the stress
tensor at the point P. The “correct” parameters are then determined as the solution of the nonlinear



632 V. Schulz / Journal of Computational and Applied Mathematics 164–165 (2004) 629–641

constrained optimization problem

f(u; p; q) =
K∑
i=2

1
�2
i

((�Pi(u; p; q)− �P1(u; p; q))− (�̂i − �̂1))2 → min;

s: t: c(u; p; q) = 0; (6)

where �i=0:08(�̂i+�̂1) are the standard deviations for the di:erence evaluations, if all measurements
are assumed to be independently normally distributed with expectation �̂i and standard deviation
0:08�̂i. Although the model de<nes the normal stress only up to a constant, the di:erences of the
stresses are de<ned exactly and should approximate the di:erences of the measured normal stresses.
The numerical solution is carried out in a direct approach, i.e., by discretization of the model and the
objective functional. This leads to a <nite dimensional nonlinearly constrained optimization problem
of a very large size that requires the application of structure exploiting methods in order to reduce
the computation time.

Further details of the problem formulation and the discretization can be found in [14].

2. Black-box versus reduced SQP approaches

The least-squares optimization problem (6) involves the solution of a discretized PDE as an
underlying problem. The solution of the discretized PDE typically involves an iterative technique by
its own. Therefore, an obvious and often used approach for the solution of the overall optimization
problem is the use of a nested loop approach, where in an outer iteration cycle an optimization
algorithm iterates over the optimization in5uence variable and an inner loop over the PDE model
variables guarantees feasibility of all intermediate steps. This is also called “black-box approach”
since the inner PDE-loop is treated as a black-box, producing solution variables for the PDE for a
given problem formulation, where during the optimization process one does not care what kind of
inner processes this black-box involves.

There are cases in practical applications where feasibility at all costs is an issue, but they are rare.
In most practical problems, fasibility is only required for the solution of the optimization problem.
This fact can be exploited in such a way that one replaces the inner black-box iteration process by,
e.g., just one iteration of that process. If we consider a Newton-type method for the inner loop with
an iterative linear solver, then one might conceive using just one Newton step instead of the whole
Newton iteration or even just one step of the linear solver within the Newton method.

The latter type of optimization strategies are called simultaneous strategies. All those simultaneous
strategies must be justi<ed by convergence considerations. To be more speci<c, we consider the
following abstract optimization problem formulation:

min
x;q

f(x; q); f : Rnx+nq → R;

s:t: c(x; q) = 0; c : Rnx+nq → Rnx ; Cx := 9c=9x nonsingular;

g(q)¿ 0; g : Rnq → Rng ;

(7)

where x∈Rnx ; q∈Rnq . The cost functional f denotes the output least squares objective here. The
equality constraint c summarizes the discretized 5ow equations as discussed in the previous section
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Fig. 2. Sketch of a PRSQP method.

for the 5ow state variables x and the model parameters q. The inequality constraint collects typical
range constraints for the parameters which are always tacidly stated. We assume su/ciently high
di:erentiability of all functions involved. The condition Cx nonsingular re5ects the natural assumption
that the 5ow equations can always be solved. From that assumption we can conclude the existence
of a mapping

x : q 	→ x(q) such that c(x(q); q) = 0:

Thus, we can restate the optimization problem as
min

q
f(x(q); q);

s:t: g(q)¿ 0:
(8)

The application of a sequential quadratic programming (SQP) technique to that problem formulation,
where for each parameter value q one has to provide an inner solution procedure in order to obtain
a consistent value x(q) is an example of a method within the black-box approach. If we break up
the corresponding nested loop by performing just one single Newton iteration in the inner loop, we
obtain the following algorithm:

A conceptual PRSQP method is sketched in Fig. 2.
Indices k mean evaluation at the kth iterate. One observes that although the algorithm iterates

simultaneously over both types of variables—with state increments Qxk and parameter increments
Qqk—it can be decoupled from an implementation point of view into a PDE and adjoint PDE part
and an optimization part. This kind of modularity is highly appreciated in real applications. The
matrices Bk are approximations of the Hessian of the Lagrangian

L̂(q) := f(x(q); q)− ��g(q):

It can be shown that

92L̂(q)=9q2 = T�92L(x; q)=9(x; q)2T;

where

L(x; q) := f(x; q)− ��c(x; q)− ��g(q);

denotes the Lagrangian of the original problem and

T :=

[−C−1
x Cq

I

]
a basis of the kernel of C =

[
Cx Cq

]
:
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Fig. 3. The di:erences of the normal stresses. Empty circles denote the relative measured stresses (�̂i − �̂1), the black
circles show the stresses �h; i(x; q) − �h;1(x; q) computed for the <nal guess of the optimization procedure.

In the context of SQP methods the latter Hessian is called the reduced Hessian and also the method
discussed above is called a reduced SQP method. The reduced Hessian is not built up exactly but
it is rather approximated typically by update formulas of Broyden type. Since the problem is not
reduce up to the kernel of all active constraints, we call this method a partially reduced SQP method
if we want to emphasize this fact.

Reduced SQP methods are speci<c variants of SQP methods for overall constrained optimization
problems, which gives rise to the underlying convergence theory (cf. [11]). In dealing with applica-
tions of the type discussed in Section 2, one even has to cope with inexact linear solvers within the
reduced SQP approach. Details to that problem are discussed in [14]. The resulting algorithm yields
the results depicted in Fig. 3.

The computations have been performed on a SGI Indigo2 with R4400 processor and took 767 s.
As a comparison, a single computation of the velocity and pressure <eld took 318 s on the same
machine, which means that the simultaneous approach enabled us in this example to solve the
whole optimization problem in only approximately double the time necessary for the solution of
the forward problem. Similar advantageous computing times are also reported for turbine blade
optimization problems in [4].

Remark. In contrast to that, a black-box SQP approach needs even for a completely linear problem
at least four SQP-iterations for convergence, where each iteration costs approximately twice the e:ort
as one 5ow solution because the adjoint solver is iterative and approximately as expensive as the
forward solver. In total, that means at least a factor of eight compared to a forward 5ow solution.

3. Simultaneous QP solution

The simultaneous optimization strategy developed in the previous section is most advantageous
when the number of in5uence variables is comparatively low—because of the use of update formulas.
Also in di:erent settings, however, simultaneous strategies can be developed on the basis of SQP
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methods. Here, we present a practical example where the quadratic subproblems within a SQP method
are solved by a simultaneous iterative solver. The problem considered is the topology optimization of
electromagnetic media described by Maxwell’s equations. This is a joint work together with R.H.W.
Hoppe and S. Petrova from the University of Augsburg.

We are looking for an optimal distribution of conductivity in a <xed geometrical con<guration.
In the stationary case, one obtains problem formulations in electro- and magneto-statics, which are
similar to elasto–mechanical problems. The mathematical models lead to elliptic boundary value
problems corresponding to a minimization of energy dissipation given by the Joule–Lenz law. We
suppose that our domain is occupied by an isotropic conductor with a <nite conductivity. In order
to simplify the presentation, we consider the stationary case, i.e., constant currents are available in
the conductor.

We consider electromagnetic <elds in the low-frequency regime which can be described by the
quasi-stationary limit of Maxwell’s equations also known as the eddy currents equations

9B
9t + curlE= 0; divB= 0; curlH = J; (9)

B= �H; J = �E: (10)

Here, E and H stand for the electric and magnetic <elds, respectively, B and J denote the magnetic
induction and the current density, and � and � refer to the magnetic permeability and the electric
conductivity, respectively (for a justi<cation of the eddy currents equations see, e.g. [1]).

In the 2D case, assuming the current density to be given by

J = (J1(x1; x2; t); J2(x1; x2; t); 0);

the electric and magnetic <elds take the form

E= (E1(x1; x2; t); E2(x1; x2; t); 0); H = (0; 0; H (x1; x2; t)):

We use a potential formulation by introducing a scalar electric potential ’ and a magnetic vector
potential A according to

E=− grad’− 9A9t ; B = curlA

where curl is the 2D scalar operator curl(A1; A2) = 9A1=(9x2) − 9A2=(9x1) (cf. [3]). Then,
(9)–(10) give rise to the following coupled system of PDEs for the electromagnetic potentials ’
and A

div(� grad’) = 0 in 
; (11)

�n · grad’ =

{
I% given data on �% ⊂ 9
;

0 else;
(12)

�
9A
9t + curl �−1curlA =

{−� grad’ in 
;

0 in R2 \ T
;
(13)

the latter one with appropriate initial and boundary conditions.
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Note that in (12) we refer to I% as the 5uxes associated with the contacts �% ⊂ 9
; 16 %6Nc,
satisfying the compatibility conditions

∑Nc
%=1 I% = 0.

The electric energy dissipation given by the Joule–Lenz law reads as follows:

f(’; �;A) :=
∫


J · E dx: (14)

In particular, in the stationary regime this reduces to

f(’; �) =−
∫


J · grad’ dx =−

∫



div(’J) dx: (15)

The last equality in (15) follows from div(’J)=J·grad’+’ div J, taking into account that div J=0
in view of (9).

Using Gauss’ theorem and the Neumann boundary conditions from (12) we get

f(’; �) =−
∫
9

n · J ds ’ =

Nc∑
%=1

∫
�%

I%’ ds: (16)

We solve the optimization problem for the energy dissipation given by (16).
Find

min
’;�

f(’; �) = min
’;�

∑
%

∫
�%

I%’ ds; (17)

subject to the following constraints:

’ satis<es (11)–(12);∫



� dx = C (mass constraint);

�min6 �6 �max (conductivity box constraint): (18)

Here, �min and �max are a priori given positive limits for the conductivity and C is a <xed given
value. In general formulations of nonlinear programming problems, the objective function f and
the inequality constraints are supposed to be twice continuously di:erentiable. In our case this
requirement is obviously satis<ed.

After a <nite element discretization of the domain with a discretization parameter h we get the
following <nite dimensional nonlinear programming problem, where we identify the vector x with
the discretized state variable ' and the free variable vector q with the discretized conductivity �.

min
x;q

f(x; q);

s:t:
(19)

A(q) x − b= 0; q− �mine¿ 0;

g(q)− C = 0; �maxe− q¿ 0;
(20)

where e= (1; : : : ; 1)T. Here, A is the <nite element sti:ness matrix and b is the discrete load vector.
Note that the objective function (19) is just a more abstract reformulation of (17). Since the values
I% in (17) are given data, the objective function is linear in x = ' and does not depend on q = �
at all.
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The Lagrangian function associated with problem (19)–(20) is

L(x; q; �; �; z;w) := f(x; q)

+ �T(A(q)x − b) + � (g(q)− C)

− zT(q− �mine)− wT(�maxe− q): (21)

Here, �; � and z¿ 0; w¿ 0 are the Lagrange multipliers for the equality and inequality constraints
in (20), respectively. The necessary <rst-order Karush–Kuhn–Tucker (KKT) optimality conditions
read as follows:

∇xL =∇xf + A(q)T� = 0;

∇qL = 9q(�TA(q)x) + �∇g(q)− z + w= 0;

∇�L = A(q)x − b= 0;

∇�L = g(q)− C = 0;

D1z = 0 and D2w= 0; z¿ 0; w¿ 0;

(22)

where D1 =diag(�i−�min) and D2 =diag(�max−�i) denote diagonal matrices in the complementarity
conditions.

The Hessian of the Lagrangian with respect to (x; q) is denoted by

H = H (x; q; �) =

(
0 Lxq

Lqx Lqq

)
; (23)

where

Lqx = LT
xq = 9q(�TA(q));

Lqq = 92
qq(�TA(q)x):

Our purpose is to <nd an isolated (locally unique) local minimum of the problem (19)–(20). We
apply a primal–dual interior point approach involving a barrier function.

The logarithmic barrier function associated with the optimization problem (19)–(20) consists of
solving a sequence of minimization subproblems of the form

min
x;q

)(x; q; p);

)(x; q; p) : =f(x; q)− p(log(q− �mine) + log(�maxe− q)); (24)

subject to equality constraints

A(q) x − b= 0 and g(q)− C = 0; (25)

where )(x; q; p) is the barrier function and p¿ 0 is the barrier parameter. We suppose here that
q¿�mine and �maxe¿q, so that the logarithmic terms serve as a barrier. This method is obviously an
interior–point method in the sense that it keeps iterates strictly feasible with respect to the inequality
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constraints. The subproblems (24)–(25) are solved for decreasing values of p and have the following
Lagrangian:

Lp(x; q; �; �) := )(x; q; p) + �T(A(q)x − b) + � (g(q)− C):

The <rst-order KKT conditions for the logarithmic barrier optimization subproblems result in

∇xLp =∇xf + A(q)T� = 0;

∇qLp = 9q(�TA(q)x) + �∇g(q)− pD−1
1 e + pD−1

2 e = 0;

∇�Lp = A(q)x − b= 0;

∇�Lp = g(q)− C = 0:

(26)

A comparison of the second rows in (22) and (26) reveals that the terms pD−1
1 e and pD−1

2 e may
serve as Lagrange multipliers z and w for the inequality constraints. The interior–point method is
now characterized by substituting the last two complementarity conditions in (22) by the perturbed
complementarity conditions

D1z = p e and D2w= p e: (27)

Our primal–dual interior-point algorithm is based on a Newton–type method applied to three sets of
equations: primal feasibility (x; q), dual feasibility (�; �) and perturbed complementarity conditions,
related to (z;w). We denote by + := (x; q; �; �; z;w) the solution of the optimization subproblem.
Then, the search direction is given by �+ := (�x;�q;��;��;�z;�w). The update + ← + +
�+ is determined by the increment �+ computed by using the Newton method for the following
p-dependent system of equations:

Kp � + =−Fp(+); (28)

where (28) is often referred to as the primal–dual system and solved at each iteration with a
decreasing positive parameter p. More precisely, (28) is equivalent to



0 Lxq Lx� 0 0 0

Lqx Lqq Lq� Lq� −I I

L�x L�q 0 0 0 0

0 L�q 0 0 0 0

0 Z 0 0 D1 0

0 −W 0 0 0 D2







�x

�q

��

��

�z
�w




=−




∇xL

∇qL

∇�L

∇�L

∇zL
∇wL




; (29)

where I stands for the identity matrix, Z = diag(zi) and W = diag(wi) are diagonal matrices. The
remaining nonzero entries of Kp are given by (24) and the following expressions:

L�x = LT
x� = A(q); L�q = LT

q� = 9q(xTA(q)); L�q = LT
q� =∇Tg(q): (30)

Note that L�x = A(q) is the sti:ness matrix of the electric potential equation, Lqq is a diagonal
matrix and L�q =∇Tg(q) is just one row vector.
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Now we eliminate the increments for z and w from the <fth and sixth rows of (29), namely,

�z = D−1
1 (−∇zL− Z�q); �w= D−1

2 (−∇wL + W�q): (31)

Substituting (31) in the second row of (29), we get the following linear system for the increments
of  := (x; q; �; �), denoted by � := (�x;�q;��;��):

K̃p � =−2̃p( ); (32)

where K̃p is the matrix and 2̃p( ) is the right-hand side of the following system:


0 Lxq Lx� 0

Lqx L̃qq Lq� Lq�

L�x L�q 0 0

0 L�q 0 0






�x

�q

��

��


=−




∇xL

∇̃qL

∇�L

∇�L


 : (33)

The qq-entry of K̃p is now replaced by

L̃qq = Lqq + D−1
1 Z + D−1

2 W;

and the modi<ed entry for the right–hand side is

∇̃qL =∇qL + D−1
1 ∇zL− D−1

2 ∇wL:

The matrix Kp (from now on we omit the subscript p and denote the matrix by K) is typically
inde<nite. Similar inde<nite systems of linear equations arise in the computation of saddle points
when Stokes- and Navier–Stokes equations are solved. Iterative methods based, e.g., on the Uzawa
algorithm for the solution of saddlepoint problems have been proposed in [2]. Direct methods for
the solution can also be applied where direct range space and null space methods are distinguished.
In [12], this distinction has been transferred to iterative methods.

First, let us consider the following range space formulation of K :

K =

(
A BT

B D

)
=




0 Lxq Lx� 0

Lqx L̃qq Lq� Lq�

L�x L�q 0 0

0 L�q 0 0


 : (34)

Here,

A =

(
0 Lxq

Lqx L̃qq

)
and D =

(
0 0

0 0

)
;

so that in the Schur complement S := D− BA−1BT the <rst block A of K is taken as a pivot block
and its de<niteness plays a crucial role. In many practical applications, such as: (i) solving discrete
saddlepoint problems arising in Stokes or Navier–Stokes equations; or (ii) linear programming prob-
lems, the block A is positive de<nite. For nonlinear convex problems (i.e., convex objective function,
linear equality constraints and concave inequality constraints) the Hessian of the Lagrangian function
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Fig. 4. Material distribution (100 × 100 mesh, 6 contacts).

is positive semide<nite. Preconditioned iterative solvers for the corresponding saddlepoint problems
have been proposed, for example, in [10], and in the context of multigrid methods in [13].

We also consider the null space formulation of K :

K =

(
A BT

B D

)
=




0 Lx� Lxq 0

L�x 0 L�q 0

Lqx Lq� L̃qq Lq�

0 0 L�q 0


 ; (35)

where

A =

(
0 Lx�

L�x 0

)

is now an inde<nite, but nonsingular matrix. Moreover, we remind that L�x = A(q) is exactly
the sti:ness matrix corresponding to the electric potential Eq. (11). Hence, A−1 exists, and the
Schur complement in this case S = D − BA−1BT is correctly de<ned. Furthermore, iterative solvers
implementing A−1 are already available, which is a typical situation for optimization problems,
where discretized di:erential equations form the bulk of the constraints. Therefore, the null space
formulation turns out to be a more natural and attractive approach for solving the condensed primal–
dual system, see, e.g., [5,9,15].

We use transforming null space iterations for our problem (33), as proposed in [9] in the context
of multigrid methods. Transforming iterations have been introduced earlier as smoothers for multigrid
methods in range space formulations by Wittum [13]. Here, these null space iterations are directly
used as iterative solvers. Due to page limitations, we refer to [6] for more details. We conclude here
by presenting an example of numerical results in Fig. 4.
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