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The early cortical primordium develops from a sheet of neuroepithelium that is flanked by distinct
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signaling centers. Of these, the hem and the antihem are positioned as longitudinal stripes, running
rostro-caudally along the medial and lateral faces, respectively, of each telencepahlic hemisphere. In this
review we examine the similarities and differences in how these two signaling centers arise, their roles
in patterning adjacent tissues, and the cells and structures they contribute to. Since both the hem and
the antihem have been identified across many vertebrate phyla, they appear to be part of an evolutionary
em
ntihem

conserved set of mechanisms that play fundamental roles in forebrain development.
© 2009 Elsevier Ltd.
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herefore, these two structures are separated by the expanse cor-
ical neuroepithelium (Fig. 1B) except at the extreme caudal pole
f the telencephalon, where they almost meet [5], separated by a
mall domain of cortical neuroepithelium ([2]; Fig. 1C).
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Along the medio-lateral axis, the telencephalic neuroepithelium
can be divided into four different types of pallial tissue based on
gene expression patterns (Fig. 1). The medial pallium (MP) con-
tains the hem and the hippocampal primordium; the dorsal pallium
(DP) corresponds to the neocortical primordium; the lateral pal-
lium (LP) is thought to give rise to the piriform cortex; and the
ventral pallium (VP), which together with the LP, contributes to
specific components of the claustroamygdaloid complex [3,4]. The
ventricular zone of the VP is identified as the antihem [5]. An adja-
cent subpallial region, the dLGE, is also thought to contribute to the
amygdaloid complex ([4,6]). The VP and the dLGE lie on either side
of the pallial–subpallial boundary (PSB; [7]). A prominent pallisade
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Defining the hem and antihem: position, molecular
expression domains and signaling molecules

Neuroepithelium that gives rise to the cerebral cortex is flanked
by the hem medially, and the antihem laterally ([1,5]; Fig. 1A).
of radial glial fibers delineates the PSB, originating in a region of
the ventricular zone termed the “corticostriatal junction” [8], and
extending up to the pial surface in the region of the piriform cortex
and amygdala.
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Fig. 1. The positions of the hem and the antihem in the dorsal telencephalon. (A) A schematic of an E12.5 telencephalic hemisphere viewed from the lateral face, showing
the antihem (red). The hem is schematized on the medial face (green). Rostral is to the left. (B) and (C) are schematics representing mid-level and caudal sections of such a
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emisphere, showing the medial pallium (MP) which includes the hem (green) and
allium in red (VP/antihem), and subpallium (SP). Asterisk denotes DP tissue pres
mygdaloid nucleus nLOT2. Modified from Remedios et al. [2] [www.nature.com/n
eader is referred to the web version of the article.)

Dbx1, a transcription factor, is restricted to the VP ventricu-
ar zone [4,7,9]. This exclusive expression of Dbx1, as well as an
nriched expression of the secreted frizzled related gene sFrp2,
erves to delineate the antihem from adjacent domains [1,5,7,10].
he VP and the adjacent dLGE both share an enriched expression
f Pax6. In the VP, this expression is limited to the ventricular zone
the antihem), whereas in the dLGE Pax6 expression extends into
he mantle [7].

The hem and the antihem were proposed to be important
mbryonic signaling centers on the basis of their locations, flank-
ng the cortical neuroepithelium, and their enriched expression of
everal different types of signaling molecules. The hem expresses
ignaling molecules of the Wnt family, Wnt2b, 3a, and 5a. Sev-
ral members of the Bmp gene family are expressed in broader
omains that include the adjacent choroid plexus and/or hip-
ocampal primordium [11,12]. The antihem expresses epidermal
rowth factor (EGF) family members, a fibroblast growth fac-
or Fgf7, as well as a Wnt signaling inhibitor Sfrp2 [1,5]. Of the
everal EGF family members, ligands Tgf�, Nrg1 and Nrg3 are con-
entrated at the antihem. Egf is itself expressed throughout the
entral neuroepithelium, but is not concentrated at the PSB [5,13].
frp2 is intensely expressed in the antihem, and more weakly
n the rest of the telencephalic neuroepithelium [1,5]. Members
f this family bind directly to Wnts and act as Wnt antagonists
14–16].

In the subsequent sections, we will review the mechanisms that
egulate the positions of the hem and the antihem, and how these
ositions enable the signaling centers to control the structural orga-
ization of different brain structures.

. Specification of the hem and the antihem

Along the rostro-caudal axis, the antihem is more pronounced
ostrally, appearing at levels anterior to the hem. In contrast, the
em is seen from mid-levels, and is most prominent caudally, per-
isting at levels where the antihem is no longer present [5,12,17].
hese positions parallel the graded expression of developmental
ontrol molecules in the telencephalon: Pax6 is expressed in a ros-
rolateral (high) to caudo-medial (low) gradient whereas Lhx2 and
mx2 show the opposite gradients [18,19]. Pax6 is required for the
pecification of the antihem ([1,5]). Lhx2 suppresses both hem and

ntihem fates, and both structures are expanded in the Lhx2 mutant
17,20,21]. The hem and the antihem are non-cortical in that they
o not contribute to the hippocampus or the neocortex. However,
ells of the prospective cortical primordium take on either hem or
ntihem fate in the absence of Lhx2, revealing a fundamental com-
ppocampal primordium (blue), the dorsal pallium (DP), lateral pallium (LP), ventral
tween the hem and antihem at extreme caudal levels, which is the source of the
ndex.html]. (For interpretation of the references to color in this figure legend, the

monality between these two fates. Studies using embryonic stem
cell chimeras have demonstrated that Lhx2 null cells become hem
if located medially, and antihem if located laterally ([17]; Fig. 2).
It is unknown how this positional control of hem versus antihem
fate choice is regulated. Attractive candidates are early-expressing
transcription factors that are themselves graded in expression, such
as Pax6 and Emx2 [22], or Foxg1, which suppresses hem fate, and
appears to be required for lateral fates including that of the antihem
[23,24]. In the dorsal telencephalon of the Foxg1 mutant, medial
fates are expanded and lateral fates are missing [24]. In mosaic
embryos created by tamoxifen-induced gene disruption of Lhx2,
medially located Lhx2 null patches do not express Pax6 or Foxg1,
whereas laterally located Lhx2 null patches express both these
genes [17]. While this is entirely consistent with the requirement
of Pax6 and Foxg1 for antihem fate, it still does not explain how
these differences between medial and lateral Lhx2 null patches is
brought about in the first place. This remains a fundamental open
question: to understand the early patterning of the telencephalon
into distinct signaling centers flanking a territory of “responding”
tissue, the cortical neuroepithelium.

3. Molecular mechanisms that act to position and specify
the cortical hem

Several molecular models have been proposed to explain the
position of the cortical hem in the telencephalon. These studies
seek to explain the mechanisms which define the rostro-caudal as
well as the medio-lateral boundaries of this signaling center. Fgfs
expressed by the anterior neural ridge (ANR) are fundamental regu-
lators of mid-line patterning [25]. They activate midline expressing
transcription factors and repress Lhx2 and help establish the mid-
line domain within the telencephalon prior to invagination. At the
same time, Bmps from the roof plate restrict the extent of the Fgf
expression and are themselves repressed by the Fgfs [26–28]. Fgfs
also repress Wnt genes whose expression defines the cortical hem
[27]. This cross regulation between two groups of secreted signals
helps to define a caudo-medial position for the hem.

This domain is further refined by cross-regulatory interactions
between transcription factors Emx2 and Pax6 [29]. In partic-
ular, Emx2 appears to specify a caudo-medial domain in the
telencephalon which contains the cortical hem as well as the hip-

pocampus. Emx2 may act by restricting the anterior region of Fgf
gene expression [27]. Furthermore, Emx2 functions as an effector
of the canonical Wnt signaling from the hem to regulate prolifer-
ation within the caudo-medial region [30]. Thus Emx2 appears to
act at two stages: to establish the domain where hem induction

http://www.nature.com/neuro/index.html
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Fig. 2. Lhx2 suppresses hem and antihem fate in a position-dependent manner. (A) Hem marker Wnt2b (green) and antihem marker Dbx1 (red) reveal these structures
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ill occur, and later, to mediate the effects of hem signaling during
urther development of this region.

While these mechanisms serve to define the rostro-caudal
xtent of the hem, other mechanisms act to define the medio-lateral
oundaries of the hem with the choroid plexus and the cortex. An
arly acting regulatory mechanism involving transcription factors
f the bHLH family regulates the hem–choroid plexus boundary
31]. The hem and choroid plexus are defined by the differential
xpression of Hes and Ngn genes. At the time of boundary forma-
ion, Hes genes are enriched in the putative choroid plexus region,
ossibly as a result of the direct activation of these genes by Bmps
rom the roof plate. At the same time, this region downregulates Ngn
ene expression, which continues to be maintained in the adjacent
ortical hem. This downregulation of Ngn expression is important
n establishing the choroid plexus fate and therefore delineating the
em–choroid plexus boundary [31].

. Molecular mechanisms that act to position and specify
he antihem

Three transcription factors, Pax6, Tlx, and Gsh2, are known to
egulate the specification and positioning of the antihem. Its loca-
ion at the PSB makes the antihem vulnerable to perturbations that
isrupt dorsoventral patterning in the telencephalon.

The PSB is severely affected in the Pax6 mutant. There is a
entralization of the pallial neuroepithelium of the Pax6 mutant
elencephalon, such that the VP and LP now express subpal-
ial markers Mash1, Gsh2 and Dlx2 ([32,33,1,7,34,35]). Tlx mutants
xhibit a similar, but less severe phenotype than Pax6 mutants [36].
lx is expressed throughout the neuroepithelium, high at the lat-
ral sulcus and on both sides of the PSB. As in the case of the
ax6 mutant, the Tlx mutant too exhibits LGE characteristics at the

xpense of those of the VP [36]. In contrast, the Gsh2 mutant dis-
lays the opposite phenotype, one in which pallial gene expression
ignatures are seen in subpallial domains such as the dLGE [7,35].

detailed analysis of the interactions of Pax6 and Gsh2 reveals a
ross-repressive mechanism, wherein Pax6 is required to induce
both the hem and the antihem are expanded and there is no intervening cortical
2 null clusters scattered amidst wild-type neuroepithelium, the medial null patches
al. [17] [www.sciencemag.org]. (For interpretation of the references to color in this

VP-specific markers, and Gsh2 is necessary to suppress the expres-
sion of these genes in the dLGE, thereby restricting them to the
VP [37].

5. “Organizer” functions

5.1. Hem

The cortical hem was considered to be analogous to the dor-
sal signaling center of the spinal cord, the roof plate, which also
secretes Wnt and Bmp family molecules [12,38]. Bmp signaling
from the roof plate is responsible for patterning adjacent neuronal
fates [39], and ablation of the roof plate causes loss of specific
neuronal populations [40]. A similar role for the cortical hem was
proposed [12]. Supporting this hypothesis, the entire hippocam-
pus is missing when the hem is deleted [41], or when a particular
hem-specific signaling molecule, Wnt3a, is disrupted [42]. When
components of the Wnt signaling cascade Lef1 [43] or Lrp6 [44] are
disrupted, the dentate precursor pool is diminished and does not
mature or migrate properly. But highly reduced cell populations
of the dentate precursors were detected in each mutant [43,44].
Therefore, these studies were not able to separate a role for Wnt
signaling in the expansion of the precursor population from one in
which they act to specify of hippocampal cell fates [45].

The role of the cortical hem has also been tested in explant
culture experiments in which the hem was either removed, or
transplanted to ectopic locations of medial telencephalic prepara-
tions [46]. However, the age of the tissue used was E12.5, apparently
too late for either perturbation to have any effect on hippocampal
specification. Indeed, the authors concluded that the fine details of
hippocampal field specification must have occurred by E12.5, even
though overt differentiation of hippocampal fields occurs much

later, from E15.5 [46]. Definitive evidence of the role of the cor-
tical hem came from chimeras in which Lhx2 null cells, surrounded
by wild-type cortical neuroepithelium, differentiated into ectopic
hem tissue [17]. An ectopic hippocampus formed adjacent to each
patch of hem, with spatially correct induction and positioning of

http://www.sciencemag.org/
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Fig. 3. Ectopic hem induces and organizes multiple hippocampal fields. (A) and (B) are schematic representations of chimeric and control brains, respectively. The normal
hem is seen at the medial extreme of the E12.5 telencephalic neuroepithelium. In the chimeras, Lhx2 mutant clusters form ectopic patches of hem in the medial telencephalon.
By E15.5, control brains display markers for the hippocampal CA fields as well as for dentate granule cells. Both cell types originate in neuroepithelium and migrate away
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blue and yellow arrows) to form the characteristic morphology of the Ammon’s h
n appropriate spatial order adjacent to each ectopic hem, with the dentate granul
entate gyri and CA fields forming a double hippocampus. Modified from [17] [ww
eader is referred to the web version of the article.)

ultiple hippocampal fields (Fig. 3). This consolidated the cortical
em as an organizer for the hippocampus.

Which signaling molecules from the hem are critical for ectopic
ippocampal induction? The literature strongly supports a role
f Wnt signaling for this role. The Wnt3a, Lef1, and Lrp6 mutant
tudies all indicate that Wnt signaling is necessary for hippocam-
al development [42–44]. Furthermore, ectopic activation of Lef1
pregulated some hippocampal field markers in lateral neuroep-

thelium, demonstrating that Wnt signaling is sufficient for this
rocess [47]. In contrast, Bmp signaling has not been implicated

n hippocampal development. The Bmpr1a mutant, which lacks the
elencephalic choroid plexus, appears to form a hippocampus [48].
n terms of regulating telencephalic neuronal development, Bmp
ignaling appears to act at earlier stages, including specifying the
xtreme medial fate of the choroid plexus [48–50]; causing cell
eath [11], and regulating the expression of Lhx2 itself [21]. Further-
ore, Bmp signaling is implicated in constraining the Fgf8 domain,
hich in turn limits the domain of Wnt expression in the medial

elencephalon [27]. Thus early actions of Bmp signaling may set
n motion events which permit the formation of the cortical hem,

hich in turn induces the hippocampus. How signals from the hem
ring about the specification of distinct hippocampal field identities
emains an important open question.

An important issue is how the hem can direct not only the
pecification, but also the structural organization of multiple hip-
ocampal fields. A clue comes from examining the radial glial
alisade associated with the dentate migration. The organization
f this palisade is thought to guide the dentate cells from their
rigin at the ventricular zone adjacent to the hem to their final
ocation where they form the blades of the dentate gyrus [51]. Man-
ale et al. [17] report additional radial glial pallisades associated
ith ectopic hem tissue, which appear to guide distinct migratory

treams terminating at each dentate gyrus (Fig. 3). The organization
f the radial glial scaffolding itself is dependent on Wnt signaling
44]. Thus each patch of hem may be responsible for orienting the
caffolding adjacent to it, which would then guide the ectopically
nduced dentate cells to form an ectopic gyrus.
.2. Antihem

In contrast to the organizer function of the hem, such a role for
he antihem has yet to be identified. Nonetheless, the loss of the
d the dentate gyrus by E17.5. In chimeric brains, CA and dentate cells are induced
immediately adjacent to the hem. By E17.5, the chimeras have assembled distinct

ncemag.org]. (For interpretation of the references to color in this figure legend, the

antihem is known to correlate with severe disruption of the radial
glial pallisade at the PSB, raising a strong parallel with the role of
the hem in organizing the hippocampal radial glia. Tlx mutants have
fewer radial glial fibers at the PSB which do not appear to fasciculate
to form a palisade [36]. Pax6 is itself required for the differentia-
tion of radial glia in the forebrain [52]. Not surprisingly, the radial
glial palisade at the PSB is disrupted in the Pax6 mutant [33,53,54].
Although markers identified the radial glial progenitor cell popu-
lation, the fascicle itself could not be distinguished. Furthermore,
interneurons produced within the subpallium were detected in
greater numbers in the Pax6 mutant cortex, suggesting that some
feature of the normal PSB serves to restrict the tangential migration
of interneurons [54]. Finally, Pax6 mutant also displays profound
defects in thalamocortical and corticofugal axon pathfinding. The
underlying cause of this defect was suggested to be a combina-
tion of structural abnormalities and alterations in the expression of
specific pathfinding molecules of the Semaphorin family at the Pax6
mutant PSB [55].

Which other signaling molecules might mediate some of these
defects? Nrg1, which is concentrated in the antihem, has been
shown to be essential for the formation and maintenance of radial
glial cells [56,57]. Drawing parallels with the hem, Wnt signaling
might also regulate the radial glial pallisades organized by the anti-
hem. Wnt7b is expressed adjacent to the antihem, in the dLGE [1].
The expression of the Wnt antagonist Sfrp2 in the antihem may lead
to a concentration of the Wnt signal to the subpallial side of the PSB
[1], providing a positional signal to the radial glial pallisade.

Together, these studies support an integral role for the antihem
in mediating axon guidance and cell migration, that of interneu-
rons into the cortex as well as that of the derivatives of the lateral
telencephalon, such as the olfactory cortex, the claustrum, and the
amygdala. The latter role is likely to arise from the regulation of the
radial glial pallisade at the PSB.

6. Derivatives: similarities and differences between the
hem and the antihem
The hem was suggested to produce Cajal–Retzius cells [58] and
this was demonstrated using genetic techniques to fate map the
hem lineage [41,59]. The antihem also gives rise to Cajal–Retzius
cells, as does the septum [9]. It is not at all clear why this earliest-
born cell population has multiple origins. An attractive hypothesis

http://www.sciencemag.org/


7 & Dev

p
m
t
h

t
a
T
f
t
f
t
f
t
w
l
t
E
e
c
c
t
o

w
D
d
a
o
[
c
f
t
C

t
T
a
[
c
h
a
l
a
V
w
t
M
w
[
h
i
l
t
G
“
m
n
c
a
c
t
R
t
o
u

16 L. Subramanian et al. / Seminars in Cell

roposes that this diversity of Cajal–Retzius cell progenitor zones
ay correlate with or regulate the development of cytoarchitec-

onic differences between the neocortex, olfactory cortex, and the
ippocampus [9].

Reelin expression is a common feature to all these different
ypes of Cajal–Retzius cells. Cajal–Retzius cells from the hem and
ntihem, but not those from the septum, express calretinin [9].
he hem lineage Cajal–Retzius cells express p73 [60], but those
rom the antihem and septum do not [9]. Dbx1 expression, in con-
rast, marks cells from the antihem and the septum, but not those
rom the hem [9]. This unique combination of markers was used
o selectively ablate specific sub populations, to examine possible
unctional roles arising from this diversity of Cajal–Retzius cell sub-
ypes [9]. When antihem and septum derived Cajal–Retzius cells
ere ablated by expressing DTA (Diphtheria toxin) via the Dbx1

ocus, a significant loss of reelin expression was seen in the sep-
um and pirifom cortex at E11.5, but this was compensated for by
14.5, presumably by Cajal–Retzius cells from other sources. How-
ver, there was a gross reduction in the thickness of the lateral
ortex. This defect was selective for the lateral region, since the
ingulate cortex appeared normal, indicating an important role for
he antihem-derived Cajal–Retzius cells in regional cortical devel-
pment [9].

A surprising, counterintuitive result came from experiments in
hich hem-derived Cajal–Retzius cells were ablated by expressing
TA via Wnt3a locus [41]. This caused a massive and near-complete
epletion of Cajal–Retzius cells overlying the neocortex, which was
pparently not rescued by migration of Cajal–Retzius cells from
ther sources. Despite this, neocortical lamination was unaffected
41]. Similarly, in p73 mutants, which also display a loss of corti-
al Cajal–Retzius cells, neocortical lamination was normal except
or the absence of the hippocampal fissure, which may be due to
he loss of p73 itself [60]. Thus the precise role of hem-derived
ajal–Retzius cells continues to be elusive.

In addition to the production of Cajal–Retzius cells, the hem and
he antihem also make unique contributions to the telencephalon.
he hem produces the epithelial component of the choroid plexus,
secretory non-neuronal tissue that produces cerebrospinal fluid

61]. This is likely to be controlled by Bmp signaling [48] and by
ross suppression between the Ngn and Hes genes [31]. The anti-
em is a major contributor of excitatory, pallial-derived cells of the
mygdaloid complex. Gene expression studies [3,4,6] and genetic
ineage tracing of the Dbx1 lineage [62] indicates that the lateral
nd basomedial nuclei of the amygdaloid complex arise from the
P/antihem. The LP is thought to give rise to the basolateral nucleus
hich positions itself in between the two VP derived nuclei, and

ogether these form the basolateral complex of the amygdala [4].
echanisms that disrupt the antihem also affect these structures,
hich are consequently greatly shrunken or missing in the Pax6

6] and the Tlx mutants [36]. In contrast, consistent with the anti-
em being spared in the Lhx2 mutant, these structures are specified

n the absence of Lhx2 [63]. The radial glial pallisade at the PSB is
ikely to participate in the migration of these cells to their final des-
inations, and indeed, such migrations have been visualized using
FP electroporation [64]. However, radial glia-independent type of

chain migration” has also been reported at the PSB [65]. Further-
ore, migration of the basolateral complex of the amygdala does

ot seem to share mechanistic parallels with that in the cerebral
ortex. Reelin is required for all neocortical cells to migrate to their
ppropriate destinations [66]. Cells of the superficial layers of the
ortex require Cdk5 to migrate past the deep layers [67,68]. In con-

rast, cell migration of the basolateral amygdala is normal in the
eelin and the Cdk5 mutants [2] suggesting that the mechanisms
hat regulate the assembly of the intricate structural complexity
f the amygdaloid complex are far from simple, and as yet poorly
nderstood.
elopmental Biology 20 (2009) 712–718

7. Evolutionary perspectives

Both the hem and the antihem are evolutionarily ancient, having
been identified in several vertebrate phyla. The hem has been iden-
tified in birds [69] and also in reptiles [70]. The antihem appears
earlier, and was an important discovery as a ventral pallial territory
in amphibians [71–73].

The positions of the hem and the antihem on the medial and
lateral edges of the pallium, respectively, therefore preceded the
expansion of the pallium in mammals. This motivates the specu-
lation that the interactions of the hem and the antihem may have
played a role in stimulating the expansion of the dorsal pallium. At
the caudal telencephalon of the mouse embryo, where these two
signaling centers almost meet (Fig. 1C), the intervening tissue pro-
duces an unusual stream of migrating cells, the caudal amygdaloid
stream, that forms the nucleus of the lateral olfactory tract (layer
2; nLOT2). This is the only component of the amygdaloid complex
that originates in the dorsal pallium, in contrast to other nuclei that
arise from the lateral or ventral pallium [2]. The nLOT2 is also unique
in its dependence on two modern mechanisms for cell migration:
Cdk5 and Reelin. When either of these mechanisms are disrupted,
the nLOT2 is selectively affected, whereas the rest of the amygdaloid
complex is unperturbed [2]. Since the nLOT has itself been identified
in reptiles [74], it too predates the appearance of laminated neocor-
tex, derived from the mammalian dorsal pallium. The requirements
of migration of the nLOT2 may in fact have presaged the Cdk5 and
Reelin dependence of the mammalian neocortex. Whether the hem
or the antihem regulate any aspect of the nLOT2 specification or
migration is unknown, but their juxtaposition on either side of the
nLOT2 primordium places them as potentially significant not only
in the development, but also in the evolution of the cortex.
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