
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
H O S T E D  B Y The Japanese Geotechnical Society

Soils and Foundations

Soils and Foundations 2015;55(4):866–880
http://d
0038-0

nCor
E-m
Peer
x.doi.org/1
806/& 201

respondin
ail addre
review un
encedirect.com
w.elsevier.com/locate/sandf
www.sci
journal homepage: ww
Reliability analysis of strip footing considering spatially variable undrained
shear strength that linearly increases with depth

Dian-Qing Lia,n, Xiao-Hui Qia, Zi-Jun Caoa, Xiao-Song Tanga, Wei Zhoua, Kok-Kwang Phoonb,
Chuang-Bing Zhouc

aState Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 8 Donghu South Road, Wuhan 430072, PR China
bDepartment of Civil and Environmental Engineering, National University of Singapore, Blk E1A, 07-03, 1 Engineering Drive 2, Singapore 117576, Singapore

cSchool of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, PR China

Received 13 October 2014; received in revised form 4 February 2015; accepted 19 April 2015
Available online 21 July 2015
Abstract

This paper aims to investigate the reliability of strip footing in the presence of spatially variable undrained shear strength that linearly increases
with depth. A non-stationary random field is used to model the spatially varying undrained shear strength. A strip footing example is presented to
investigate the effect of spatially variable undrained shear strength on the performance of strip footing. The results indicate that the mean bearing
capacity for spatially variable undrained shear strength is smaller than that obtained from a deterministic analysis. Both the mean and standard
deviation of bearing capacity increase with increasing autocorrelation length. Ignoring the trend of undrained shear strength linearly increasing
with depth will significantly overestimate the probability of failure of the strip footing. A factor of safety significantly below 3.0 may be used for
designing strip footings if the trend of undrained shear strength linearly increasing with depth is considered properly.
& 2015 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

In geotechnical engineering, both the deterministic approach
and probabilistic approach have been used to evaluate the bearing
capacity of a shallow foundation. Soil parameters generally vary
spatially in both the horizontal and vertical directions (Li et al.,
2011, 2015c; Cao and Wang, 2014; Jiang et al., 2015). Due to
this nature, the probabilistic approach to evaluate the bearing
capacity considering spatial variability in soil parameters has
received more attention recently. A number of studies investigated
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the effect of spatial variability in soil properties on bearing
capacity of shallow foundations (e.g. Fenton et al., 2008; Popescu
et al., 2005; Kasama et al., 2012; Soubra and Mao, 2012; Teixeira
et al., 2012; Wang and Cao, 2013).
The assessment of the stability of shallow foundations

highly depends on the selection of a proper random field
model for describing the spatial variability in soil properties. In
the literature (e.g. Ching and Phoon, 2013a,b; Cho and Park,
2010; Griffiths et al., 2006, 2011; Jiang et al., 2014; Le, 2014;
Lloret-Cabot et al., 2014; Low et al., 2007; Phoon et al., 2003;
Zhu and Zhang, 2013; Zhu et al., 2013), the stationary random
field model has been widely used to describe the spatial
variability of soil parameters. In this model, a spatially variable
parameter is customarily decomposed into a trend function and
Elsevier B.V. All rights reserved.
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Fig. 1. Different types of spatial variability of soil property.

Table 1
Statistics of soil strength properties with depth z (modified from Lumb (1966)).

Soil Property Mean (μ) Standard deviation
(σ)

COV
(%)

Marine clay in Hong
Kong

su (kPa) 1.04zþ1.89 0.19zþ0.35 18.4

London clay su (kPa) 22.1z 3.58z 16.2
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a fluctuating component (Phoon and Kulhawy, 1999). Note
that the stationarity refers to as a weak or second-order
stationarity. In other words, the mean and standard deviation
of soil parameter do not vary with depth, and the covariance
between the fluctuating components at two different depths is a
function merely of their separation distance instead of the
absolute position. Some data from in situ tests, however, reveal
that the stationarity does not always characterize the spatial
variability of soil property (e.g. Asaoka and A-Grivas, 1982;
Haldar and Sivakumar Babu, 2009; Kulatilake and Um, 2003;
Lumb, 1966; Li et al., 2014; Sivakumar Babu et al., 2006).
Therefore, it is necessary to investigate the effect of spatially
variable soil properties on shallow foundation reliability using
a non-stationary random field model.

In view of the non-stationary characteristic underlying the
spatial variability of soil properties, a number of researchers
have paid attention to the non-stationary random field of
spatially variable soil parameters(e.g. Kulatilake and Um,
2003; Sivakumar Babu et al., 2006; Srivastava and
Sivakumar Babu, 2009). For example, Kulatilake and Um
(2003) evaluated the variance and correlation distance of cone
tip resistance (qc) using two different random field models,
namely one random field model with a constant trend function
(stationary) and the other random field model with a linear
trend function (non-stationary). They pointed out that the
stationary random field model may produce misleading corre-
lation distance. Sivakumar Babu et al. (2006) modeled the
spatial variability of qc using a non-stationary random field
with a quadratic trend function, which was further used for the
reliability analysis of a shallow foundation. Srivastava and
Sivakumar Babu (2009) adopted a non-stationary random field
with a linear trend function to describe the spatial variability of
qc associated with shallow foundation and slope stability
problems. However, the non-stationary random field of
undrained shear strength (su) where both the mean and
standard deviation of su linearly increase with depth as
reported in Lumb (1966) has not been investigated. Addition-
ally, it is recognized that the coefficient of variation (COV) of
su also varies with depth in the non-stationary random field of
su. For convenience, however, a COV of su at the depth of
influence zone is often adopted to represent the overall COV of
su in geotechnical reliability problems (e.g. Sivakumar Babu
et al., 2006; Srivastava and Sivakumar Babu, 2009). The
resultant errors caused by this simplification are not clear. To
validate this simplification, it is necessary to compare the
reliability results obtained from a constant COV and a non-
constant COV underlying the spatially variable su.
This paper aims to investigate the reliability of strip footing

in the presence of spatially variable undrained shear strength
that linearly increases with depth. A non-stationary random
field where both the mean and standard deviation of su linearly
increase with depth is used to model the spatial variability of
su, which is discretized by Karhunen–Loeve (KL) expansion
(e.g. Phoon et al., 2002). Monte Carlo simulations are carried
out to evaluate the statistics of bearing capacity and reliability
of strip footing. For comparison, the corresponding results
obtained from the stationary random field of su are also
provided. A strip footing example is presented to investigate
the effect of spatial variability on the statistics of bearing
capacity and the reliability of strip footing.

2. Spatial variability of undrained shear strength

Soil is a complex engineering material that has been formed
by a combination of various processes, such as geologic,
environmental, and physical–chemical processes (Tang et al.,
2013, 2015). Soil properties in situ exhibit spatial variability
due to the effect of these natural processes. After examining
the statistical properties of London Clay and four types of soils
in Hong Kong, Lumb (1966) divided the spatial variability in
soil property into the following three types (see Fig. 1): (a)
mean and standard deviation of soil parameter constant with
depth; (b) mean of soil parameter linearly increasing with
depth while standard deviation of soil parameter constant with
depth; (c) both mean and standard deviation of soil parameter
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Fig. 2. Effective vertical stress varying with depth for a typical clay soil
considering soil suction.
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linearly increasing with depth. Types (a) and (b) usually appear
in soil properties such as friction angle, cohesion, compression
index et al (Lumb, 1966). The reliability analysis of geotech-
nical engineering problems involving these two types of spatial
variability is well documented in the literature (e.g. Ching and
Phoon, 2013a,b; Srivastava and Sivakumar Babu, 2009). The
spatial variability of type (c), however, is only confined to the
undrained shear strength parameter (see Table 1). The effect of
this kind of spatial variability on the performance of geotech-
nical engineering systems has not been well studied. Hence,
this paper will mainly focus on the spatial variability of
undrained shear strength belonging to type (c). Since type
(a), namely stationary spatial variability, is widely used in
geotechnical reliability problems, the corresponding results for
type (a) are also provided for comparison. For brevity, the
spatial variability with mean and standard deviation linearly
increasing with depth is referred to as non-stationary spatial
variability in the context of this study.

Although the soil data in Lumb (1966) (see Table 1)
indicates that non-stationary spatial variability does exist in
reality, the mechanism behind this non-stationarity is still
unclear. Hence, the trend of undrained shear strength with
depth is investigated using an empirical relation between
undrained shear strength, current effective vertical stress (σ0vo),
and the overconsolidation ratio (OCR) of clay soil, namely Eq.
(1). This relation is usually used to predict the undrained shear
strength for slightly plastic and medium plastic soils (Kulhawy
and Mayne, 1990). As shown in Eq. (1), the effective vertical
stress and OCR are indispensable when deriving the value of
su. Thus, realistic values of effective vertical stress are first
calculated according to unsaturated soil mechanics. Second,
OCR data from different sites are collected. On these bases,
rational undrained shear strength profiles are obtained using
Eq. (1).

su=σ
0
vo ¼ ð0:2370:04ÞOCR0:8 ð1Þ
2.1. Effective vertical stress

It is well recognized that effective vertical stress is highly
influenced by water pressure. For overconsolidated clay soils,
a ground water table is commonly located at a shallow depth
below the ground surface. Soil suction or negative pore water
pressure always exists in the unsaturated zone above the
ground water table. It is necessary to consider the water
pressure using knowledge of unsaturated soil mechanics to
obtain a realistic effective stress. In unsaturated soils, the
effective stress is not the difference between total stress and
pore water pressure, but rather the difference between the total
stress and some function of negative pore water pressure or
soil suction. The general form of effective stress, σ0, for
variably saturated soils (including both saturated and unsatu-
rated soils) is given by Lu et al. (2010)

σ0 ¼ ðσ�uaÞ�σs ð2Þ
where σ is the total stress, ua is the pore air pressure, σs is
suction stress which is given by

σs ¼ � θ�θr
θs�θr

ðua�uwÞ ð3Þ

where θ is the volumetric water content, θr is the residual
volumetric water content, θs is the saturated volumetric water
content, and uw is pore water pressure. Lu et al. (2010) show
that suction stress can relate solely with ua�uw, as follows:

σs ¼ �ðua�uwÞ if ua�uwr0

σs ¼ � ðua�uwÞ
ð1þ½αðua�uwÞ�nÞðn� 1Þ=n if ua�uw40

(
ð4Þ

where α and n are two parameters in a commonly used soil
water characteristic curve(SWCC) model (van Genuchten,
1980). Note that the SWCC is an equation that describes the
relationship between the water content and matric suction.
As a component of the effective stress, the effective vertical

stress, σ0vo, can be simply derived from Eqs. (2) to (4) as

σ0vo ¼ σv�uw if ua�uwr0

σ0vo ¼ ðσv�uaÞþ ðua �uwÞ
ð1þ½αðua�uwÞ�nÞðn� 1Þ=n if ua�uw40

8<
: ð5Þ

where σv is the total vertical stress, which can be expressed as
σv=γtotal z, in which γtotal denotes the total unit weight of the
soil and z denotes the depth below the ground surface. The
distribution of uw with depth is quite complex, depending on
the boundary conditions of seepage on the ground surface. One
possible solution is the hydrostatic suction distribution, i.e.

uw ¼ γwðz�zwtÞ ð6Þ
where γw is the unit weight of water, zwt is the depth of water table.
This solution is a reasonable estimation of the in situ pore water
pressure as no rainfall, evaporation, or vegetable cover exist
(Collins and Znidarcic, 2004). Based on Eqs. (5)–(6), the effective
vertical stress can be easily obtained. For example, for a typical
overconsolidated clay with γtotal=21 kN/m

3, γw=10 kN/m
3,

zwt=2 m, α=0.03 kPa
�1, n=1.5, the effective vertical stress varying

with depth is plotted in Fig. 2. As shown in Fig. 2, the σ0vo
approximately linearly increases with depth from the ground
surface.



Fig. 3. Profiles of stress history and OCR caused by different mechanics. (a) Groundwater fluctuation (b) Erosion, glacial action or excavation.
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2.2. OCR data

As shown in Eq. (1), an OCR profile is needed to obtain an
empirical su curve. The overconsolidation ratio is defined as

OCR¼ σ0p=σ
0
vo: ð7Þ

where σ0p is the effective vertical preconsolidation stress,
which is the maximum vertical effective stress experienced
by a point in a soil mass in the past. The in situ OCR profile is
quite complex, depending on the combined effect of many
environmental factors. Possible factors include erosion, glacia-
tions, removal of overburden, fluctuation of the groundwater
table and desiccation due to surface drying or capillary flow.
For example, (a) if a normally-consolidated (NC) deposit is
subject to groundwater lowering, such as during a drought
condition, and then the water table returns, a resulting profile
of constant OCR¼γtotal/γ0 with depth occurs (see Fig. 3(a)). (b)
In another case, if an overburden pressure(Δσ0v) is removed
from a normally-consolidated deposit due to natural erosion or
glacial activity, the associated OCR is inversely proportional to
depth, as shown in Fig. 3(b). Details of the theoretical OCR
profiles caused by different mechanics can be found in Chen
and Mayne (1994).

Although the theoretical OCR profiles in Fig. 3 provide a
basis to understand the mechanics of how OCR develops, they
may be too simple to consider the combined effect of various
factors. Hence, OCR data from different sites (Chen and
Mayne, 1994) are collected to reflect the true in situ situation
of stress history (see Fig. 4). The OCR data are fitted to a curve
using the function form of

OCR¼ lþm= zþpð Þ ð8Þ
where l, m and p are curve fitting parameters. This functional
form is specifically selected because it represents the real
mechanics of consolidation. The constant part, namely l, is the
OCR induced by the water table fluctuation (see Fig. 3(a)),
while the reciprocal function part, m/(zþp), represents the
OCR trend caused by erosion or removal of overburden
pressure. As shown in Fig. 4, all the curves can well capture
the trend of OCR with depth. Besides, all the coefficients of
determination (R2) for the fitting have values larger than 0.78,
indicating a good fit. Hence, these curves are further used to
estimate the trend of undrained shear strength with depth using
Eq. (1).

2.3. Undrained shear strength varying with depth

With the effective vertical stress and OCR curve been
decided, the trend of su with depth can be easily estimated
using Eq. (1). Similar to Section 2.1, parameters of γtotal¼21
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kN/m3, γw¼10 kN/m3, zwt¼2 m, α¼0.03 kPa�1, n¼1.5 for a
typical clay soil are adopted. These parameters are used to
obtain the effective vertical stress. The fitted OCR curves in
Fig. 4 are adopted to provide OCR profiles. The lower and
upper bound of su can be estimated from Eq. (1), i.e. lower
bound¼0.19OCR0.8σ0vo and upper bound¼0.27OCR0.8σ0vo.
Fig. 5 shows the variation of these lower and upper bounds
with depth for different sites. As shown in Fig. 5, all the
bounds of su display an approximately linear trend with depth.
Simple linear trends falling within these bounds can be
reasonably selected (i.e. the solid straight lines in Fig. 5).
Note that for normally consolidated soils with a water table at
the ground surface, the OCR¼1 and σ0vo¼γ0z. For this case,
the lower bound and upper bound of su can be expressed by
two straight lines, i.e. lower bound¼0.19σ0vo¼0.19γ0z and
upper bound¼0.27σ0vo¼0.27γ0z. Asaoka and A-Grivas (1982)
also pointed out that su can increase linearly with depth from a
non-zero value for overconsolidated soils, and from zero for
normal consolidated soils. This conclusion is consistent with
the simple model adopted in this study.

It must be noted that a nearly constant trend of undrained
shear strength also exists in reality. This always occurs in
unsaturated, stiffed clayey soils (e.g. Shibuya and Tanaka,
1996), where the suction in shallow depths may significantly
improve the strength of soil (see Eqs. (1) and (5)). It might be
risky to adopt a constant trend model when the undrained shear
strength actually displays a linearly increasing trend with
depth. It is the engineer’s responsibility to discern the real
trend and choose the right model (stationary or non-stationary)
for reliability analysis.
3. Simulation of spatial variability of undrained shear
strength

As discussed in Section 2.1, the undrained shear strength is
likely to linearly increase with depth as follows:

su ¼ aσ0voþb¼ aγ0zþb ð9Þ
where a is the increasing rate of the undrained shear strength
with depth; b is the value of the undrained shear strength at the
ground surface (z¼0). Values of a and b can be estimated
using the linear regression approach (e.g. Vanmarcke, 2010).
Note that b takes the value of 0 for normal consolidated soils
according to the discussion in Section 2.3. This study adopts a
linear trend that falls between the lower and upper bounds of
the undrained shear strength as shown in Fig. 5(c). In addition,
the COV of the unit weight of soils is below 0.1 (Phoon and
Kulhawy, 1999). Following Wu et al (2012), it can be treated
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as a lognormally distributed random variable. The parameter b
is considered to be deterministic for simplicity. The spatial
variability of su is modeled by treating the parameter a as a
stationary random field (Luo et al., 2012; Wu et al., 2012). In
this way, the statistics of su are derived as

tsuðzÞ ¼ μaγ0zþb

σsuðzÞ ¼ σaγ0z

COVsuðzÞ ¼ μaγ0 zþb
σaγ0 z

8>>><
>>>:

ð10Þ

in which tsu(z), σsu(z) and COVsu are the mean, standard
deviation and COV of su, respectively; μaγ0 and σaγ0 are the
mean and standard deviation of a*γ0, respectively. It is evident
that both the mean and standard deviation of su in Eq. (10)
linearly increase with depth, which is consistent with the
statistical data for su in Table 1.

As for the distribution of a, Lacasse and Nadim (1996)
suggested that both normal and lognormal distributions can be
approximately used to describe a. To avoid negative values,
the marginal distribution of a is considered to be a lognormal
distribution. Hence, the mean and standard deviation of a*γ0 in
Eq. (10) can be simply calculated by treating ln(a*γ0)¼ ln(a)þ
ln(γ0) to be a normally distributed random variable, where ln
(a*γ0), ln(a) and ln(γ0) are the natural logarithm of a*γ0, a and
γ0, respectively. Details of the calculation are omitted here. The
mean and standard deviation of the natural logarithm of a are
respectively given by

λln a ¼ lnðμaÞ�0:5 lnð1þCOVa
2Þ

ξln a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þCOVa

2Þ
p

(
ð11Þ

in which λlna and ξlna are the mean and standard deviation of
the natural logarithm of a, respectively.
The autocorrelation function is an important parameter for

characterizing a random field. For simplicity and convenience
(Li et al., 2015a,b), a common squared exponential function is
adopted as an autocorrelation function of ln(a), i.e.

ρln aðx1; z1; x2; z2Þ ¼ expð�ðx1�x2
lx

Þ2�ðz1�z2
lz

Þ2Þ ð12Þ

where ρlna is the correlation coefficient between ln(a(x1, z1))
and ln(a(x2, z2)); (x1, z1) and (x2, z2) are coordinates of two
arbitrary points within the area in which the random field is
discretized; lx and lz are the correlation lengths of ln(a) in the
horizontal and vertical (depth) directions, respectively.
Unlike the case where the mean and standard deviation

of undrained shear strength increase with depth, the random



Fig. 6. Typical realizations of random field of undrained shear strength. (a) Non-
stationary random field of su (ma=1.4, COVa=0.50, b= 40kPa, mg'=11 kN/m3,
COVg'=0.10, lx=10m, lz=1m), (b) Stationary random field of
su (msu=86.2kPa, COVsu=0.27, lx=10m, lz=1m).
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field for the undrained shear strength constant with depth is
stationary. Thus, its simulation is similar with that for a as
discussed earlier. The mean and standard deviation of the
natural logarithm of su are respectively given by Li et al.
(2014)

λln su ¼ lnðμsuÞ�0:5U lnð1þCOVsu
2Þ

ξln su ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þCOVsu

2Þ
p

(
ð13Þ

in which λlnsu and ξlnsu are the mean and standard deviation of
the natural logarithm of su, respectively. Note that both μsu and
COVsu in Eq. (13) are constants.

For computational efficiency, the KL expansion is used to
discretize the random field of undrained shear strength. More
details on the KL expansion can be referred to Cho and Park
(2010) and Phoon et al. (2002). Similar to Cho and Park (2010),
an efficient Latin hypercube sampling technique is adopted to
generate the Gaussian random variables used for the KL expan-
sion. The Latin hypercube sampling is a stratified sampling
designed to ensure that the upper or lower ends of the distributions
for the simulated random variables are well represented. The
Monte Carlo simulation time can be greatly saved by using this
sampling technique. Applying the KL expansion, one realization
of non-stationary random field for undrained shear strength is
plotted in Fig. 6(a). For comparison, the corresponding realization
of stationary random field for undrained shear strength is plotted in
Fig. 6(b). In these two figures, light colors represent low values of
su while dark colors represent high values of su. In Fig. 6(a), as su
increases with depth, su at the bottom of the strip footing takes
high values. In the case of su constant with depth, su at the bottom
of the strip footing may take low values (Fig. 6(b)). This weak
zone with low values of su is distributed irregularly.

4. Illustrative example

In this section, a plane strain finite difference analysis is
performed to calculate the bearing capacity (qu) of a rigid strip
footing founded on a clay soil with spatially variable undrained
shear strength parameter. The finite difference analysis is
carried out with the help of Flac3d which is a widely-used
commercial software in geotechnical engineering. The spatial
variability in soil properties can be effectively considered in
Flac3d by assigning different values to different finite differ-
ence elements (Cho and Park, 2010). First, the results obtained
from deterministic analysis using Flac3d are validated by both
analytical and numerical solutions in the literature. Second,
probabilistic analyses are carried out to investigate the effect of
spatially variable undrained shear strength that linearly
increases with depth on the reliability of strip footing.

4.1. Deterministic analysis of strip footing

Consider a rigid strip footing resting on an overconsolidated
undrained clay soil, as shown in Fig. 7. Following Cho and
Park (2010), a two-dimensional plane strain model is adopted
to calculate the bearing capacity of strip footing and elastic-
perfectly plastic behavior of the soil material with Mohr–
Coulomb yield criterion is assumed. For a typical overconso-
lidated clay, the total unit weight of the soil is set to 21 kN/m3.
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Fig. 8. The maximum shear strain rate at the plastic steady state for constant and linearly increasing su, respectively. (a) Velocity vector for su constant with depth,
(b) Maximum shear strain rate for su constant with depth, (c) Maximum shear strain rate for su linearly increasing with depth.
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The strip footing is rough, with a width of 2 m. The finite
difference model is 14 m in width and 6 m in depth. A mesh
scheme consisting of 1200 finite difference elements is adopted
for the bearing capacity analysis (see Fig. 7(a)). The mesh in
this scheme becomes denser and denser from the bottom to
the top of the model. In the horizontal direction, the size of the
elements gradually decreases from the left and right side to
the middle part of the model. Specially, the area at the edge of
the footing is occupied by the densest elements to ease the
computational inaccuracy due to the stress concentration in this
area. In the following analysis, it will be shown that this mesh
scheme is refined enough to obtain an accuracy result for
deterministic analysis of bearing capacity. For the probabilistic
analysis, this mesh scheme is further justified in Section 4.2.
For boundary conditions, horizontal movements on the vertical
boundary are constrained and the nodes at the bottom are fixed
in all directions. A rough strip footing is simulated by setting
the horizontal velocity of the nodes representing the footing
to zero.
To evaluate the bearing capacity, a downward velocity of

1.5*10�5 m/step is applied to the surface nodes on the base of
the footing. The possible rotation of footing which can be
induced from spatial variability of soil properties is not
considered herein for simplicity. A steady state of plastic flow
will develop in the soil as the step increases. The averaged
unbalanced force on the interface of footing and soil at the
plastic steady state is taken as the bearing capacity of the strip
footing. Note that the applied velocity has an influence zone
beyond the footing area. In other words, there is a velocity
singularity at the ends of the footing (see the velocity field at
the plastic steady state in Fig. 8(a)). This singularity is spread
over the element adjacent to the footing. It is assumed that the
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velocity jump (i.e. change of velocity direction from down-
ward to upward) occurs half a zone width from the end of the
footing. This assumption has little effect on the accuracy of the
bearing capacity calculation as the mesh is very dense at the
edge of the footing (Itasca, 2009). Hence, the averaged
unbalanced force is obtained by dividing the sum of vertical
footing nodal stresses by the area of the footing with its width
extending to the center of the first element outside the footing
(Cho and Park, 2010).

Two sets of parameters are adopted to study the effect of
trend of su on the reliability of strip footing. For the considered
two cases, namely su constant with depth and su linearly
increasing with depth, the elastic modulus of 20 MPa and
Poisson’s ratio of 0.499 remain the same. The difference
between the two cases is that for the case of su constant with
depth, the clay soil is homogeneous with a constant su of
86.2 kPa (i.e. vertical dot dash line in Fig. 5(c)), and for the
case of su linearly increasing with depth, the clay is hetero-
geneous with su linearly increasing from 40 kPa at the top to
132.4 kPa at the bottom (i.e. the solid straight line in Fig. 5(c)).
Using this method, the two cases have the same mean value
of su in the mid-depth of 3 m, which may be useful for
comparison.

Fig. 8 shows the velocity vector and contours of maximum
shear strain rate at the plastic steady state for su constant with
depth and linearly increasing with depth. The failure modes in
both cases are general shear failure with a well-defined wedge-
shaped zone remaining elastic below the center of the footing.
For the case of su constant with depth, the bearing capacity
obtained from numerical simulation is 468 kPa, which is
slightly larger than the Prandtl solution of 5.14su¼443 kPa
(Whitlow, 1990). As expected, the rough footing has a slightly
higher bearing capacity than that for a smooth footing. To
further verify the bearing capacity result of footing on
weighted soil, a strip footing case in Massih and Soubra
(2007) is also analyzed. In this case, a rough rigid strip footing
is subjected to a vertical loading. A conventional elastic-
perfectly plastic model based on the Mohr–Coulomb failure
criterion is used to represent the soil. The dilation angle of the
soil is assumed to be equal to the friction angle(ϕ). The
calculated Nc and Nγ value for a ϕ¼301 soil is Nc¼33.0 and
Nγ¼20.18, respectively, where Nc and Nγ are dimensionless
factors to express the bearing capacity, qf, for an infinite strip
footing under no surcharge loadings (see Eq. (14)). This result
is consistent with the value calculated by Massih and Soubra
(2007), i.e. Nc¼34.0, and Nγ¼19.28. The result also coincides
with the analysis conducted by other researchers which are
listed in Massih and Soubra (2007).

qf ¼ cnNcþ0:5nBnγnNγ ð14Þ
where c is the cohesion of soils; B is the width of the footing; γ
is the unit weight of soil.

For su linearly increasing with depth, the bearing capacity of
strip footing, 275 kPa, is smaller than that for su constant with
depth. The failure zone becomes small in comparison with su
constant with depth because the su in shallow area (zo3 m)
for the case of su linearly increasing with depth is significantly
lower than that for the case of su constant with depth. It is
worth noting that no analytical solutions exist for the bearing
capacity of strip footings founded on clay soil with linearly
increasing su. Hence, a similar case of shallow foundation
taken from Zhalehjoo et al. (2012) is reanalyzed to further
verify the results for linearly increasing su. In this case, su
linearly increases from 25 kPa at the ground surface with an
increasing rate of 10 kPa/m. The obtained bearing capacity is
149 kPa, which is almost the same as 150 kPa as reported in
Zhalehjoo et al. (2012). Therefore, the adopted method to
calculate the bearing capacity for linearly increasing su is
reasonable.
4.2. Probabilistic analysis

In this section, Monte Carlo simulations are carried out to
evaluate the mean of the bearing capacity (μqu), standard
deviation of the bearing capacity (σqu) and probability of
failure of the strip footing. Random field of undrained shear
strength is first discretized using the KL expansion. Thereafter,
a series of numerical simulations are performed using the
Flac3d software based on the discretized random field. A FISH
(the built-in programming language of Flac3d) function is
adopted to assign different values of undrained shear strength
to different finite difference elements.
As discussed in Section 2.3, the undrained shear strength is

treated as a random field parameter and the unit weight is
treated as a random variable. The elastic modulus and
Poisson’s ratio is assumed to be deterministic since the bearing
capacity is not sensitive to these parameters. For the case of su
linearly increasing with depth, the parameters corresponding to
the linear-trend line in Fig. 5(c) (the solid straight line) are
adopted, i.e. μγ0 ¼11 kN/m3, b¼40 kPa, μa¼1.4. These values
are reasonable since the trend line is derived from the well
developed empirical formula, namely Eq. (1). Moreover,
COVγ0 and COVa are set to 0.1 and 0.5, respectively. Applying
Eq. (10), the statistics (mean, COV) of su at z¼3 m and
z¼6 m are obtained as (86.2 kPa, 0.28) and (132.4 kPa, 0.36),
respectively. As can be seen from Eq. (10), the COV of su
increases with depth. Thus, the maximum COV of su is 0.36 at
the bottom of the model shown in Fig. 7. It falls within the
typical range [0.06, 0.8] as reported in Phoon and Kulhawy
(1999). These results indicate that the selected value of COVa

is reasonable. As for the correlation length, Wu et al. (2012)
pointed out that the autocorrelation length of a is conceptually
the same as that of su. Following El-Ramly et al. (2003), the
ranges of horizontal and vertical autocorrelation length of su
are 10–40 m and 1–3 m, respectively. Hence, the horizontal
and vertical autocorrelation lengths of a are set as lx¼5, 10,
20, 30 m, and lz¼1, 2, 5, 10 m. To reflect the effect of
geometric parameter of strip footing, the correlation length is
normalized into a dimensionless form Δ¼ l/B in which l is the
correlation length and B is the width of strip footing. Hence,
the normalized horizontal correlation length Δx¼2.5, 5, 10, 15,
and normalized vertical correlation length, Δz¼0.5, 1, 2.5, 5.
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4.2.1. Realization number for the Monte Carlo simulation
It should be noted that the accuracy of the reliability analysis

highly depends on the number of Monte Carlo realizations.
One method to determine a proper realization number is to
conduct a parameter study (e.g. Cho and Park, 2010). Gen-
erally, the statistics of FS fluctuate with the Monte Carlo
realization number. The fluctuation decreases as the realization
number increases. A proper N can be obtained when the
statistics of FS achieve a steady level. Hence, various numbers
of simulations are carried out for incrementally number of
simulations till no significant change in COV is observed. As
Δx¼2.5, and Δz¼0.5, the mean and standard deviation of
undrained bearing capacity, i.e. (μqu, σqu), for 500 and 1000
realizations of Monte Carlo simulation are (272.2 kPa,
18.3 kPa) and (272.3 kPa, 18.9 kPa), respectively. The differ-
ence seems insignificant. It can be expected that a further
increase in the number of simulations will not significantly
increase the accuracy of the results. Therefore, 500 Monte
Carlo simulations are adopted for estimating the statistics of
the bearing capacity in this study.

4.2.2. Evaluation the effectiveness of the mesh scheme
Before conducting the probabilistic analysis, it is essential to

evaluate the effectiveness of the mesh scheme adopted for
reliability analysis considering spatial variability of shear
strength. As concluded by Ching and Phoon, 2013b, the
tolerable maximum element size to achieve acceptable accu-
racy for soil shear strength in random field finite element
analysis is surprisingly small. The satisfactory element size is
governed by the line averaging effect along the potential slip
surface. Hence, the mesh scheme adopted in Fig. 7(a) is
justified herein.

It is well acknowledged that the performance of the strip footing
highly depends on the properties of soils in influence zone
(Sivakumar Babu et al, 2006). The influence zone refers to the
area which the failure surface runs across. For the problems studied
herein, the failure surface of bearing capacity can be approximately
obtained from the contour of shear strain rate for deterministic
analysis in Fig. 8. For constant su, the width and height of the
Flac3d elements in influence zone span from 0.08 m to 0.13 m and
from 0.17 m to 0.32 m, respectively (see Fig. 8(b)). For linearly
increasing su, the width of the Flac3d elements in influence zone
ranges from 0.08 m to 0.18 m while the height ranges from 0.17 m
to 0.30 m (see Fig. 8(c)). These ranges can be compared with the
minimum scale of fluctuation (SOF) adopted in the probabilistic
analysis. As mentioned previously, the minimum horizontal and
vertical correlation length adopted are 5 m and 1 m, respectively.
The autocorrelation function is a commonly used squared expo-
nential function. Based on the relation between scale of fluctuation
and correlation distance, the minimum horizontal scale of fluctua-
tion, δxmin, can be simply calculated, i.e. δxmin¼ (π*minimum
horizontal correlation length2)0.5¼ (π*52)0.5¼8.86 m. The resulting
value is significantly larger than the width of elements in influence
zone, i.e. 0.08 m to 0.18 m. Similarly, the minimum vertical scale
of fluctuation, δzmin¼ (π*minimum vertical correlation length2)0.5¼
(π*12)0.5¼1.77 m, is five times as large as of the maximum height
(i.e. 0.32 m) of element in influence zone. In other words, the
δx/(element width)48.86/0.18¼49.2, while δz/(element height)
41.77/0.32¼5.5. On this basis, the effect of element size on
mobilized strength of the spatially variable soil can be evaluated
using the results of Ching and Phoon (2013b). Herein the mobilized
strength refers to the yield stress recorded before the calculation
fails to converge. Since the random field is generated using a
midpoint strategy (rather than the element level averaging strategy)
and the adopted autocorrelation model is the squared exponential
function, the results of Figs. 15 and 16 in Ching and Phoon (2013b)
are thus adopted for evaluation. It is worth noting that the stress
state for a footing resting on layered soils is typically compressive.
Hence the underlying probabilistic analyses correspond to the top
two plots entitled CI and CA in Figs. 15 and 16, where CI and CA
denote “Compressive stress state-Isotropic random field” and
“Compressive stress state-Anisotropic random field”, respectively.
As shown in the top two plots in Figs. 15 and 16 in Ching and
Phoon (2013b), both the sampled mean and standard deviation of
the mobilized shear strength for SOF41 m reach a steady value as
δz/element size45.5. Hence, the mesh scheme adopted is reason-
able from the point view of mobilized shear strength.
To further evaluate the effectiveness of the mesh scheme in

Fig. 7(a), a more refined mesh scheme is also adopted for the
probabilistic analysis (see Fig. 7(b)). The probabilistic analysis
results for the two schemes are compared. The case of Δx¼2.5,
and Δz¼0.5 is taken for example. The calculated mean and
standard deviation of bearing capacity, (μqu, σqu), for the
relatively coarse and refined mesh schemes are, (272.2 kPa,
18.3 kPa) and (271.7 kPa, 18.6 kPa), respectively. The differ-
ence between the two results seems minor. Hence, the mesh
scheme in Fig. 7(a) is effective for the bearing capacity
problem considered.

4.2.3. Result of the probabilistic analysis
Fig. 9 shows one typical realization of non-stationary

random field of su (Δx¼5, Δz¼0.5) and the corresponding
velocity vector and maximum shear strain rate at plastic steady
state. In Fig. 9(a), the light colors represent the low values of su
while the dark colors represent the high values of su. As can be
seen from Fig. 9(b) and (c), a non-symmetric failure mechan-
ism caused by the spatial heterogeneity occurs. Such a finding
cannot be manifested in the deterministic analysis or a
probabilistic analysis using a single random variable model
of su. In addition, the failure path passes through the weak
zone (see Fig.9(a and c)). These results further demonstrate the
validity of the proposed method for analyzing the bearing
capacity of strip footing considering spatially variable
undrained shear strength.
Fig. 10(a) shows the typical load–settlement curves for the

first 200 realizations of non-stationary random field for Δx¼5
and Δz¼0.5. As expected, the load–settlement curves exhibit
large scatter when the spatial variability of su is considered.
The histogram of bearing capacity obtained from 500 realiza-
tions of the non-stationary random field is plotted in Fig. 10(b).
The probability density function (PDF) curve of bearing
capacity fitted with a Johnson distribution is also plotted in
Fig. 10(b). It can be seen that the Johnson distribution can fit
the histogram well. Moreover, a Kolmogorov–Smirnov (KS)



Fig. 9. Typical realization of non-stationary random field of su and the
corresponding velocity vector and maximum shear strain rate at plastic steady
state as Δx¼5, Δz¼0.5. (a) Typical realization of non-stationary random field
of su, (b) Velocity vector for non-stationary random field of su, (c) Maximum
shear strain rate for non-stationary random field of su.
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test is conducted to investigate the fitness of the Johnson
distribution. The p-value associated with the KS test is 0.306,
which is larger than 0.05. Hence, there is no evidence to reject
the null hypothesis that the bearing capacity is Johnson
distributed. Note that some effort is also made to test whether
the bearing capacity for non-stationary su obeys other tradi-
tional distributions, such as lognormal distribution and beta
distribution. Unfortunately, all the distributions are rejected at
a 5% level of significance. Therefore, the Johnson distribution
is adopted to fit the distribution of bearing capacity in the
subsequent analyses. Details of the parameter estimation for
Johnson distribution can be found in Phoon and Ching (2013).

Fig. 11 shows the mean and standard deviation of bearing
capacity for non-stationary random field of su and various
autocorrelation lengths. Note that the mean and standard
deviation of the bearing capacity are directly estimated from
the results of 500 simulations. For the purpose of better clarity,
the statistics of bearing capacity are normalized using the su
value in the mid-depth of the model (i.e. su,z¼3 m¼86.2 kPa).
As shown in Fig.11, the mean of the bearing capacity for su
linearly increasing with depth is smaller than qu,det/
su,z¼3 m¼275 kPa/86.2 kPa¼3.19, as obtained from the deter-
ministic analysis (see Fig. 10(a)). Both the mean and standard
deviation of the bearing capacity increase with increasing
autocorrelation length. The change in the standard deviation of
the bearing capacity with autocorrelation length is significantly
larger than that in the mean of the bearing capacity. The
standard deviation of the bearing capacity increasing with
autocorrelation length may be attributed to the following
reasons. As the autocorrelation length becomes small, the
autocorrelation between the undrained shear strengths in
different locations becomes weak, which induces significant
fluctuation in the undrained shear strength. Thus, the contin-
uous weak zone with low values of su or continuous strong
zone with high values of su is less likely to occur. In addition,
high property values at some points are more likely to be
balanced by low values at the other points. All these factors
reduce the variation of bearing capacity. On the contrary, a
larger autocorrelation length results in a strong correlation
between the undrained shear strengths at different locations.
Both the continuous weak zone and continuous strong zone are
more likely to occur. The variation in the bearing capacity will
be large. By comparing Fig. 11(a) and (b), the statistics of
bearing capacity are more sensitive to the vertical autocorrela-
tion length than the horizontal autocorrelation length.
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Fig. 12 plots the probability distribution function (PDF) and
cumulative distribution function (CDF) for two cases with
different vertical correlation distances. The PDF and CDF
curves are calculated from the fitted Johnson distributions. As
shown in Fig. 12, the PDF curve for small correlation distance
is narrower than that for large correlation distance; the CDF
curve for small correlation distance is steeper than that for
large correlation distance. These phenomena can be expected
because the standard deviation of qu increases with increasing
correlation distance.

In order to compare with the often-used stationary random
field of su, the μsu and σsu for the stationary random field are
assumed to be the same as those in the mid-depth (z¼3) for
the non-stationary random field. The other parameters are the
same as those for the non-stationary random field. When
applying a similar method, Fig. 13 shows the μsu and σsu for
the stationary random field of su and Δz¼0.5. The same
observation as that shown in Fig. 11(a) for the non-stationary
random field can be obtained. Compared with the results in
Fig. 11(a), the increase of μsu and σsu with increasing vertical
autocorrelation length becomes more significant.

Fig. 14 compares the PDF and CDF curves of bearing
capacity for two different random field models of su as Δx¼5
and Δz¼0.5. It can be seen from Fig. 14(a) that the PDF curve
for the non-stationary random field is much narrower than that
for the stationary random field, which indicates that the
variation of bearing capacity for the non-stationary random
field is significantly smaller than that for the stationary random
field. This may be attributed to the following two reasons.
First, as can be seen from Fig. 8(b) and (c), the possible failure
path passes through the shallow area (i.e. zo1.7 m¼0.85B)
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of the soil mass. The variation of su in the shallow area (i.e.
zo1.7 m¼0.85B) has a greater influence on the bearing
capacity in comparison with the deep area (i.e. z41.7
m¼0.85B). Furthermore, the variation of su in the shallow
area (i.e. zo1.7 m¼0.85B) for the non-stationary random
field is smaller than that for the stationary random field. This
leads to a small variation of bearing capacity associated with
the non-stationary random field. Second, it can be seen from
Fig. 8(b) and (c) that the possible failure path for su linearly
increasing with depth (i.e. zo1.4 m¼0.7B) is shallower than
that for su constant with depth (i.e. zo1.7 m¼0.85B), which
implies that the variation of bearing capacity for the non-
stationary random field highly depends on the variation of su in
the shallow area. This further leads to a low variability in the
bearing capacity for the non-stationary random field.

In Fig. 14(b), the probability of failure for the stationary
random field is significantly higher than that for the non-
stationary random field. For example, as the factor of safety
(FS) in deterministic analysis is 1.5 (i.e. deterministic bearing
capacity, qu,det¼1.5*vertical load), the probability of failure
for the stationary random field, namely the probability of
qu4vertical load, is 6.29%. However, for the non-stationary
random field, the probability of failure at the same FS level
(i.e. FS¼1.5) is less than 1e�9. These results indicate that the
often-used stationary random field model of su will highly
overestimate the probability of failure, which may result in a
conservative design of shallow foundations. On the other hand, to
achieve a prescribed reliability, the requiring FS for linearly
increasing su maybe significantly lower than that for stationary su.
For the case of 2 m width strip footing with Δx¼5 and Δz¼0.5, a
FS¼1.5 ensures a satisfactory reliability of 5.0 (i.e. probability of
failure¼Φ(�5)¼0.0000003, where Φ( � )¼cumulative distribu-
tion function for standard normal distribution). This level of
reliability certainly meets the design requirements. However, a
FS¼3 is always required in shallow foundation designs, which
might be uneconomical. Hence, it can be concluded that, the
second-order non-stationary, namely the non-stationary in the
standard deviation of su, is very important to achieve a realistic
evaluation of reliability of shallow foundations. The statistics of
su should be examined carefully so that a realistic random field
model can be selected for characterizing the spatial variability of
su. A constant COV for non-stationary spatial variability of su
may produce misleading reliability results.

5. Conclusions

This paper has investigated the effect of spatially variable
undrained shear strength that linearly increases with depth on
reliability of a strip footing. Monte Carlo simulations are
carried out to evaluate the statistics of bearing capacity and
reliability of strip footing. They are compared with the results
for the stationary random field of undrained shear strength. The
following conclusions can be drawn:
1)
 OCR data from different sites are collected and undrained
shear strength profiles are derived from these OCR data.
The results show that the linear trend of undrained shear
strength increasing with depth is very common for
overconsolidated clays.
2)
 The statistics of the bearing capacity of strip footing are
considerably influenced by the trend of the undrained shear
strength linearly increase with depth. The mean of the
bearing capacity for spatially variable undrained shear
strength is smaller than that obtained from the deterministic
analysis. Both the mean and the standard deviation of the
bearing capacity increase with increasing autocorrelation
length. The statistics of the bearing capacity are more
sensitive to the vertical autocorrelation length.
3)
 Compared with the non-stationary random field of
undrained shear strength, the stationary random field will
greatly overestimate the variations in the bearing capacity.
When the same factor of safety is used for the design of
strip footing, the often-used stationary random field highly
overestimates the probability of failure of strip footings. For
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example, for a 2 m width strip footing with a FS¼1.5 and
lx¼10 m, lz¼1 m, the failure of probability for a stationary
random field (6.29%) is several orders of magnitude higher
than that for a non-stationary random field (o1e�9).
Using the stationary random field model may be very
conservative for the design of strip footings.
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