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Taking into account the anomalous self-energy for quarks due to the dynamic screening effect for the
transverse gluon propagator, we study the temperature dependence of the magnetic susceptibility in
detail. It is shown that there does not exist the T ln T term in the susceptibility, different from the
specific heat, but an anomalous T 2 ln T term arises instead as a novel non-Fermi-liquid effect.

© 2009 Elsevier B.V. All rights reserved.
It is well known that Fermi liquid theory (FLT) is very powerful
in discussing the properties of interacting fermions at low temper-
ature [1,2]. The renormalization-group analysis have shown that
the Fermi-liquid theory is a fixed-point theory, where all the quasi-
particle interactions are marginal [3], except the attractive BCS
channel. This argument, however, may be applied to the case of
the short-range interaction. Recent renormalization-group (RG) ar-
guments have revealed that the quasi-particle interaction through
the exchange of the transverse gauge field is relevant and induces
the non-Fermi-liquid effects in gauge theories (QED/QCD) [4–9].

Within FLT, fermions are treated as quasi-particles incorporating
the self-energy; the quasi-particle interactions around the Fermi
surface are important and physical quantities are given in terms of
the Landau–Migdal parameters. In gauge theories (QED/QCD), there
appear infrared (IR) singularities in the Landau–Migdal parame-
ters due to their infinite range. To improve the IR behavior in the
quasi-particle interaction, it is necessary to take into account the
screening effect for the gauge field. Actually, the screening effect
have been shown to be important in the many-body theories [2];
the Coulomb interaction becomes short-ranged by the Debye mass.
The inclusion of the screening effect is also required by the argu-
ment of the hard-dense-loop (HDL) resummation [10]. Anyhow we
can see the static screening by the Debye mass for the longitudinal
mode and the IR behavior is surely improved. However, there is no
static screening for the transverse mode and there is only the dy-
namic screening [10]. Thus the IR singularities are still left for the
gauge interactions of the transverse mode.

Accordingly the self-energy of the quasi-particles, Σ+(εk), ex-
hibits an anomalous behavior as εk → μ due to the dynamic
screening, ReΣ+(εk) ∼ g2/9π2(εk − μ) ln(Λ/|εk − μ|) within
the one-loop calculation [8,11]. Such an anomalous self-energy
gives rise to the non-Fermi-liquid behavior in entropy or specific
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heat [4–6,8,12–14]. An anomalous contribution to specific heat,
∝ T ln T at low T , has been firstly shown by Holstein et al. in the
case of electron gas [12]. It may be understood within FLT that the
density of state at the Fermi surface behaves like ln T . Recently the
analogous effect has been discovered in QCD [8,13]. Similar effects
due to dynamical gauge fields in systems of strongly correlated
electrons were studied in Refs. [4–7].

In this Letter we study the magnetic susceptibility in gauge
theories at finite temperature.1 The magnetic susceptibility has
been one of the important physical quantities within FLT since the
original work of Landau, and repeatedly utilized to study the mag-
netic properties in condensed-matter physics [1,2]. Recently, the
magnetic properties of QCD or its magnetic instability would be
an interesting subject [15–21] in relation to phenomena of com-
pact stars, especially magnetars [22] or primordial magnetic field
in early universe, where one may expect the QCD phase transi-
tion [23].

In a recent paper we have studied the magnetic susceptibility
of quark matter at T = 0 within FLT to figure out the screening
effects for gluons on the magnetic instability [24,25]. We have seen
that the transverse gluons still gives logarithmic singularities for
the Landau–Migdal parameters, but they cancel each other in the
magnetic susceptibility to give a finite result.

At T �= 0, the Fermi surface is smeared over the width of O (T ),
so that the dynamic screening effect should give rise to a logarith-
mic T dependence for physical quantities. Then, one may expect a
similar non-Fermi liquid effect in the magnetic susceptibility as in
the specific heat, because both quantities are related to the den-
sity of states at the Fermi surface. However, since there does not
exist in the liquid the close relation between the specific heat and
the magnetic susceptibility that exists in gases, we shall see a dif-
ferent non-Fermi-liquid effect. Actually we find that there appears

1 Here we only consider QCD, but our results are easily applied to electron gas
with small modification.
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T 2 ln T term in the magnetic susceptibility as another non-Fermi
liquid effect.

In the following we consider the color-symmetric interaction
among quasi-particles: it can be written as the sum of two parts,
the spin independent ( f s

k,q) and dependent ( f a
k,q) ones;

fkζ,qζ ′ = f s
k,q + ζ ζ ′ f a

k,q, (1)

where ζ(ζ ′) = ±1 specifies each spin state. Since quark matter is
color singlet as a whole, the Fock exchange interaction gives a
leading contribution [15,16,18]. We, hereafter, consider the one-
gluon-exchange interaction (OGE). Since the OGE interaction is a
long-range force and we consider the small energy–momentum
transfer between quasi-particles, we must treat the gluon propa-
gator by taking into account the screening effects [10];

Dμν(k − q) = P t
μν Dt(p) + Pl

μν Dl(p) − ξ
pμpν

p4
(2)

with p = k − q, where Dt(l)(p) = (p2 − Πt(l))
−1, and the last

term represents the gauge dependence with a parameter ξ . Note
that the quasi-particle interaction (1) is independent of the gauge

choice [25]. P t(l)
μν is the standard projection operator onto the trans-

verse (longitudinal) mode [10]. Since the soft gluons should give a
dominant contribution in our case, we must sum up an infinite
series of the polarization functions (the hard-dense-loop (HDL) re-
summation) in the gluon propagator. HDL resummation then gives
the polarization functions for the transverse and longitudinal glu-
ons as

Πl(p0,p) =
∑

f =u,d,s

m2
D, f ,

Πt(p0,p) = −i
∑

f =u,d,s

πuF , f m2
D, f

4

p0

|p| , (3)

in the limit p0/|p| → 0, with uF , f ≡ kF , f /E F , f and the Debye mass
for each flavor, m2

D, f ≡ g2μ f kF , f /2π2 [10].2 Thus the longitudinal
gluons are statically screened to have the Debye mass, while the
transverse gluons are dynamically screened by the Landau damp-
ing. Accordingly, the screening effect for the transverse gluons is
ineffective at T = 0, where soft gluons with p0 = 0 contribute. At
finite temperature, gluons with p0 ∼ O (T ) can contribute due to
the diffuseness of the Fermi surface and the transverse gluons are
effectively screened.

We consider the magnetic susceptibility at low temperature.
We, hereafter, concentrate on one flavor and omit the flavor indices
for simplicity. Magnetic susceptibility is then written in terms of
the quasi-particle interaction [1,2,25],

χM =
(

ḡDμq

2

)2 1

N−1(T ) + f̄ a
(4)

where ḡD is the gyromagnetic ratio [25]. N(T ) is an extension of
the density of state at the Fermi surface for T �= 0;

N(T ) = −2Nc

∫
d3k

(2π)3

∂n(εk)

∂εk
(5)

with the Fermi–Dirac distribution function, n(εk)≡(1+eβ(εk−μ))−1,
where εk is the quasi-particle energy. At T = 0 we have N(0) =
(Nck2

F /π2)v−1
F with the Fermi velocity, v F = kF /μ−(Nck2

F /3π2) f s
1

in terms of the Landau–Migdal parameter f s
1 [26].

f̄ a is a spin-dependent Landau–Migdal parameter given by

f̄ a ≡ −2Nc

∫
d3k

(2π)3

∂n(εk)

∂εk

∫
dΩq

4π
f a
k,q

∣∣|q|=ks
/N(T ), (6)

2 The Debye mass is given as e2μ2uF /π2 for electron gas in QED.
where ks is defined by εks = μ and coincides with the usual Fermi
momentum kF at T = 0.

Note that in both Eqs. (5) and (6) the function, −∂n(εk)/∂εk ,
is sharply peaked at εk = μ for T /μ 	 1, and we can see that
only the quasi-particles near the Fermi surface still gives a dom-
inant contribution. However, we cannot use the standard low-
temperature expansion, since the quasi-particle energy is not reg-
ular at the Fermi surface due to the no screening for transverse
gluons.

First we study the average of the density of state given by
Eq. (5). We can rewrite it as

N(T ) = Nc

π2

∞∫
ε0

dω
dk

dω
k2 βeβ(ω−μ)

(eβ(ω−μ) + 1)2

� Nc

π2

∞∫
ε0

dω

(
1 − ∂ ReΣ+(ω)

∂ω

)
k(ω)Ek(ω)

βeβ(ω−μ)

(eβ(ω−μ) + 1)2
, (7)

with ε0 ≡ ε|k|=0, where ω is the quasi-particle energy and k(ω)

satisfies

ω = Ek(ω) + ReΣ+
(
ω,k(ω)

)
. (8)

The one-loop self-energy is almost independent of the momen-
tum,3 and can be written as [8,11]

ReΣ+(ω,k) ∼ ReΣ+(μ,kF ) − C f g2uF

12π2
(ω − μ) ln

Λ

|ω − μ|
+ Δreg(ω − μ) (9)

around ω ∼ μ with C f = (N2
c − 1)/(2Nc) and uF = kF /EkF . Λ is a

cut-off factor and should be taken as an order of the Debye mass,
Λ ∼ MD ≡ (

∑
f m2

D, f )
1/2 [14,27]. The self-energy has an imagi-

nary part, Im Σ+(ω,k) ∼ C f g2/24π |ω − μ|, which measures the
life time for quasi-particles. In the following we only use the real
part, since we are interested in quasi-particle near the Fermi sur-
face. Note that the anomalous term in Eq. (9) appears from the
dynamic screening of the transverse gluons, while the contribution
by the longitudinal gluons is summarized in the regular function
Δreg(ω−μ) of O (g2). The longitudinal gluons then gives O (g2T 2)

contribution to N(T ) as in the usual situation. Thus the leading-
order contribution comes from the transverse gluons. We, here-
after, extract only the transverse contribution, Nt(T ), using the
anomalous term in Eq. (9): substituting Eq. (9) into Eq. (7), we
obtain

Nt(T ) = Ncksμ

π2

[
1 + π2

6

(2k2
F − m2)

k4
F

T 2

+ C f g2uF

24

(2k2
F − m2)

k4
F

T 2 ln

(
Λ

T

)
+ C f g2uF

12π2
ln

(
Λ

T

)]

+ O
(

g2T 2). (10)

Nt(T ) or its inverse, N−1
t (T ), has a term proportional to ln T and

gives the leading-order contribution. It has a singularity at T = 0,
which corresponds to the logarithmic divergence of the Landau–
Migdal parameter f s

1 at T = 0 [25,28]. We have kept the next-to-
leading order term (T 2 ln T term) in Eq. (10), because we shall see
that the ln T term is canceled out by another term appearing in
the spin-dependent Landau–Migdal parameter f̄ a in the formula
of the magnetic susceptibility.4

3 A renormalization group argument indicates that theory is infrared free in this
case and the solution of the Schwinger–Dyson equation is almost the same as the
one-loop result [9].

4 This is a different feature from the specific heat, where ln T term remains in
the final result as the leading-order contribution.
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There are two contributions to f̄ a: one is given by the longi-
tudinal mode, f̄ a

l , and the other by the transverse mode, f̄ a
t . The

transverse component f̄ a
t has a logarithmic singularity at T = 0

due to the absence of the static screening. On the other hand, the
longitudinal component f̄ a

l has no IR singularity because of the
static screening, and is almost temperature independent. Thus the
leading-order contribution at finite temperature comes from the
transverse gluons again as for N(T ). f̄ a

t is given by

f̄ a
t = 2Nc N−1(T )

∫
d3k

(2π)3

∫
dΩq

4π

∂n(εk)

∂εk
.

m2

Es Ek
C f N−1

c g2

× Miia(k,q)Dt(k − q)

∣∣∣∣|q|=ks

(11)

where Miia is the reduced matrix element for the spin-dependent
interaction [25], and we defined Es by Es = E |q|=ks . It is the dy-
namic screening part in the propagator Dt that gives the ln T -
dependence to f̄ a

t . Therefore, we can put |k| = ks in the other parts
of the integrand in Eq. (11). The real part of the transverse propa-
gator then render

Re Dt(k − q)
∣∣|q|=ks

� − 1

2k2
s

(1 − cos θk̂q)2

(1 − cos θk̂q)3 + c3(Ek − Es)2
(12)

with c3 ≡ 1
8k6

s

∑
f (

πm2
D, f uF , f

4 )2, while the imaginary part gives only

higher order terms with respect to temperature and thus we ne-
glect it here.

For low T , the angular integrals in Eq. (11) give a ln T depen-
dence;

f̄ a
t � − C f g2

12π2 E2
s T

N−1(T )

∞∫
ε0

dωk(ω)Ek(ω)

(
1 − ∂ ReΣ+(ω)

∂ω

)

× ln
(|Ek(ω) − Es|

)∂n(ω)

∂ω

∼ − C f g2

12Ncμ2
ln T , (13)

where the term ∂ ReΣ+(ω)/∂ω in the integrand does not con-
tribute up to O (g2) in this calculation. Note that there appears
no T 2 or T 2 ln T term in the Landau–Migdal parameter.

Comparing Eq. (13) with Eq. (10), one can see that the ln T
terms, which are the leading-order contribution, exactly cancel
each other in the magnetic susceptibility (4) through the combi-
nation, N−1

t (T ) + f̄ a
t . Thus the remaining temperature dependent

terms in the magnetic susceptibility have T 2 ln T terms as next-to-
leading order (NLO) contribution, as well as usual T 2 terms (see
Fig. 1).

It is important to remember that the chemical potential is
temperature dependent as well and another temperature depen-
dence comes in the magnetic susceptibility. The temperature de-
pendence of the chemical potential can be derived by considering
the temperature variation on the quasi-particle number density ρ ,
dρ/dT = 0 [13],

μ(T ) = μ0 − π2

6

(2k2
F + m2)

k2
F E F

T 2
(

1 + C f g2

12π2
ln

(
Λ

T

))

+ O
(

g2T 2). (14)

It would be interesting to see that the chemical potential has
T 2 ln T term besides the usual T 2 term due to the transverse glu-
ons. Taking into account this temperature-dependence in Eqs. (10)
and (13), we finally find the temperature dependent part of the
magnetic susceptibility δχM ,
Fig. 1. Schematic view of each contribution to N−1
t (T ). The leading order contri-

bution (ln T ) is canceled in the magnetic susceptibility, so that the next-to-leading
order contribution (T 2 ln T ) becomes dominant.

δχ−1
M = χ−1

Pauli

[
π2

6k4
F

(
2E2

F − m2 + m4

E2
F

)
T 2

+ C f g2uF

72k4
F E2

F

(
2k4

F + k2
F m2 + m4)T 2 ln

(
Λ

T

)]

+ O
(

g2T 2), (15)

where χPauli is the Pauli paramagnetism, χPauli ≡ ḡ2
Dμ2

q NckF μ/4π2.

It is evident that there appears T 2 ln T dependence in the suscepti-
bility at finite temperature besides the usual T 2 dependence. This
corresponds to T ln T term in the specific heat [4–6,8,12–14] and
is a novel non-Fermi-liquid effect in the magnetic susceptibility. At
low temperature, ln(Λ/T ) > 0 so that the T 2 ln T term gives pos-
itive contribution to χ−1

M . Therefore, both T -dependent terms in
Eq. (15) work against the magnetic instability, which is character-
ized by the condition, χM → 0.

We have discussed the non-Fermi-liquid effect in the magnetic
susceptibility for gauge theories (QED/QCD), where the screening
effects for gluons are properly taken into account. Since the quasi-
particle energy is not regular on the Fermi surface, we cannot use
the low temperature expansion, different from the usual treatment
in FLT. Carefully extracting the temperature dependence, we have
found that the interesting features of the magnetic properties in
gauge theories, especially an anomalous T 2 ln T contribution to the
magnetic susceptibility by the transverse gluons. It may be inter-
esting to recall that the static screening gives the magnetic sus-
ceptibility the term proportional to M2

D ln M−1
D at T = 0 [25]; the

Debye mass MD works as an infrared (IR) cutoff to in the quasi-
particle interaction due to the longitudinal gluons, while there is
no static screening for the transverse gluons. At finite temperature,
the Fermi surface is smeared over order T , so that temperature it-
self plays a role of the IR cutoff through the dynamic screening in
the quasi-particle interaction due to the transverse gluons.

The logarithmic temperature dependence appears in the mag-
netic susceptibility as a novel non-Fermi-liquid effect, and its ori-
gin is the same as in the well-known T ln T dependence of the
specific heat [4–6,8,12–14]. However, recall that there is no relation
between the specific heat and the magnetic susceptibility within
FLT, different from gases. Actually we have seen that the ln T term
in N(T ) is exactly canceled by the spin-dependent interaction to
leave T 2 ln T term as a leading-order contribution. The anomalous
T 2 ln T term works against the magnetic instability, as well as the
usual T 2 term.
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We shall report elsewhere the consequences of the non-Fermi-
liquid effect in more detail and the magnetic phase diagram in
QCD on the density-temperature plane [28].
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