
ELSEVIER Theoretical Computer Science 139 (1995) 1-25

Theoretical
Computer Science

F u n d a m e n t a l S t u d y

On Gabbay's temporal fixed point operator

I an H o d k i n s o n *

Department of Computing. Imperial College. 180 Queen ~ Gate. London SW7 2BZ. UK

Received March 1992; revised December 1993
Communicated by S. Abramsky

Abstract

We discuss the temporal logic "USF", involving Until, Since and the fixed point operator ~o of
Gabbay, with semantics over the natural numbers. We show that any formula not involving
Until is equivalent to one without nested fixed point operators. We then prove that USF has
expressive power matching that of the monadic second-order logic SIS. The proof shows that
any USF-formula is equivalent to one with at most two nested fixed point operators - i.e., no
branch of its formation tree has more than two qCs. We then axiomatise USF and prove that it is
decidable, with PSPACE-complete satisfiability problem. Finally, we discuss an application of
these results to the executable temporal logic system "MetateM'.

1. Introduction

It is known that conventional temporal logic is insufficiently expressive to handle

issues arising in areas such as concurrency. Several extended temporal logic systems,
with second-order capability, now exist in the literature, including Woiper's E T L [20]
and Banieqbal and Barringer's [2] calculus using minimal and maximal fixed points.

Gabbay ' s [6] USF, of interest in the current paper, involves a fixed point operator
with recursively defined semantics. All these systems are as expressive as the monadic
second-order logic S I S over the natural numbers, in which quantification over subsets
as well as elements is allowed.

S1S has been studied extensively; its decidability was proved by Biichi in 1962,

using automata, and as USF is closely related to automata we can easily elicit the
relationship between the two logics, and show that USF is also decidable and has the
same expressive power as S IS in a strong sense. Nonetheless, USF is itself surprisingly

*E-mail: imh @doc.ic.ac.uk.

0304-3975/95/$09.50 © 1995--Elsevier Science B.V. All rights reserved
SSDI 0304-3975(94)00084-V

2 1. Hodkinson/Theoretical Computer Science 139 (1995) 1 25

well-behaved, with elegant properties that can be studied without recourse to auto-
mata theory. In this vein we will prove that unbounded depth of nesting of the fixed
point operator is not required for full expressive power. For the "past" fragment, this
can indeed be done within USF, and in fact no nested fixed point operators are
needed. Our current proof for full USF goes via the automata connection, and
converts any formula effectively into one in which no fixed point operator is nested
inside more than one other. We will give an example of this construction (Example
6.13 below). We would like to find a more direct proof that avoids the use of automata;

such a proof might yield a more efficient conversion algorithm.
The recursive definition of the fixed point operator in USF is in the spirit of the

executable temporal logic system MetateM, developed in London and Manchester
and surveyed in [6, 3]. We will use the results mentioned above to prove that
MetateM has the expressive power of S1S. We can also derive a simple axiomatisation
of USF, and show that its satisfiability problem is PSPACE-complete.

We should mention that we will be using the logic U YF instead of USF. This has
technical advantages and leads to no loss in expressive power (see Remark 2.9 for

a discussion).
Notation
will be the set {0, I, 2 } of natural numbers, gaS will denote the set of all subsets of

the set S. We often write Y, d for tuples - finite sequences of variables, atoms,
elements of a structure, etc. Other notations will be defined when required.

2. Syntax and semantics of UYF

We start by developing the syntax and semantics of the fixed point operator. This is
not entirely a trivial task. We will fix an infinite set of propositional atoms, with which
our formulas will be written; we write p, q, r, s for atoms.

Definition 2.1. (1) The set of formulas of U YF is the smallest class closed under the

following.
(a) Any atom q is a formula of U YF, as is T (true).
(b) If A is a formula so is --1A. (We let _L abbreviate --1 -F.)
(c) If A is a formula so is YA. We read Y as "yesterday".
(d) If A and B are formulas, so are A ^ B and U (A, B). (The latter is read as "until".

A v B and A ~ B are regarded as abbreviations.)
(e) Suppose that A is a formula such that every occurrence of the atom q in A not

within the scope of a qq is within the scope of a Y but not within the scope of
a U. Then qqA is a formula. (The conditions ensure that qoqA has fixed point

semantics.)
(2) The depth of nestin9 of q~'s in a formula A is defined by induction on its

formation: formulas formed by clause (a) have depth 0, Clause (e) adds 1 to the depth of
nesting, clauses (b) and (c) leave it unchanged, and in clause (d), the depth of nesting of

I. Hodkinson / Theoretical Computer Science 139 (1995) 1-25 3

U(A,B) and A ^ B is the maximum of the depths of nesting of A and B. So, for
example, -7 ~or(--7 Yr ^ q~q Y(q ~r)) has depth of nesting of 2.

(3) A U YF-formula is said to be a YF-formula if it does not involve U.

(4) Let A be a formula and q an atom. A bound occurrence of q in A is one in

a subformula of A of the form q~qB. All other occurrences of q in A are said to be free.
An occurrence of q in A is said to be pure past in A if it is in a subformula of A of the

form YB but not in a subformula of the form U(B, C). So ~oqA is well-formed if and
only if all free occurrences of q in A are pure past.

2.1. Semantics of UYF

An assignment is a map h providing a subset h(q) of t~ for each a tom q. If h, h' are
assignments, and ~ a tuple of atoms, we write h--4h' if h(r)=h'(r) for all atoms r not

occurring in ~. If S ~ t~ and q is an atom, we write hq/s for the unique assignment h'
satisfying h' =q h, h' (q) = S.

For each assignment h and formula A of U YF we will define a subset h(A) of I~l, the

interpretation of A in I~. Intuitively, h(A)= {nell: A is true at n under h}. We will
ensure that, whenever tpqA is well-formed,

h(q~qA) is the unique S g I~ such that S=hq/s(A). (,)

Notation 2.2. If S ~ ~, we write S + 1 (or 1 + S) for {s + 1: s eS }.

Definition 2.3. We define the semantics of U YF by induction on the structure of
formulas. Let h be an assignment. If A is atomic then h(A) is already defined. We set
the following.

• h(T)= I~.

• h(-TA)= ~\h(A) .
• h(YA)=h(A)+ 1.
• h(A ^ B)=h(A)cTh(B).

• h (U(A ,B))={ne~:qm>n(meh(A) ^Vm'(n<m'<m--*m'~h(B)))}.
• Finally, assume that tpqA is well-formed, and (inductively) that g(A) is defined for

all assignments g. We will define h(tpqA).

First define assignments h, (n e [~) by induction: ho = h, h, + 1 = (h,)q/h,CA). We now
define

h(qgqA) de._e._~f {he ~: neh,(A) } = {ne t~: neh,+ l (q)}.

To establish (*) we need some definitions and lemmas.

Definition 2.4. (1) If n e ~ , we say that subsets $1, $2 ~ 1~ agree before n if for all m<n,
rueS1 ifand only if rueS2. We say that $1 and $2 agree up to n if they agree before n + 1.

(2) Assume that A is a formula of U YF. If ne l l , we say that assignments g, h are
A-similar up to n if for all atoms q,

4 I. Hodkinson / Theoretical Computer Science 139 (1995) 1-25

• if all free occurrences of q in A are pure past, then g(q) and h(q) agree before n;

• if not all free occurrences of q in A are pure past, but still no free occurrence of q in

A is within the scope of a U, then g(q) and h(q) agree up to n;
• otherwise, g(q)=h(q).

(3) A UYF formula A is said to be local if g(A) and h(A) agree up to n whenever g,

h are assignments that are A-similar up to n.

Remark 2.5. F rom the definitions, if g, h are ~pqA-similar up to n, and g(q), h(q) agree

before n, then g, h are A-similar up to n.

Lemma 2.6. Assume that A is a local U YF formula, and that tpqA is well-formed. Then:
(1) If g,h are assignments with g =qh, then g(q~qA)=h(qgqA).
(2) If S ~_ N and h is an assignment, then hq/s(A)=S if and only if S=h(~oqA).
(3) q~qA is local.

Proof. (1) By Definition 2.3 it suffices to show that for all neN, gdq) and h.(q)
(as in the definition) agree before n. We do so by induction on n. If n = 0 there

is nothing to prove. Assume the statement for n. Clearly, g. =qh. . By Remark 2.5

and the inductive hypothesis, g. and h. are A-similar up to n. As A is local, gdA) and

h.(A) agree up to n: i.e., g.+l(q) and h.+l(q) agree before n + 1. This completes the
induction.

(2) By (1) we can replace h by hq/s. So it is enough to show that for any h,
h(A) = h(q) ¢~ h (q~qn) = h(q).

~ : Suppose that h(A)= h(q). First observe that ht (q)= h(A)= h(q), so that h = ht, It
follows by the definition of the h. and induction that h = h. for all n. But now for all

n,n~h(q)qA) if and only if n~h.+x(q)=h(q), so that h(q)qA)=h(q) as required.

~ : Assuming that h(q)qA)=h(q), we show that for all n,

(a). h(A) and h.(A) agree up to n,

(b). h(q) and h~(A) agree up to n.

It will clearly follow that h(A)=h(q). We proceed by induction on n. (a)o holds
because ho = h. We now show that ((a),.: m ~< n)~(b)n. Let m -%< n. Then m~h(q) = h(~oqA)
if and only if mehr,(A) by Definition 2.3, if and only if meh(A) by (a)m, if and only if

meh.(A) by (a).. This proves (b)..

We now show that (b).=e-(a).+ x. (b). says that h(q) and h.+ l(q) agree before n + 1.
Thus, h and h.+x are A-similar up to n + 1. As A is local, h(A) and h.+dA) agree up to

n + 1, proving (a). + 1.
(3) To prove ~oqA local, we need to show that whenever g, h are assignments that

are ~pqA-similar up to n, then g(qgqA) and h(tpqA) agree up to n. By (1) and (2) we can
assume that g(q)=g(A)=g(~oqA) and h(q)=h(A)=h(q~qA); the hypothesis and what
we have to prove are unchanged.

The proof is by induction on n. Assume the result for all m < n and suppose that g, h

are tpqA-similar up to n. If m < n then g and h are ~oqA-similar up to m, so by the
inductive hypothesis, g(~oqA) and h(~pqA) agree up to m. Hence, g(A) and h(A) agree

I. Hodkinson / Theoretical Computer Science 139 (1995) 1-25 5

before n. By Remark 2.5, g and h are A-similar up to n, so as A is local, g(A) and h(A)
agree up to n, as required. This completes the proof. []

Proposition 2.7. Every formula A of U YF is local, and for any h, h(A) depends only on
h(q) for those atoms q that have free occurrences in A.

Proof. We show by induction on A that A is local, and that whenever g,h are
assignments agreeing on the atoms occurring free in A, then g(A) = h(A). In the atomic

case and the cases of the boolean connectives the proof is simple, and the case of qgqA
is covered by the lemma. For A = U(B, C), if assignments g, h are A-similar up to

n then g(q)= h(q) for all atoms q with free occurrences in A. Clearly, g and h agree on

the free atoms of B and of C, so by the inductive hypothesis, g(B)=h(B) and
g(C) = h(C), yielding g(A) = h(A) - so these two sets certainly agree up to n. This proves
both claims for A.

Now consider the case of A = YB. Pick n~N and a pair g, h of assignments that are
YB-similar up to n. We claim that g and h are B-similar up to n - 1. Let q be an atom.
If all free occurrences of q in B are pure past, then the same holds for YB, so that g(q),
h(q) already agree up to n - 1. Otherwise, if no free occurrence of q in A is under a U,
then all free occurrences of q in YB are pure past. Hence again, g(q), h(q) agree up to
n - 1. If none of these apply to q then g(q)=h(q). It follows that g and h are B-similar
up to n - 1, as claimed. By the inductive hypothesis, g(B) and h(B) agree up to n - 1. So

by definition of the semantics of Y, g(YB) and h(YB) agree up to n. The proof that h(A)
depends only on h(q) for q occurring free in A is straightforward. []

Combining Lemma 2.6 and Proposition 2.7 yields the following theorem.

Theorem 2.8 (Fixed point theorem). (1) Suppose that A is any U YF formula and tpqA
is well formed. Then if h is any assignment, there is a unique subset S = h(q~qA) of ~ such
that S = hq/s (A). Thus, regarding S ~ hq/s(A) as a map or:go [~ -~ ga ~ (depending on h, A),

has a unique fixed point S ~_ N, and we have S=h(q~qA). For any h, h(A)=h(q)~..
h(q~qA)=h(q).

(2) I f q has no free occurrence in a formula A and g =qh, then g(A)=h(A).
(3) if (pqA is well-formed and r is an atom not occurring in A, then for all assignments

h, h(tpqA)= h(q~r A(q/r)), where A(q/r) denotes substitution by r for all free occurrences
of q in A.

Proof. By the proposition, A is local, so (1) follows from the lemma. (2) is proved in the
proposition, and (3) is clear from (1). []

Remark 2.9. We should mention two technical differences between our system and
the original logic USF of Gabbay. In [6], Gabbay defines USF using the first-order
connectives Until and Since as well as the fixed point operator. Since is the temporal
dual of Until; its semantics are given by h (S (A , B)) = { n e N : 3 m < n (m ~ h (A) ^

6 1. Hodkinson / Theoretical Computer Science 139 (1995) 1-25

Vm'(m<m'<n-om'eh(B)))}. We stress that UYF is just as expressive as USF: Yq is
definable in USF by the formula S(q, l) , whilst S(p,q) is definable in UYF by tprY
(p v (q ^ r)). Using UYF allows easier proofs and stronger results. Also, we admit
rather more well-formed formulas than does Gabbay in [6]. For ~pqA to be well-
formed, Gabbay requires that all atoms have only pure past occurrences in A, whilst
we only need this for the atom q. As an example, ~pr(U(p, q) ^ Yr) is well-formed for us,
whilst qor(U(p,q)/x S(r, l)) is not a formula in USF as defined in [63.

3. Elementary results

Here we establish some simple results on the way the fixed point operator interacts
with the other connectives of the logic. They are proved using the fixed point theorem,

and some will be needed later.

Definition 3.1. Two U YF-formulas A, B are said to be equivalent if for all assignments
h we have h(A) = h(B). We write A - B if A and B are equivalent.

Proposition 3.2. Let tpqA(q) be a U YF-formula. Then --1 qgqA(q) is equivalent to tpq
-3A(-nq). Here, A(-nq) denotes the result of replacing each free occurrence of q by --3q
throughout A.

Proof. Let h be any assignment and assume that h(tpqA(q)) = S ~_ [~. We wish to show
that h(qoq-aA(-aq))=N\S. By the fixed point theorem, it suffices to show that

hq/~\s(-aA(-aq))= [~\S. But hq/~\s(--aA(-aq))=hq/s(--aA(q))= ~\h~/s(A(q)), and this
last is equal to [~ \S by the fixed point theorem again. []

In a similar way we can show the following proposition.

Proposition 3.3. Let q, r be distinct atoms and suppose that tpqtprA is well-formed. Then
tpq~prA - tprtpqA - tpqA (r/q). Here, A (r/q) denotes substitution of q for all free occurren-
ces of r in A.

Proof. Choose any assignment h. By the fixed point theorem, for all S ~ [~ we have
h (~oqtprA)= S if and only if h~/s (~prA)= S. Using the theorem again, this is if and only if
hq/s,,/s(A) = S. So by symmetry, ~pqtprA - qgr tpqA. Moreover, as clearly h~/s,,/s(A) = S if
and only if ha/s(A(r/q))=S, the last part follows. []

Now we examine how tp interacts with the yesterday connective.

Proposition 3.4. Let B(q) be any formula and write B(Yq) for the result of replacing
every free occurrence of q in B by the formula Yq. Then YtpqB(Yq)--~pqYB(q).

L Hodkinson/Theoretical Computer Science 139 (1995) 1-25 7

Proof. Let h be given, and let S=h(qqB(Yq)), so that the interpretation of the
left-hand side under h is just S + 1. By the fixed point theorem, it suffices to show that

hq/s+~(YB(q))=S+ 1. But h~/s+~(YB(q))=hq/s(YB(Yq))= 1 +hq/s(B(Yq)), and the
latter is equal to 1 +S, by choice of S and using the fixed point theorem once
more. []

This result allows us to normalise U YF-formulas, by pushing all Y's inwards until
they are next to atoms.

Definition 3.5. (1) If A is any UYF-formula, and n<e) , we define Y"A by induction:

Y°A =A and Y"+IA= Y(Y"A). Formulas of the form Y"q for atomic q, or Y"T, are
called basic.

(2) A U YF-formula A is said to be normal if it is built up from basic formulas (the
basic subformulas of A) using only --1, ̂ , U and tp (no Y). A subformula B of A is said
to be a normal subformula of A if every basic subformula of B is a basic subformula
of A.

So a "basic subformula" of A is a subformula that is maximal amongst those
subformulas of A that are basic. For example, the basic subformulas of
A =--n Yq --. YYq are the first Yq and the YYq; neither the two occurrences ofq nor the
subformula Yq of the YYq are basic subformulas of A. The normal subformulas of
A are just the first Yq, --7 Yq, YYq and A.

Lemma 3.6. Let A be any normal formula. Then YA is equivalent to a normal formula B.

Proof. We will show in addition that for any atom q, if all free occurrences of q in YA
are pure past then the same holds for B.

We go by induction on the number of--n's, ^ 's , U's and q's in A. If this is 0 then
A is basic, so YA is already normal. The condition on atoms is trivially valid. It is
easily seen that Y--hA= Y-I- ^--nYA, Y(A ^B)==_ YA ^ YB, and YU(A,B)=
YT ^ (A v (B ^ U(A,B))), so the result follows immediately from the inductive
hypothesis in these cases.

Now assume the result for all formulas with no more ^ 's , -n 's , U's and ~0's than A,

and consider qqA (assumed well-formed and normal). By Theorem 2.8(3) we can
rename bound atoms of A if necessary, so we can suppose that all occurrences of q in
A are free and (necessarily) pure past. Now A is normal, so it has the form B(Yq) where
B(q) is normal and with the same number of--n's, ^'s, U's and q~'s as A. By the
inductive hypothesis, YB(q) is equivalent to a normal formula C. As all free occurren-
ces of q in YB(q) are pure past, the same holds for C, so that q)qC is well-formed. It is
clearly normal, and by Proposition 3.4 is equivalent to Yq)qA. Finally, note that if r is
any a tom all of whose free occurrences in YqqA are pure past, then the same holds for
YB and so (inductively) for C. Hence, all free occurrences of r in qqC are pure past, as
required. []

8 1. Hodkinson/Theoretical Computer Science 139 (1995) 1-25

Theorem 3.7. Any U YF-formula A is equivalent to a normal jbrmula.

Proof. By induction on A. The only hard case is YA, which is dealt with by the

preceding lemma. []

4. Recursive systems

The semantics of the fixed point opera to r were defined by nested recursion. We will

now see how to unravel the nesting, replacing it by s imultaneous recursion. This will

be a main step in our p roof of el imination of nested ~0's for YF.

Definition 4.1. Let n > 0 . A recursive system (of width n) is a pair p=(?, /~) , where
f = (r l , . . . , r ,) and /~=(B~ B,), the r~ are distinct a toms and the Bi are UYF-

formulas. We require that for all i, j ~< n, every free occurrence of r~ in B i is pure past.
A formula A is said to be ~o-free if it contains no q~-operator. The recursive system

(?,/~) is said to be ~o-free if each Bj is qJ-free.

4.1. Semantics of recursive systems

We give them a fixed point semantics, as for ~o. Let p = (?,/3) be a recursive system. It
can be shown using the technique of L e m m a 2.6 that for any assignment h there is
a unique assignment hp with hp =7 h and hp(ri) = hp(Bi) for all i ~< n. hp can be defined by

recursion as before.

Definition 4.2. (1) Let p =((rl r.), (Ba B,)) be a recursive system, and let A be
a YF-formula. We say that A and p are equivalent if for all h we have h(A)=hp(B1)

(=hp(r l)) .
(2) If p'= ((r'l r',,), (B'I B',,)) is ano ther recursive system, we say that p and p'

are equivalent if for all assignments h, h o (r~)= h,, (r~) for all i~< min (n, m). Note that in
general, equivalence is not transitive; but the definition is no less useful for that.

We begin by showing, in the following proposi t ion, that U YF is at least as
expressive as recursive systems. The idea of the p roof is well-known; see, for example,
Beki6's theorem [19, Theorem 10.1], a similar result on fixed points of cont inuous

functions on domains.

Proposition 4.3. Let p = ((r 1 r,), (BI B,)) be any recursive system. Then there is
a U YF-formula A that is equivalent to p. I f the Bi are YF-formulas then such an A can

be found in YF also.

Proof. By induction on the width n. If n = 1 we let A = ~prl B1. Assume the result for
n and let p = ((r l r .+ 1), (B1 B.+ 1)) be given. Let p* = ((r l r.), (B~' B*)),

I. Hodkinson / Theoretical Computer Science 139 (1995) 1-25 9

where B* = Bg(r. + a/or. + 1 B. + 1) for each i ~< n. We claim that p and p* are equivalent;
the result will then follow by induction.

Let h be any assignment, and let &=ho(r~) for each i<~n+l. Since
h o(r.+~)=hp(B.+~), it follows f rom the fixed point theorem (2.8) that

ho(q~r.+ 1B.+ x) = ho(r.+ 1) (= S.+ 1). Hence, from ho's point of view, replacing r.+ 1 by
~or,+~B.+~ in B~ makes no difference, and we have ho(B*)=ho(Bi) for each i. But

r .+ l does not occur free in the B*, so letting h*=h(rdS,:i<~nl, we see that
h*(B*)=hp(B*) for each i. Thus, h*(B*)=ho(B*)=hp(B,)=&=h*(ri) for each i.
It follows by uniqueness of the fixed point that h * = h p . , so that p and p* are
equivalent. []

The fact that formulas B~ in a recursive system may contain U will be needed
later, but our current aim is to show that nesting of fixed point opera tors in YF
can be eliminated. So f rom now until the end of Section 5 we restrict a t tent ion
to YF: all formulas will be YF-formulas. We first prove a converse to the previous
proposi t ion.

Theorem 4.4. Let A be any YF-formula. Then there is a (p-free recursive system
p = ((r 1 r,), (B1 B.)) for some n, that is equivalent to A.

Proof. By Theo rem 3.7 we can assume that A is normal . By renaming bound a toms if
need be (cf. Theo rem 2.8(3)), we can also assume that for any subformula q)qB of A, the
only occurrences of q in A are in B.

If A is a formula, we w r i t e / i for the formula obta ined from A by om~itting all ~0's.

Formal ly , gt=q for any a tom q , T = T , - - n A = - - n / i , (A/xB) =A ^ B , Y A = Y A , and
A

q)qA = / i . (Later we will also use ,zi for U YF-formulas; we then include the clause
^ ^

U(A, B)^= U(A, B).) We will find p as above, with the addit ional property:

No rl occurs free in A, and each Bi is a normal subformula of ,zi, and B1 =,zi. (.)

We go by induct ion on A. If A is basic we let p = (r , A) where r is any a tom not

occurr ing in A. Clearly, p is equivalent to A, and (*) holds. If the recursive system
(f , /~)= ((q r.), (B1 B.)) is equivalent to A, and (*) holds, then ((to,f) ,
(--1BI,/~)) is equivalent to --1 A, where ro is a new atom; and (*) still holds.

Assume that A ^ A' satisfies the condit ion on bound atoms, and that the recursive
systems ((q r.), (B1 B.)) and ((r'l r~,), (B'I B~,)) are equivalent to A, A',
respectively, (.) holding for each. Then no r~ occurs free in A. If some r~ occurs free in
A', then by the condit ion on bound a toms it cannot occur bound in A. Hence, it does
not occur at all in A, nor in any Bj (since they are subformulas of ,zi). In consequence,

the functionali ty of (f,/~) is unaffected if we replace r~ by a new a t o m not occurring at
all in A ^ A'. If we do this for all r~ where necessary, and under take similar modifica-
tions for the r~, then the recursive system ((ro, f, f ') , (B1 A B'I, B, B')), where ro is a new
atom, satisfies (.) for A A A'; and it is certainly equivalent to A A A'. This completes
the case of ^ .

10 I. Hodkinson / Theoretical Computer Science 139 (1995) 1-25

Finally, we consider the case q~qA (as A is normal, the case YA does not arise).
Assume p=((r l r.), (B1 B.)) is equivalent to A, and that (*) holds. We let
p* =((q, r2 r.), (BI B,)). By (*), all occurrences o fq in all the Bi are pure past,
so p* is well-formed. (This is where the assumption that A is normal is used.)

Evidently, (*) holds for p*, q~qA. We claim that p* is equivalent to q~qA. Let h be an
arbitrary assignment, suppose that h(q~qA)=S, say, and let h'=hq/s. Obviously,
h'o(Bi) = h'o(ri) for each i>~ 2. But further, h~,(B1)= h'(A) since A and p are equivalent;
and by the fixed point theorem, h'(A)=S=h'(q). If q does occur in A then by (*),
q¢ {rl r, }, and if not, then we can certainly assume this; so h'(q)= h'p(q). We have
shown that h'p (B~)= h'p(q). Hence, h~ yields a fixed point of p*, and by uniqueness of
fixed points, hp.(q)=h'p(q)=S=h(~oqA). So q~qA and p* are equivalent, as claimed.
This completes the induction, and with it the proof of the theorem. []

We can restrict recursive systems further without losing any of their expressive

power.

Definition 4.5. A recursive system p=((rx r,), (B1 B,)) is said to be simple if
(a) it is ~o-free, (b) the Bi are normal, and (c) all occurrences of the rj in the Bi lie under
the same number of Y's - i.e., there is d > 0 such that every basic subformula of any
Bi of the form yk rj (for any j) is such that k = d. This unique d is called the depth of p.

Proposition 4.6. Let p =((r l r,), (B1 B,)) be a q~-free recursive system. Then p is
equivalent to a simple recursive system of depth 1.

Proof. By Theorem 3.7 we can assume that the Bi are normal. Let k be maximal such
that for some j, ykrj occurs as a basic subformula of some Bi. Introduce new atoms
i for j ~< n and 1 ~< l ~< k, and define S 1 to be the (normal) formula obtained from Bj by sj

replacing each basic subformula Y' rj by YsJ (all l), and SJ = YsJ- 1 for each l ~> 2. Then
let p '=(LS) , where g=((sJ:j<<.n): l<<.k), and similarly for

Certainly, p' is well-formed and simple of depth 1. We claim that it is equivalent to
p. Let h be given, and define h' by

h'=~h, h'(sJ)=hp(Yl-Xrj) for each j,/.

Then for each j, h' (s J) = h'(Ys}- 1) = h' (S J) if 1/> 2, and

h' (S}) = h o (S¢ (S I~ Y ' - I r,: i <<. n, l <~ k)) = hp (B j) = hp (r j) = h' (s]).

Hence, h' is a fixed point assignment for p', and by uniqueness of fixed points, h '= ho,.
As h¢(s¢)= hp(rj) for each j, p' and p are equivalent, as claimed. []

4.2. Unfolding

We need a final result on syntactic manipulation of recursive systems.

1. Hodkinson / Theoretical Computer Science 139 (1995) 1-25 11

Definition 4.7. Let p = ((rl r.), (B1 B.)) be a simple recursive system of depth 1.
Define formulas B k for k < 09 by induction:
• B ° = ri for all i,

• B k÷l is obtained by normalizing Bk(rJB/j<<,n) (i.e., replacing it by a normal
equivalent).

Also define recursive systems pk=((r 1 r.), (B k Bk)) for each k>~ 1.

Lemma 4.8. Let p =((r l r.), (B 1 B.)) be a simple recursive system of depth 1, as
above. Then for each k >~ l, the system pk is simple, of depth k, and equivalent to p - we
have hp = hp~ for all h, k.

Proof. By induction on k. Assume the result for k/> 1 and let h be any assignment.
Clearly, pk ÷ 1 is ~o-free. To normalise a q~-free formula we move all Y's in through the
^'s and --q's using the rules Y(A ^ B) = Y A ^ YB and Y--qA=YT ^--qYA. These
rewrite rules clearly preserve the total number of Y's above each atom, and it follows
that pk÷l is simple and of depth k+ 1.

We claim that hp gives a fixed point of pk+l; the lemma will then follow by
uniqueness of fixed points. But as hp(rj)= hp(B~) for each j, the substitution of B i for
r i in B k makes no difference from hp's point of view, so that hp (B k 41)= hp (Bk). By the
inductive hypothesis this last is equal to hp(ri), which completes the proof. []

5. Elimination of fixed point operators

We now prove our first main result, that any formula of YF is equivalent to one
with depth of nesting of qCs of at most 1.

Theorem 5.1 (Elimination of fixed point nesting). Let A be any YF-formula. Then A is
equivalent to a formula A' without nested tp 's - a boolean combination of YF-formulas of
the form tpqB, where B is qg-free. Moreover, A' is obtainable effectively from A (in time
polynomial in the length of A).

The proof is rather technical. Nesting of the fixed point operator corresponds to
recursive systems of width greater than 1. The idea of the proof is (roughly) to express
A as a recursive system of width n, reduce n to 1 by coding the truth values of
its formulas at regular intervals by a single atom, and obtain the value of A at
intermediate times by interpolation.

Notation 5.2. If k,p~[~, and p>0 , we write k m o d p for the unique i with 0~<i<p and
i = k (mod p). We write kp for k - (k mod p); kp is the largest multiple of p not greater
than k.

12 I. Hodkinson / Theoretical Computer Science 139 (1995) 1-25

Let A be any YF-formula. By Theorem 4.4 there is a ~p-free recursive system
p =((r l r,), (B1 B,)) that is equivalent to A. By Proposition 4.6, p can be taken
to be simple of depth 1. Study of the proofs in Sections 3-4 shows that p is obtainable
effectively from A in polynomial time.

Let p = 2n + 3. To prove Theorem 5.1 it suffices to show the following lemma.

Lemma 5.3. For each j <~ n there is a YF-formula D r of the form qgqC, where C is q~-free,
such that for any assionment h and any multiple m of p, we have meh(Dr),~mehp(Br).
The formula D r is obtainable effectively from p in polynomial time.

For assuming the lemma, we can interpolate to get the values of A at any time. To
see this, observe first that the "clock" formula z=~oq-qY-qYP-lq satisfies
h(z)={mp: mete} for any assignment h. We will show the following claim.

Claim. A is equivalent to A'= /~O<~i<p Y z ~ B~ (rJDr: j <... n), where B~ is as in Definition
4.7.

Proof. Let h be any assignment, let m e n and let i = m m o d p . Then meh(A') if and
only if m e h (B ~ (rJDj: j <~ n)). Now by Definition 4.7 and Lemma 4.8, B ~ is norm al and
every occurrence of each r r in it is in a basic subformula of the form yirr" Moreover, as
mp is divisible by p, mpeh(Dr) if and only ifmpehp(Br)=hp(rr). So as h =ehp, it follows
that meh (B~ (rr/D/j <~ n)) if and only if meh o (B~). But by Lemma 4.8, pi is equivalent
to p and hence to A, so this is if and only if meh(A), proving the claim. []

Evidently, A' has no nested fixed point operators. Moreover, it is obtainable
effectively from p in polynomial time, assuming that the D r are. So Theorem 5.1
follows from the lemma. []

Proof of Lemma 5.3. Assume for simplicity of notation that j = 1; the proof for other
j is the same. By Lemma 4.8 we can replace p by pP (effectively and in polynomial
time), and thus assume that p is a simple recursive system of depth p. Choose
a surjective function Z:l~l ~ {T, l , Bi: i<~n} with the following properties:
• z(m)=x.(m+p) for all meN;
•)~(0) = Bx;
• if k < p - 3 and k is odd, then z(k)=-l-;
• X (p - 3) = Z (p - 2) = T;
• x (p - 1)= ±.

We can find such a Z since p is large enough. Z has the important property that for
any assignment h, the sets h(z(m)), h(z (m+l)) are both nonempty if and only if
m - p - 3 (m o d p) . We will design a tp-free recursive system tr=(s,C) satisfying, for
every assignment h,

Vmel~ (meh~(s) ,~ mehp(ymm°d P z(m))). (*)

1. Hodkinson / Theoretical Computer Science 139 (1995) 1-25 13

In part icular , if m is a mult iple of p then m e h, (s) , ~ me hp (B1). The formula D a = tpsC
then satisfies the conclusion of the lemma, as by the fixed point theorem, h(D1)= h,(s)
for any h.

We let the formula C be:

A Yi[--qYT v (Y2s ^ Yas)] '* Yi[z(i)(YPrj/YP-t~s:j<~n)].
O<~i<p

Here, O<~lj<p is such that z(li)=Bfil j exists because ;~ is onto. It is clear that C is
obta inable effectively in polynomia l t ime from the Bj. Hence, the l emma will be
established if we can prove that (,) holds for all m.

We do this by induction on m. Fix an assignment h. Let m e n and assume that (,)
holds for all m ' < m. We will show that it holds for m.

Claim. For all i<p, Yi[--qYT v (y 2 s / x Yas)] is true at m under the assignment h~ iJ"
and only if i = m m o d p.

Proof, If i>m then YiA is false at m for any A under any assignment, and

i¢(m m o d p). So we can assume i<~m, in which case the left-hand side holds if and
only if

m- ieh~(-1YT v (y2s A Yas)). (~f)

But clearly h ' (- n Y T) - - { 0 } for any assignment h', so (t) holds if and only
if m - - i or m - i - 2 , m - i - 3 e h~ (s). By the inductive hypothesis, this holds if and only if
re=i, or m--i--2ehp(Yt"-i-E)m°dPz(m--i--2)) and similarly for m - i - 3 : i.e., if and

only if m=i or ((m- i -2)pehp (z (m- i -2)) and (m- i -3)peho(z (m- i -3))) . But by
choice of ~(, this holds if and only if m = i or m - i - 3 - p - 3 (rood p) - i.e., if and only if
m - i (m o d p). This proves the claim. []

Proof of L e m m a 5.3 (continued). We now prove (,) for m. Let i=mmodp. Now

meh~(s) if and only if meh~(C), so by the claim, we see that we must prove

meh~(yi[/~(i)(YPrj/Y p tJs:j<~n)]) ~ mehp(yiz(m)),

or equivalently,

mpeh~(z(m)(rPr j/ Y p-'j s: j <~ n)) .~ mpe ho(z(m)).

N o w z(m) is T, _1_ or a normal formula B k in which all occurrences of the rj are in
normal subformulas of the form YPrj, which in C are replaced by YP-~Js. So as
h~ = ~,s hp, we need only check that

mpeh~(YP-lJs) .*~ mpehp(YPrj) for eachj~<n. (~)

So let l<.j<~n. First assume that re<p, so that rap=0. N o w p-lj>~l,
so that OCho(YP-tJs); and clearly OChp(YPrj). Hence, (:~) holds in this case. N o w
assume m>>.p, so that mp>~p. Then mpeh~,(YP-~Js) if and only if mp-p+ljeh~(s).
As Ij<p, mp-p+l j<m, so (using (*) inductively) this holds if and only if

14 1. Hodkinson / Theoretical Computer Science 139 (1995) 1-25

m p - p + lieho(Yl~Z(mp-p + 11)), if and only if mp-peho(x(l i)) = hp(Bj)= hp(rl), if and
only if mpehp(YPrj). Thus (:~) is proved.

So (*) holds for m, and hence by induction it holds for all meN, completing the

proof of the lemma. []

6. Decidability and expressive power

Now we return to the full U YF. We will prove that it has the same expressive power
as the monadic second-order logic S1S, the second-order theory of one successor
function. Our argument uses automata and is reminiscent of that of McNaughton
[13], though much less sophisticated. Decidability of U YF will then follow from the
known decidability of S1S. Gurevich [10] surveys the necessary general knowledge on

S1S and automata.
We first explain the need to invoke second-order logic. An older temporal logic,

"US", introduced by Kamp in [12], involves in addition to the boolean connectives
the binary temporal connective Until and its dual Since. There is no fixed point
operator in US. Now consider the monadic first-order logic over N. Its signature
consists of the first-order signature {=, <}, augmented with monadic predicate
variables Q(x), R(x) associated with the atoms q,r of Section 2. The semantics
are those of first-order logic in the structure (~, <, h). The assignment h provides the
semantics of the unary predicate variables, so that if Q (x) is associated with the atom
q, and n~[~, then ([~, <, h)~ Q(n) if and only if neh(q).

It is easily seen by induction on A that for any formula A(ql qk) of US there is
an equivalent monadic first-order formula $A(X, Q1 Qk): for all h and n~N, neh(A)
if and only if ([~, <, h)~ ~A(n). Kamp proved that the converse also holds: for each
monadic first-order formula there is an ([~-) equivalent US-formula. Other proofs are
in [6, 7, 9]. Thus, we say that US is fully expressive with respect to monadic first-order

logic over N.
The need for second-order logic when treating the fixed point operator is prompted

by the following observation of Wolper.

Proposition 6.1. (1) Assume that for every atom q, either h(q) is finite or ~ \h(q) is finite
(in the latter case we say h(q) is cofinite). Then for all formulas A of US, h(A) is either

fn i te or cofinite.
(2) I f ~k(x) is a monadic first-order formula, and h(q) is finite or cofinite for each

Q occurring in ~, then so is { n ~ : (~, < , h) ~ ~b(n)}.
(3) There is no first-order formula e(x) in the signature { =, < } such that for all net~,

(M, <) ~ e(n) if and only if n is even.

Proof. (1) By induction on the complexity of A. For atomic A we are given the result.
The set of finite and cofinite subsets of N is closed under the boolean operations, so
the only remaining cases are U(A, B) and S(A, B). Assume inductively that h(A) and

I. Hodkinson / Theoretical Computer Science 139 (1995) 1-25 15

h(B) are finite or cofinite. Inspection of the semantics of U shows that if neh(U(A, B))
then there is m > n in h(A), and that n + l e h (A) implies nEh(U(A,B)). Hence,
h(U(A, B)) is finite or cofinite according as h(A) is. Now assume, for contradiction,
that h(S(A, B)) is neither finite nor cofinite. Hence, there are infinitely many ne t~ such
that n~h(S(A, B)) but n + 1 eh(S(A, B)). Inspection of the semantics of S shows that
n~h(A) for each such n. Hence h(A) is infinite, and so, by the inductive hypothesis,
cofinite. But h(S(A, B))~ h(A)+ 1, so h(S(A, B)) is also cofinite, a contradiction. This
completes the proof.

(2) This is immediate from (1) and Kamp's result.
(3) This is a special case of (2). []

But the UYF-formula z=tpq-7Yq satisfies h(t)={0,2 ,4 } for all h, so the
expressive power of U YF goes beyond that of first-order logic over [~.

Recall the definition of SIS. The signature of this logic is as for monadic first-order
logic (above). The formation rules for SiS-formulas are also as for first-order logic, but
with the additional clause: if ~, is a formula and Q a monadic predicate variable then
3Q~, is a formula. The semantics of SIS are as for monadic first-order logic in
(1~, <, h), with the additional second-order clause: if ~b(xl xn) is a formula, and
tJ=(al an)~N n, then ([~, < , h) ~ 3Q~,(ti) if and only if ([~, < , h ') ~ ~,(ti) for some
h' =q h.

We want to compare the expressive power of U YF and SIS. The natural definition
to make is the following.

Definition 6.2. Let A be a UYF-formula and ~(x) a formula of SIS with a single free
variable, x. We say that A and ~, are equivalent if for all assignments h, h(A)=
{nEN: ([~, < , h) ~ ~b(n)}.

It is easy to show that SIS is at least as expressive as UYF.

Proposition 6.3. Let A be any U YF-formula. Then there is a formula d/ A (X) of SIS that
is equivalent to A. There is an algorithm that constructs d/A from A.

Proof. By induction on A. I fA is the atom q we let ~A(X) be Q(x), and we let ~,v(x) be
x = x. The boolean clauses are as expected, ~rA (X) is 3y < X (~A(Y) A --n3Z (y < Z < X)),
and ~VtA.B)(X) is 3y>X(Oa(y)A VZ(X<z<y~OB(Z))) . Finally, assume that tpqA is
well-formed and suppose that we have defined ~'A (X). The fixed point theorem shows
that for any h,h(tpqA) is the unique S _ • such that hq/s(A)=S. So we can define
~%qA(X) as 3Q [Q(x) A Vy(Q(y)~-~A(y))]. A standard induction on A now shows that
~bA is always equivalent to A, and clearly the construction of OA from A is effec-
tive. []

Corollary 6.4. U YF is decidable: there is an algorithm that, given a formula A of U YF,
decides whether or not there is an assignment h such that h(A)#O.

16 L Hodkinson / Theoretical Computer Science 139 (1995) 1-25

Proof. This is because there is an a lgor i thm that decides whether or not a sentence of

SIS has a model (see [10]). We can apply this a lgor i thm to the sentence 3x~kA(x),
which by the proposi t ion is effectively constructible f rom A. []

In Section 7 we will show that the decision problem for U YF is PSPACE-

complete.
The remainder of this section is devoted to proving the converse of Propos i t ion 6.3.

Theorem 6.5. For any formula of S1S with a single free variable, there is an equivalent
U YF-formula, which is effectively constructible.

This will establish that U YF is "fully expressive" with respect to monadic second-

order logic. The p roof will use au tomata .

Definition 6.6. (1) Let L be a finite set of a toms. A (Muller) L-automaton is a 4-
tuple M=(S, so, T,F) where S is a finite nonempty set (of states), so t s is the initial
state, T c_ S × ~ L x S is the transition table, and F _ gdS is the set of accepting

conditions.
(2) M (as above) is said to be deterministic if for all s~S and X ~_ L there is a unique

s'eS with (s, X, s')~ T. In this case we will often regard T as a function: S × ~ L ~ S .
(3) If M is an a u t o m a t o n as above, and h is an assignment, a run of M over h is

a sequence (sn: n<co) of states, such that for all n,

(sn, {q~L: neh(q)}, s,+ 1)e T.

The run is said to be accepting if

{seS: s=s , for infinitely many n < to}~F.

Otherwise, it is said to be rejecting.
(4) M is said to accept an assignment h if there exists an accepting run of M over h.
(5) Two L - a u t o m a t a are said to be equivalent if they accept exactly the same

assignments.

An L - a u t o m a t o n is thought of as running along N: at each n~N it "reads" which
a toms of L are true at n under h, and chooses its next state in the light of this and its

current state. It then advances to n + 1 and the process repeats.
The main l emma that we need follows after a definition.

Definition 6.7. If h is an assignment and meN, we write h>~m for the assignment given

by h>~m(q)={n~N:m+neh(q)}.

Intuitively, an a u t o m a t o n M accepts h >/m if and only if M would accept h if it s tarted

its run at m instead of at 0.

1. Hodkinson / Theoretical Computer Science 139 (1995) 1-25 17

Lemma 6.8. Let M =(S, So, T, F) be a deterministic automaton. Then there is a formula
AM of U YF such that for any assignment h and n~ I%1, n~h(AM) if and only if M accepts
h>~n. The formula AM is obtainable effectively from M.

Proof. The idea is taken from [13], and we will only sketch it. Suppose that M has
k states. We first describe a deterministic automation M* involving k + 1 "copies"

M 0 M k of M. We describe the run of M*. At each time t~[~, M* releases
a dormant copy of M. Then for each s~S it checks to see if more than one currently
active copy of M is in state s; if so,~it renders dormant all but the longest-running copy
(the one that was released first). (Thus, M* must keep track of the order of launch of
the currently active copies of M - it can do this with finitely many extra states.) After

this check, at most k copies of M can be active, so there will always be at least one
dormant copy. M* then advances to t + 1 by allowing all surviving copies of M so to
advance, and the process repeats.

Consider a copy M~ o of M that is released at time to. If it is later deactivated, this is
because at some time tl>>.to it arrives in the same state as another copy Mi, of
M released before to. At all times t>~tl, M~, (if not itself deactivated) will be in the
same state as M~ o would have been in, had it survived. If M~, is later deactivated then it
itself will be replaced by another copy M~ 2, launched earlier than Mil. The resulting
sequence M~ o, M~ of "descendants" of Mi o is of length at most k + 1, since clearly
all the M~j were already active at time to. Let M~, be the final descendant of M~ o. Then
M~, is never deactivated, and as it is eventually always in the same state as M, o would
have been in, we see that M accepts h>~to if and only if the "run" of M~ o, had it lasted,
would have been accepting, if and only if the "run" of M~, is accepting. This is the
condition that we have to check with U YF-formulas.

We can simulate M* by a recursive system p =(f,/~). The atoms f involve the
following.

• atoms ris for each i<<,k,s~S; ris will be true at n if and only if the copy Mi of M is
active and in state s at n.

• atoms oij (i,j <~ k); o~j being true at some point will mean that copies Mi and Mj of
M are both currently active, and M~ was released first.

• atoms p~j (i,j <~ k); Po being true at a point will mean that at that point, copy M~ was
made dormant because it was in the same state as copy M j, which was not made
dormant (i.e., Mj was the oldest copy in that state).

It is clear that, knowing the transition table of M, the values of these atoms at time
t + l are a fixed boolean combination of their values and of the values of the atoms of
L at time t. Thus, p can in fact be taken to be simple of depth l; the formulas/~ will not
involve Until. By Proposition 4.3, for each a tom r of f there is a YF-formula A, such
that for all h, h(A,)= hp(r).

Let o _ D, - T, D ° = _l_ if i :/:j, and for d >~ 0,

,1 = V U (Pi, i' ^ D~, j) ,
i'~:i i

18 1. Hodkinson / Theoretical Computer Science 139 (1995) 1-25

D~ says that the dth descendant of Ms is Mj. Then let

c,j Vr,sA v Eo A A l ---']ldi, j , .
sES d<~k j ' # i

Then nehp(Cij) if and only if Mi is active at time n and its final descendant is Mj. We
can also express that the run of Mj is accepting, by

B j = V (A I(ri~)A A -q l (r j . , ')) •
XEF sEX s ' eS \X

Here, I(q) abbreviates the formula GFq=--qU(~U(q, 3-), Y), saying that q holds
infinitely often in the future. The formula AM is now obtained from
Ai<~k (ri.so ~/~j<~k(Cij --,Bj)) by substituting A, for r (for each atom r of ~). []

To complete the argument we will need the following standard results about
automata.

Fact 6.9. (1) Every automaton is equivalent to a deterministic automaton, which can be
constructed effectively. This was proved in [13].

(2) For every sentence a of S1S whose free monadic predicates correspond to atoms in
the finite set L, there is an L-automaton M such that for all assignments h, M accepts h if
and only if (N, < , h) ~ tr. M can be constructed effectively from tr. See [10], for
example.

Now let ~(x) be an SIS-formula with a single free variable, x. We want to find
a U YF-formula A equivalent to ~,. Let L be the set of atoms occurring in ~ and let
Q be a monadic predicate variable not occurring in ~. By Fact 6.9 we can find
a deterministic Lu{q}-automaton M=(S, so, T,F) that accepts an assignment h if
and only if ([~, <, h) ~ Vx (Q (x) *-~ ~ (x)).

Definition 6.10. (1) If s~S we write Ms for any deterministic equivalent of the version
of(S, s, T, F) that "guesses" values of h(q). Formally, Ms is a deterministic equivalent of
the L-automaton (S, s, T', F), where T' = {(sl, X c~ L, s2): (sl, X, s2)e T}.

(2) We write As for the formula ,4M~ of Lemma 6.8.

Clearly, for any h there is a unique h* =q h that M accepts, namely the h* satisfying
h* (q)= {n~/~ : (~, <, h)~ ~ (n)}. We can simulate the run of M over h* from within h,
obtaining the following result.

Lemma 6.11. For any s~S there is a U YF-formula Cs such that for all assignments h and
all n ~ , neh(Cs) if and only if the state of M at time n during its run on h* is s.

1. Hodkinson / Theoretical Computer Science 139 (1995) 1-25 19

Proof. We define a recursive system p=((r~: seS), (B~: sES)) as follows. If seS let
n (s) = { (s ' , X) ~ S x goL: T (s ' , X) = s or T (s ' , X u { q }) = s } . We let

Bs=A~/x V r(r~,^ A x^ A -n.v)
(s',Xjen(s) xeX yeL\X

for each s~S\{so}, and

Bso YTv[A oA Y(,A A xA A
(s,X)en(So) xE X ye L \ X

Note that the Bs are formulas of U YF (and not YF). Nonetheless, by Propos i t ion 4.3
we can find for each s6S a formula Cs such that for all h, h(C~) = ho(r,). Thus, it suffices

to show that for any assignment h, if s0, sl is the (accepting) run of M on h* then for
all n and s, nehp(r,) if and only if s=s , .

This is clear if n = 0 . Assume the result for n. Let X = { p 6 L : neh(p)}, and define

s + = T(s., X w { q }), s - = T(s., X). By definition of the B~ and the inductive hypothesis,
for each seS we have: n + lehp(r~) if and only if

(1) s=s + or s = s - , and
(2) n + l~h(A~).

And (2) holds if and only if Ms accepts h~>,+l, if and only if there is h' =q h that
M accepts "when star ted at n + 1 in state s".

Claim. (1) and (2) hold if and only if S=Sn+ 1.

Proof of claim. Certainly, s.+ x e {s +, s -} , and M obviously accepts h* when started in

state s .+ l at n + l (its run is just s . + l , s . + 2 ). Conversely, suppose we are given
se{s+,s - } and h' as above. We can assume that h'(q) and h*(q) agree before n, and
that T(s., h'- 1 (n) n (L u {q})) = s. An accepting run of M on h ~ , + l when started in
state s, when preceded by So s., gives an accepting run of M on h'. By uniqueness,
h' = h*, and so s = T(s., h* - 1 (n) n (L u {q})) = s. + 1, as required. This proves the claim,
and with it the lemma. []

Corollary 6.12. There is a U YF-formula D equivalent to ~b (x).

Proof. We let D be

A (CsA A X A A "--qY)-"*U(AT(s, Xu~q}},-l-)"
seS, X~L \ xeX yeL\X

Let h be given, and let So,Sa be the run of M on h*, as before. Let neN, and write
X for {pEL: n~h(p)}. Then neh(D) if and only ifneh(U(Arls.,Xu{q}l, l)) , if and only if
n+l~h(Arts.,X~{q})). By the claim of L e m m a 6.11, this holds if and only if
s.+l = T(s . ,Xw{q}) . N o w s .+l = T (s . , X w { q }) or T(s . ,X) , according as neh*(q) or
not. If we had T(s , ,X u {q})= T(s., X), we could replace h* by h', identical with h*

20 1. Hodkinson / Theoretical Computer Science 139 (1995) 1-25

(
q

(
Fig. 1.

except that neh'(q) ,~ n~h*(q); then So, sl would be an accepting run of M over h',
contradicting the uniqueness of h*. Hence T(sn, X w { q}) v~ T(sn, X). So n e h (D) if and
only if neh* (q) - i.e., if and only if (t~, <, h) ~ ~(n), as required. []

Thus, the proof of Theorem 6.5 is complete. We remark that the formula D of the
theorem is effectively obtainable from ~ (since M and the Ms are). By Theorem 5.1,
D can in fact be taken to have depth of nesting of fixed point operators of 2 (i.e., no
branch of the formation tree of D contains more than two tp's). Thus, combining
Proposition 6.3 and Theorem 6.5, we see that any U YF-formula is effectively
equivalent to such a formula. I do not know if one can be constructed in polynomial

time.

Example 6.13. We give a very simple example of our construction. We will construct
the formula D equivalent to the SIS-formula e(x)=3P[P(x)^Vy(P(y)~--*
-73z (z < y ^ -73t (z < t < y) A P (z)))], defining the even numbers in N. The automaton
M for Vx(Q(x)~*e(x)) can be taken to have three states, 0 (initial state), 1 and 2 as

shown in Fig. i.
The set F of accepting conditions is { {0, 1 } }. The version of M that "guesses" Q can

accept if and only if it is initiated in state 0 or 1. Hence, we can take ,40 =,41 = T and
A2= A_. As L = 0 , we obtain Bo=-n YT v Yrl, BI = Yro, and B2 = ±. Applying Prop-
osition 4.3 to the recursive system (f,/~), we obtain (up to equivalence) Co = E, C~ = YE
and C2 = Z, where E=~oro(--nYT v y2ro). Observe that E is true at even numbers
only. The formula D is thus Ai<~2(Ci ~ T`4i,), where Tq ("tomorrow, q") abbreviates
U(q, ±), and i' is the next state of M when currently it is in state i and Q is true. Since
0 '=1 and 1 ' = 2 ' = 2 , we obtain D = (E - ~ T T) ^ (Y E ~ T _ L) A (± - - * T _ L) , which is
equivalent to T A --7 YE ^ T, i.e., to E. Hence, we obtain the formula E as equivalent
to ~(x).

7. Eliminating fixed point operators

In this section we show how to eliminate all fixed point operators from a U YF-
formula A, at the cost of restricting the values assigned to the bound atoms of ,4.

I. Hodkinson / Theoretical Computer Science 139 (1995) 1-25 2 1

This will yield an axiomatisation of U YF, as well as giving the complexity of its
decision problem. Our main tool is Proposition 7.2, a variant of which was also
proved independently by Strulo [17].

We can assume that the bound atoms of A are distinct and do not occur free in A.
We let A t = A(q ~/~), where the conjunction is taken over all subformulas of A of the
form q~qB, and A is as defined in the proof of Theorem 4.4. Equivalently, we can define
A t by induction: q t = T t = T for any atom q, (~ A) # = (Y A) t = A t , (A A B) t =
(U(A,B)) t=At A Bt, and (~oqA)t=At A (q,-~ A).

Lemma 7.1. Let A be a formula of U YF, and let h be an assignment such that h(At) = ~.
Then for all subformulas B of A, h(B)=h(B).

Proof. By induction on B. We need only check the case B = q~qC, as the other cases are
simple. Assume that tpqC is a subformula of A, and that the result holds for C. Then
q~--,(~ is a conjunct of A t. Hence h(q)=h(C), and h(C)=h(C) by the inductive
hypothesis. By the fixed point theorem (2.8), h(~oqC)= h(q), and h(q)= h(t~)= h(q~qC),
as required. []

Prolmsilioa %2. Let A be any U YF-formula with bound atoms f. Then for any assignment
h there is a unique assignment h a =Fh satisfying hA(At) = N. We have hA(k) = h(A) for all h.

Proof. By induction on A. If A is atomic or T, then Fis empty, A t = T and .4=A, so
hA= h and the result is trivial. Assume the result for A. As YA has the same bound
atoms as A, and (YA)t = At, we must h ~ e hrA=h a by the uniqueness part of the
inductive hypothesis. But then, hrA(yA)=hA(yA)=I+hA(A)=I+h(A) by the

inductive hypothesis, and this last is h(YA), as required. The proof for ~ A is similar.
Now consider U(A,B). Suppose the result holds for A,B, having bound atoms tT,/~
respectively. There are unique h A =~ h, h B =~h with hA(At)=hS(Bt)= ~. As ~ and

/~ are disjoint, we can define h*=a~h by h*=#h A, h*=a h a. Then h*(U(A, B)t)= [~,
^ A

and h* is unique given this condition. Moreover, we have h*(u(A, B) ̂) = h* (U(A, B)),
which by the inductive hypothesis is h(U(A, B)), as required. The argument for A A B
is similar.

Finally, assume the result for A and consider ~oqA. Let h(tpqA)=S, and h*=(h~/s) A.
A

Then (i) h* (q~qA)= (hq/s) A (_~); by the inductive hypothesis this is h~/s(A), which is h(q~qA),
by the fixed point theorem. Also, (ii) h* (At)= ~ since h* is of the form h'A; and it follows
from (i) that (iii) h* (q) = S = h* (,4). From (ii) and (iii) we obtain (iv) h* ((qgqA)~f) = ~. Hence,
by (i) and (iv) we can let heqA= h*.

It remains to check uniqueness in this case. Suppose h' is any assignment such that
h' =F, q h (where f are the bound atoms of A) and h'((q~qA)t)= ~. Then in particular,
h'(q)=h'(.4). As h'(At)=N, Lemma 7.1 applies, and we get h'(A)=h'(A). But h'(q)=
h'(A) yields h'(q)= S by the uniqueness part of the fixed point theorem. Hence h' =Fh~/s,
and since h'(A~f)= N, we obtain h' =(hq/s)A= h ~qA by the uniqueness part of the inductive
hypothesis. []

We say that a formula A is valid if h(A) = t~ for all assignments h.

22 I. Hodkinson / Theoretical Computer Science 139 (1995) 1-25

Theorem 7.3. Let A be any U YF-formula. Then A is valid if and only if the U YS-
formula m(At)---,/l is valid, where re(At) abbreviates At A--qU(~At, T) A
--qS(--qAt, T).

Proof. Let h be any assignment, and let teN. Assume first that A is valid. If
teh(D(At)), we want to show that teh(,4). Clearly, h(At)=[~, so by Lemma 7.1,
h(,4)=h(A), which is I~ since A is valid. Hence teh(A), as required.

Conversely, if [] (At) --, .zi is valid, we need to show that teh(A). By validity,
t~hA([](At)--*4). By Proposition 7.2, hA(At)=~, so tEhA(o(AJf)). Hence tehA(A),
and as the proposition proved that JhA(A)=h(A), we obtain the result. []

Thus, in a sense, any U YF-formula A is "equivalent" to the U YS-formula
[](At) ~ /] , which does not involve tp at all. We can draw two corollaries from this.

Corollary 7.4. There is a sound and complete axiomatisation of U YF.

Proof. We can regard any U YS-formula as a formula of US, since the formula Yq is
equivalent to S(q, _L). Sound and complete axiomatisations for US over the natural
numbers exist: see [14, 18] and (for U only) [9]. If we add to such an axiomatisation

the inference rule

• (At) -~A

A '

we obtain a sound and complete axiomatisation of U YF over M. For, by the theorem, the
new rule is sound: if the top is valid, so is the bottom. For completeness,
assume that A is a valid U YF-formula. By Theorem 7.3, D (At) --* A is a valid US-formula.
By completeness for US-formulas, it is provable, and we obtain t- A from the new rule.

Notice that we only need use the new rule once, at the end of a proof of A, as the rule
simply says that it suffices to prove [] (A'~) ~ ,4, and this can be done (if at all) within
the US proof system. []

Problem. Find a finite axiomatisation of U YF using only the conventional inference

rules.

Corollary 7.5. The decision problem for U YF is PSPACE-complete, as is the decision
problem for USF.

Proof. It is shown in [16] that the problem of deciding whether a formula of US is
valid over N is PSPACE-complete. So the decision problem for USF is certainly
PSPACE-hard. By Remark 2.9, this problem reduces in polynomial time to the
decision problem for U YF. But by Theorem 7.3, a U YF-formula A is valid if and only
if the U YS-formula B = [] (At) ~ A is valid, and B is obtainable in polynomial time from
A. By replacing all subformulas YD of B by S(D, _L), as in the preceding corollary, we

I. Hodkinson / Theoretical Computer Science 139 (1995) 1-25 23

can obtain from B, in polynomial time, an equivalent formula C of US. By the result of
[16], the validity of C over 1~ is decidable in PSPACE.

Of course, the dual, satisfiability problems for USF and U YF are also PSPACE-
complete. []

8. Executable temporal logic

Finally, we discuss the connection of U YF with executable temporal logics such as
MetateM [3]. The MetateM computer system (see [3, 15] for details) is able to
"execute" any formula A of US, building an assignment h such that h(A)= ~. A is
regarded as a "specification", which the system meets by making it true at all times.
The method relies on Gabbay's "separation property" for US over ~, proved in [6, 8].

Future versions of MetateM will interact with the external environment. Given
a US-formula A@,f), the atoms q may be designated as under the control of the
environment, whilst f remain under the auspices of the system. Given an assignment h,
such a system would build a new assignment h* =~h such that h*(A)= ~. (Here we
assume that the environment does not react to the system, so that h can be assumed
fixed during its operation. If this assumption is not valid, a logic such as $2S is needed
to analyse the execution; see [1, 10].)

Corollary 8.1. Assume we have a version of MetateM as above. Then for any assignment

h and subset S ~ ~, if S=h(A) for some formula A(?I) of UYF, then there is a formula
A*(4, r,s) of US such that if MetateM treats Cl as environment-controlled atoms and
~, s as system-controlled, and executes A* over h to construct h*, then h* (s)= S.

Proof. Given any formula A@) of U YF, with bound atoms L we can effectively
construct the UY-formula

A*(F1;~,s)%fA~f ^ (s~--~,4).

If MetateM constructs h* from h as above, then we will have h*(A*)= M. Hence
h*(At)=t~, so that by Proposition 7.2, h(A)=h*(.4). Since also h*(.,~)=h*(s), the
proof is complete. []

So MetateM would in principle be able to evaluate any formula of U YF, and so by
Theorem 6.5 to construct any set that is definable from the sets h(q) (q in ?t) by some
SIS-formula. It is striking that the expressive power of monadic second-order logic
- and of the fixed point logic U YF - would thus be achieved using only formulas of
US, which have first-order definitions.

We might ask whether a converse of the corollary can be established. This depends
on the execution strategy adopted by MetateM. For example, the formula
GFs = ~ U (---nU(s, T), T) is validated by any h such that h(s) is infinite; and there are
2 °' such h. Even if the execution strategy is assumed to be deterministic, whether it

24 1. Hodkinson / Theoretical Computer Science 139 (1995) 1-25

yields an h such that h(s) is definable in U YF in all cases like this remains to be seen.

(We believe that the answer will be positive.)
A related, speculative point concerns the so-called uniformisation problem for SIS.

Given a sentence ~O(P,Q) of SIS such that ~ ~VP3Q~O(P,Q), we can ask if there is
another SiS-formula z(P, Q) such that N I= VP3!Qz A VPQ(z ~b). (Here, 3!Q means
that there exists a unique Q.) This question was answered affirmatively in [4]; see also
[10]. The corresponding problem for $2S was given a negative solution in [11].

Now by Theorem 6.5 we can obtain a UYF-formula A(p, q) equivalent to ~O A X =X.
Given h, we might now execute A A A t, treating p as an environment atom and the
rest as system atoms. We would obtain h* such that h*(A) = N, so that (N, <, h*) ~ qJ.
Thus, a MetateM interpreter capable of handling a fixed external environment could
be used to "uniformise" ~b: for any given h(p) _ N it would construct a set h*(q) ~ ~ so
that N ~ ~k(h(p), h* (q)). Again, it remains to be seen whether the execution strategy of
such a system will itself be expressible in U YF or S1 S, but if so, an alternative proof of
the uniformisation result of [4] might be obtained. (Note that MetateM does involve
metalanguage features, which are discussed in [5].)

Acknowledgments

This work was partially supported by Advanced Fellowship B/ITF/266 from the
UK SERC. The author would like to thank Dov Gabbay and Steven Vickers for
helpful conversations, and Marcelo Finger, Mark Reynolds, Ben Strulo, and the
referee for carefully reading the manuscript and making many useful suggestions.

Parts of this paper are from [8], and appear by permission of Oxford University
Press.

References

[1] M. Abadi, k Lamport and P. Wolper, Realizable and unrealizable specifications of reactive systems,
in: Proc. 16th Colloq. on Automata, Languages and Programming, 1989, Lecture Notes in Computer
Science, Vol. 372 (Springer, Berlin, 1989) 1-17.

I-2] B. Banieqbal and H. Barringer, A study of an extended temporal language and a temporal fixed point
calculus, Tech. Report UMCS-86-10-2, Department of Computer Science, University of Manchester,
1986.

1-3] H. Barringer, M. Fisher, D.M. Gabbay, G. Gough and R.P. Owens, MetateM: a Framework for
programming in temporal logic, in: REX Workshop on Stepwise Refinement of Distributed Systems:
Models, Formalisms, Correctness, Mook, Netherlands, Lecture Notes in Computer Science, Vol. 430,
(Springer, Berlin, 1989) 94-129.

1-4] J.R. Biichi and L.H. Landweber, Solving sequential conditions by finite state operators, Trans. AMS
138 (1969) 295-311.

1-51 M. Fisher, T. Hunter, H. Barringer, D. Gabbay, G. Gough, I. Hodkinson, P. McBrien, R. Owens and
M. Reynolds, Languages, metalanguages and MetateM, Research report, Department of Computer
Science, University of Manchester, 1990.

1-6] D.M. Gabbay, The declarative past and imperative future, in: B. Banieqbal et al., eds., Proc. Colloq.
on Temporal Logic and Specification, Manchester, April 1987, Lecture Notes in Computer Science,
Vol. 398 (Springer, Berlin, 1989) 67-89.

1. Hodkinson / Theoretical Computer Science 139 (1995) 1-25 25

[7] D.M. Gabbay, I.M. Hodkinson and M.A. Reynolds, Temporal expressive completeness in the
presence of gaps, in: Logic Colloquium (ASL 1990 Conf. Helsinki), Lecture Notes in Logic, Vol. 1
(Springer, Berlin, 1993) 89-121.

[8] D.M. Gabbay, I.M. Hodkinson and M.A. Reynolds, Temporal Logic, Vol. 1 (Oxford Univ. Press,
Oxford, 1994).

[9] D.M. Gabbay, A. Pnueli, S. Shelah and J. Stavi, On the temporal analysis of fairness, in: Proc. 7th
ACM Symp. on Principles of Programming Languages, Las Vegas (1980) 163-173.

[10] Y. Gurevich, Monadic second-order theories, in: J. Barwise and S. Feferman, eds., Model-Theoretic
Logics (Springer, New York, 1985) 479-506.

[11] Y. Gurevich and S. Shelah, Rabin's uniformisation problem, J. Symbolic Logic 48 (1983) 1105-1119.
[12] J.A.W. Kamp, Tense logic and the theory of linear order, Ph.D. Thesis, University of California, 1968.
[13] R. McNaughton, Testing and generating infinite sequences by finite automata, Inform. and Control

9 (1966) 521-530.
[14] M. Reynolds, Axiomatizing U and S over integer time, Seminar notes, Imperial College, 1992.
[15] M. Reynolds, MetateM in intensive care, Department of Computing Technical Report, Imperial

College; revised version in J. Appl. Non-classical Logics, to appear.
[16] A. Sistla and E. Clarke, Complexity of propositional linear temporal logics, J. ACM 32 (1985)

733-749.
[17] B. Strulo, Probabilistic temporal logic, M.Sc. Thesis, Imperial College, 1990.
[18] Y. Venema, Completeness via completeness, in: M. de Rijke, ed., Colloq. on Modal Logic, 1991,

ITL1-Network Publication, Inst. for Lang., Logic and Information, University of Amsterdam, 1991.
[19] G. Winskel, The Formal Semantics of Programming Languages (MIT Press, Cambridge, MA, 1993).
[20] P. Wolper, Temporal logic can be more expressive, Inform. and Comput. 56 (1983) 72 99.

