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Abstract 

We discuss the temporal logic "USF", involving Until, Since and the fixed point operator ~o of 
Gabbay, with semantics over the natural numbers. We show that any formula not involving 
Until is equivalent to one without nested fixed point operators. We then prove that USF has 
expressive power matching that of the monadic second-order logic SIS. The proof shows that 
any USF-formula is equivalent to one with at most two nested fixed point operators - i.e., no 
branch of its formation tree has more than two qCs. We then axiomatise USF and prove that it is 
decidable, with PSPACE-complete satisfiability problem. Finally, we discuss an application of 
these results to the executable temporal logic system "MetateM'. 

1. Introduction 

It is known that conventional temporal  logic is insufficiently expressive to handle 

issues arising in areas such as concurrency. Several extended temporal logic systems, 
with second-order capability, now exist in the literature, including Woiper's E T L  [20] 
and Banieqbal and Barringer's [2] calculus using minimal and maximal fixed points. 

Gabbay ' s  [6] USF, of interest in the current paper, involves a fixed point operator 
with recursively defined semantics. All these systems are as expressive as the monadic 
second-order logic S I S  over the natural numbers, in which quantification over subsets 
as well as elements is allowed. 

S1S has been studied extensively; its decidability was proved by Biichi in 1962, 

using automata,  and as USF is closely related to automata  we can easily elicit the 
relationship between the two logics, and show that USF is also decidable and has the 
same expressive power as S IS  in a strong sense. Nonetheless, USF is itself surprisingly 
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well-behaved, with elegant properties that can be studied without recourse to auto- 
mata theory. In this vein we will prove that unbounded depth of nesting of the fixed 
point operator is not required for full expressive power. For the "past" fragment, this 
can indeed be done within USF, and in fact no nested fixed point operators are 
needed. Our current proof for full USF goes via the automata connection, and 
converts any formula effectively into one in which no fixed point operator is nested 
inside more than one other. We will give an example of this construction (Example 
6.13 below). We would like to find a more direct proof that avoids the use of automata; 

such a proof might yield a more efficient conversion algorithm. 
The recursive definition of the fixed point operator in USF is in the spirit of the 

executable temporal logic system MetateM, developed in London and Manchester 
and surveyed in [6, 3]. We will use the results mentioned above to prove that 
MetateM has the expressive power of S1S. We can also derive a simple axiomatisation 
of USF, and show that its satisfiability problem is PSPACE-complete. 

We should mention that we will be using the logic U YF instead of USF. This has 
technical advantages and leads to no loss in expressive power (see Remark 2.9 for 

a discussion). 
Notation 
will be the set {0, I, 2 . . . .  } of natural numbers, gaS will denote the set of all subsets of 

the set S. We often write Y, d . . . . .  for tuples - finite sequences of variables, atoms, 
elements of a structure, etc. Other notations will be defined when required. 

2. Syntax and semantics of UYF 

We start by developing the syntax and semantics of the fixed point operator. This is 
not entirely a trivial task. We will fix an infinite set of propositional atoms, with which 
our formulas will be written; we write p, q, r, s . . . .  for atoms. 

Definition 2.1. (1) The set of formulas of U YF is the smallest class closed under the 

following. 
(a) Any atom q is a formula of U YF, as is T (true). 
(b) If A is a formula so is --1A. (We let _L abbreviate --1 -F.) 
(c) If A is a formula so is YA. We read Y as "yesterday". 
(d) If A and B are formulas, so are A ^ B and U (A, B). (The latter is read as "until". 

A v B and A ~ B  are regarded as abbreviations.) 
(e) Suppose that A is a formula such that every occurrence of the atom q in A not 

within the scope of a qq is within the scope of a Y but not within the scope of 
a U. Then qqA is a formula. (The conditions ensure that qoqA has fixed point 

semantics.) 
(2) The depth of nestin9 of q~'s in a formula A is defined by induction on its 

formation: formulas formed by clause (a) have depth 0, Clause (e) adds 1 to the depth of 
nesting, clauses (b) and (c) leave it unchanged, and in clause (d), the depth of nesting of 
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U(A,B) and A ^ B is the maximum of the depths of nesting of A and B. So, for 
example, -7 ~or(--7 Yr ^ q~q Y(q ~r))  has depth of nesting of 2. 

(3) A U YF-formula is said to be a YF-formula if it does not involve U. 

(4) Let A be a formula and q an atom. A bound occurrence of q in A is one in 

a subformula of A of the form q~qB. All other occurrences of q in A are said to be free. 
An occurrence of q in A is said to be pure past in A if it is in a subformula of A of the 

form YB but not in a subformula of the form U(B, C). So ~oqA is well-formed if and 
only if all free occurrences of q in A are pure past. 

2.1. Semantics of UYF 

An assignment is a map h providing a subset h(q) of t~ for each a tom q. If h, h' are 
assignments, and ~ a tuple of atoms, we write h--4h' if h(r)=h'(r) for all atoms r not 

occurring in ~. If S ~ t~ and q is an atom, we write hq/s for the unique assignment h' 
satisfying h' =q h, h' (q) = S. 

For  each assignment h and formula A of U YF we will define a subset h(A) of I~l, the 

interpretation of A in I~. Intuitively, h(A)= {nell:  A is true at n under h}. We will 
ensure that, whenever tpqA is well-formed, 

h(q~qA) is the unique S g I~ such that S=hq/s(A). (,) 

Notation 2.2. If S ~ ~, we write S + 1 (or 1 + S) for {s + 1: s eS }. 

Definition 2.3. We define the semantics of U YF by induction on the structure of 
formulas. Let h be an assignment. If A is atomic then h(A) is already defined. We set 
the following. 

• h(T)= I~. 

• h(-TA)= ~\h(A) .  
• h(YA)=h(A)+ 1. 
• h(A ^ B)=h(A)cTh(B). 

• h (U(A ,B) )={ne~:qm>n(meh(A)  ^Vm'(n<m'<m--*m'~h(B)))}. 
• Finally, assume that tpqA is well-formed, and (inductively) that g(A) is defined for 

all assignments g. We will define h(tpqA). 

First define assignments h, (n e [~) by induction: ho = h, h, + 1 = (h,)q/h,CA). We now 
define 

h(qgqA) de._e._~f {he ~: neh,(A) } = {ne t~: neh,+ l (q)}. 

To establish (*) we need some definitions and lemmas. 

Definition 2.4. (1) If n e ~ ,  we say that subsets $1, $2 ~ 1~ agree before n if for all m<n, 
rueS1 ifand only if rueS2. We say that $1 and $2 agree up to n if they agree before n + 1. 

(2) Assume that A is a formula of U YF. If ne l l ,  we say that assignments g, h are 
A-similar up to n if for all atoms q, 
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• if all free occurrences of q in A are pure past, then g(q) and h(q) agree before n; 

• if not  all free occurrences of  q in A are pure past, but still no free occurrence of q in 

A is within the scope of a U, then g(q) and h(q) agree up to n; 
• otherwise, g(q)=h(q). 

(3) A UYF formula A is said to be local if g(A) and h(A) agree up to n whenever g, 

h are assignments that are A-similar up to n. 

Remark  2.5. F rom the definitions, if g, h are ~pqA-similar up to n, and g(q), h(q) agree 

before n, then g, h are A-similar up to n. 

Lemma 2.6. Assume that A is a local U YF formula, and that tpqA is well-formed. Then: 
(1) If  g,h are assignments with g =qh, then g(q~qA)=h(qgqA). 
(2) If  S ~_ N and h is an assignment, then hq/s(A)=S if and only if S=h(~oqA). 
(3) q~qA is local. 

Proof. (1) By Definition 2.3 it suffices to show that  for all neN,  gdq) and h.(q) 
(as in the definition) agree before n. We do so by induction on n. If n = 0  there 

is nothing to prove. Assume the statement for n. Clearly, g. =qh. .  By Remark 2.5 

and the inductive hypothesis, g. and h. are A-similar up to n. As A is local, gdA) and 

h.(A) agree up to n: i.e., g.+l(q) and h.+l(q) agree before n +  1. This completes the 
induction. 

(2) By (1) we can replace h by hq/s. So it is enough to show that for any h, 
h(A) = h(q) ¢~ h (q~qn) = h(q). 

~ :  Suppose that h(A)= h(q). First observe that  ht (q)= h(A)= h(q), so that h = ht, It 
follows by the definition of  the h. and induction that h = h. for all n. But now for all 

n,n~h(q)qA) if and only if n~h.+x(q)=h(q), so that h(q)qA)=h(q) as required. 

~ :  Assuming that h(q)qA)=h(q), we show that for all n, 

(a). h(A) and h.(A) agree up to n, 

(b). h(q) and h~(A) agree up to n. 

It will clearly follow that h(A)=h(q). We proceed by induction on n. (a)o holds 
because ho = h. We now show that ((a),.: m ~< n)~(b)n. Let m -%< n. Then m~h(q) = h(~oqA) 
if and only if mehr,(A) by Definition 2.3, if and only if meh(A) by (a)m, if and only if 

meh.(A) by (a).. This proves (b).. 

We now show that (b).=e-(a).+ x. (b). says that h(q) and h.+ l(q) agree before n + 1. 
Thus, h and h.+x are A-similar up to n +  1. As A is local, h(A) and h.+dA) agree up to 

n + 1, proving (a). + 1. 
(3) To prove ~oqA local, we need to show that whenever g, h are assignments that 

are ~pqA-similar up to n, then g(qgqA) and h(tpqA) agree up to n. By (1) and (2) we can 
assume that g(q)=g(A)=g(~oqA) and h(q)=h(A)=h(q~qA); the hypothesis and what 
we have to prove are unchanged.  

The proof  is by induction on n. Assume the result for all m < n and suppose that g, h 

are tpqA-similar up to n. If m < n then g and h are ~oqA-similar up to m, so by the 
inductive hypothesis, g(~oqA) and h(~pqA) agree up to m. Hence, g(A) and h(A) agree 
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before n. By Remark 2.5, g and h are A-similar up to n, so as A is local, g(A) and h(A) 
agree up to n, as required. This completes the proof. [] 

Proposition 2.7. Every formula A of U YF is local, and for any h, h(A) depends only on 
h(q) for those atoms q that have free occurrences in A. 

Proof. We show by induction on A that A is local, and that whenever g,h are 
assignments agreeing on the atoms occurring free in A, then g(A) = h(A). In the atomic 

case and the cases of the boolean connectives the proof is simple, and the case of qgqA 
is covered by the lemma. For  A = U(B, C), if assignments g, h are A-similar up to 

n then g(q)= h(q) for all atoms q with free occurrences in A. Clearly, g and h agree on 

the free atoms of B and of C, so by the inductive hypothesis, g(B)=h(B) and 
g(C) = h(C), yielding g(A) = h(A) - so these two sets certainly agree up to n. This proves 
both claims for A. 

Now consider the case of A = YB. Pick n~N and a pair g, h of assignments that are 
YB-similar up to n. We claim that g and h are B-similar up to n -  1. Let q be an atom. 
If all free occurrences of q in B are pure past, then the same holds for YB, so that g(q), 
h(q) already agree up to n -  1. Otherwise, if no free occurrence of q in A is under a U, 
then all free occurrences of q in YB are pure past. Hence again, g(q), h(q) agree up to 
n -  1. If none of these apply to q then g(q)=h(q). It follows that g and h are B-similar 
up to n - 1, as claimed. By the inductive hypothesis, g(B) and h(B) agree up to n - 1. So 

by definition of the semantics of Y, g(YB) and h(YB) agree up to n. The proof that h(A) 
depends only on h(q) for q occurring free in A is straightforward. [] 

Combining Lemma 2.6 and Proposition 2.7 yields the following theorem. 

Theorem 2.8 (Fixed point theorem). (1) Suppose that A is any U YF formula and tpqA 
is well formed. Then if h is any assignment, there is a unique subset S = h(q~qA) of ~ such 
that S = hq/s (A). Thus, regarding S ~ hq/s(A) as a map or:go [~ -~ ga ~ (depending on h, A), 

has a unique fixed point S ~_ N, and we have S=h(q~qA). For any h, h(A)=h(q)~.. 
h(q~qA)=h(q). 

(2) I f  q has no free occurrence in a formula A and g =qh, then g(A)=h(A). 
(3) if (pqA is well-formed and r is an atom not occurring in A, then for all assignments 

h, h(tpqA)= h(q~r A(q/r)), where A(q/r) denotes substitution by r for all free occurrences 
of q in A. 

Proof. By the proposition, A is local, so (1) follows from the lemma. (2) is proved in the 
proposition, and (3) is clear from (1). [] 

Remark 2.9. We should mention two technical differences between our system and 
the original logic USF of Gabbay.  In [6], Gabbay  defines USF using the first-order 
connectives Until and Since as well as the fixed point operator. Since is the temporal 
dual of Until; its semantics are given by h ( S ( A , B ) ) = { n e N : 3 m < n ( m ~ h ( A ) ^  



6 1. Hodkinson / Theoretical Computer Science 139 (1995) 1-25 

Vm'(m<m'<n-om'eh(B)))}. We stress that UYF is just as expressive as USF: Yq is 
definable in USF by the formula S(q, l ) ,  whilst S(p,q) is definable in UYF by tprY 
(p v ( q  ^ r)). Using UYF allows easier proofs and stronger results. Also, we admit 
rather more well-formed formulas than does Gabbay in [6]. For  ~pqA to be well- 
formed, Gabbay requires that all atoms have only pure past occurrences in A, whilst 
we only need this for the atom q. As an example, ~pr(U(p, q) ^ Yr) is well-formed for us, 
whilst qor(U(p,q)/x S(r, l ) )  is not a formula in USF as defined in [63. 

3. Elementary results 

Here we establish some simple results on the way the fixed point operator interacts 
with the other connectives of the logic. They are proved using the fixed point theorem, 

and some will be needed later. 

Definition 3.1. Two U YF-formulas A, B are said to be equivalent if for all assignments 
h we have h(A) = h(B). We write A -  B if A and B are equivalent. 

Proposition 3.2. Let tpqA(q) be a U YF-formula. Then --1 qgqA(q) is equivalent to tpq 
-3A(-nq). Here, A(-nq) denotes the result of replacing each free occurrence of q by --3q 
throughout A. 

Proof. Let h be any assignment and assume that h(tpqA(q)) = S ~_ [~. We wish to show 
that h(qoq-aA(-aq))=N\S. By the fixed point theorem, it suffices to show that 

hq/~\s(-aA(-aq))= [~\S. But hq/~\s(--aA(-aq))=hq/s(--aA(q))= ~\h~/s(A(q)), and this 
last is equal to [~ \S by the fixed point theorem again. [] 

In a similar way we can show the following proposition. 

Proposition 3.3. Let q, r be distinct atoms and suppose that tpqtprA is well-formed. Then 
tpq~prA - tprtpqA - tpqA (r/q). Here, A (r/q) denotes substitution of q for all free occurren- 
ces of r in A. 

Proof. Choose any assignment h. By the fixed point theorem, for all S ~ [~ we have 
h (~oqtprA)= S if and only if h~/s (~prA)= S. Using the theorem again, this is if and only if 
hq/s,,/s(A) = S. So by symmetry, ~pqtprA - qgr tpqA. Moreover, as clearly h~/s,,/s(A) = S if 
and only if ha/s(A(r/q))=S, the last part follows. [] 

Now we examine how tp interacts with the yesterday connective. 

Proposition 3.4. Let B(q) be any formula and write B( Yq) for the result of replacing 
every free occurrence of q in B by the formula Yq. Then YtpqB(Yq)--~pqYB(q). 
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Proof. Let h be given, and let S=h(qqB(Yq)), so that the interpretation of the 
left-hand side under h is just S +  1. By the fixed point theorem, it suffices to show that 

hq/s+~(YB(q))=S+ 1. But h~/s+~(YB(q))=hq/s(YB(Yq))= 1 +hq/s(B(Yq)), and the 
latter is equal to 1 +S,  by choice of S and using the fixed point theorem once 
more. [] 

This result allows us to normalise U YF-formulas, by pushing all Y's inwards until 
they are next to atoms. 

Definition 3.5. (1) If A is any UYF-formula, and n<e) ,  we define Y"A by induction: 

Y°A =A and Y"+IA= Y(Y"A). Formulas of the form Y"q for atomic q, or Y"T, are 
called basic. 

(2) A U YF-formula A is said to be normal if it is built up from basic formulas (the 
basic subformulas of A) using only --1, ̂ ,  U and tp (no Y). A subformula B of A is said 
to be a normal subformula of A if every basic subformula of B is a basic subformula 
of A. 

So a "basic subformula" of A is a subformula that is maximal amongst those 
subformulas of A that are basic. For example, the basic subformulas of 
A =--n Yq --. YYq are the first Yq and the YYq; neither the two occurrences ofq nor the 
subformula Yq of the YYq are basic subformulas of A. The normal subformulas of 
A are just the first Yq, --7 Yq, YYq and A. 

Lemma 3.6. Let A be any normal formula. Then YA is equivalent to a normal formula B. 

Proof. We will show in addition that for any atom q, if all free occurrences of q in YA 
are pure past then the same holds for B. 

We go by induction on the number of--n's, ^ 's ,  U's and q's in A. If this is 0 then 
A is basic, so YA is already normal. The condition on atoms is trivially valid. It is 
easily seen that Y--hA= Y-I- ^--nYA, Y(A ^B)==_ YA ^ YB, and YU(A,B)= 
YT ^ (A v ( B  ^ U(A,B))), so the result follows immediately from the inductive 
hypothesis in these cases. 

Now assume the result for all formulas with no more ^ 's , -n 's ,  U's and ~0's than A, 

and consider qqA (assumed well-formed and normal). By Theorem 2.8(3) we can 
rename bound atoms of A if necessary, so we can suppose that all occurrences of q in 
A are free and (necessarily) pure past. Now A is normal, so it has the form B(Yq) where 
B(q) is normal and with the same number of--n's, ^'s, U's and q~'s as A. By the 
inductive hypothesis, YB(q) is equivalent to a normal formula C. As all free occurren- 
ces of q in YB(q) are pure past, the same holds for C, so that q)qC is well-formed. It is 
clearly normal, and by Proposition 3.4 is equivalent to Yq)qA. Finally, note that if r is 
any a tom all of whose free occurrences in YqqA are pure past, then the same holds for 
YB and so (inductively) for C. Hence, all free occurrences of r in qqC are pure past, as 
required. [] 
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Theorem 3.7. Any U YF-formula A is equivalent to a normal jbrmula. 

Proof.  By induction on A. The only hard case is YA, which is dealt  with by the 

preceding lemma. [] 

4. Recursive systems 

The semantics of the fixed point  opera to r  were defined by nested recursion. We will 

now see how to unravel  the nesting, replacing it by s imultaneous recursion. This will 

be a main  step in our  p roof  of el imination of nested ~0's for YF. 

Definition 4.1. Let n > 0 .  A recursive system (of width n) is a pair  p=(?, /~) ,  where 
f = ( r l , . . . , r , )  and /~=(B~ . . . . .  B,), the r~ are distinct a toms  and the Bi are UYF- 

formulas.  We require that  for all i, j ~< n, every free occurrence of r~ in B i is pure past. 
A formula  A is said to be ~o-free if it contains no q~-operator. The recursive system 

(?,/~) is said to be ~o-free if each Bj is qJ-free. 

4.1. Semantics of  recursive systems 

We give them a fixed point  semantics,  as for ~o. Let p = (?,/3) be a recursive system. It 
can be shown using the technique of L e m m a  2.6 that  for any assignment h there is 
a unique assignment  hp with hp =7 h and hp(ri) = hp(Bi) for all i ~< n. hp can be defined by 

recursion as before. 

Definition 4.2. (1) Let p =((rl . . . . .  r.), (Ba . . . . .  B,)) be a recursive system, and let A be 
a YF-formula. We say that  A and p are equivalent if for all h we have h(A)=hp(B1) 

(=hp( r l ) ) .  
(2) If p'= ((r'l . . . . .  r',,), (B'I . . . . .  B',,)) is ano ther  recursive system, we say that  p and p' 

are equivalent if for all assignments h, h o (r~)= h,, (r~) for all i~< min (n, m). Note  that  in 
general, equivalence is not  transitive; but the definition is no less useful for that. 

We begin by showing, in the following proposi t ion,  that  U YF is at least as 
expressive as recursive systems. The idea of the p roof  is well-known; see, for example,  
Beki6's theorem [19, Theorem 10.1], a similar result on fixed points of cont inuous 

functions on domains.  

Proposition 4.3. Let p = ( ( r  1 . . . . .  r,), (BI . . . . .  B,)) be any recursive system. Then there is 
a U YF-formula A that is equivalent to p. I f  the Bi are YF-formulas then such an A can 

be found in YF also. 

Proof.  By induction on the width n. If n = 1 we let A = ~prl B1. Assume the result for 
n and let p = ( ( r l  . . . . .  r .+ 1), (B1 . . . . .  B.+ 1)) be given. Let p* = ( ( r l  . . . . .  r.), (B~' . . . . .  B*)), 
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where B* = Bg(r. + a/or. + 1 B. + 1 ) for each i ~< n. We claim that  p and p* are equivalent; 
the result will then follow by induction. 

Let h be any assignment,  and let &=ho(r~) for each i<~n+l. Since 
h o(r.+~)=hp(B.+~), it follows f rom the fixed point  theorem (2.8) that  

ho(q~r.+ 1B.+ x ) = ho(r.+ 1 ) ( = S.+ 1 ). Hence, from ho's point  of view, replacing r.+ 1 by 
~or,+~B.+~ in B~ makes  no difference, and we have ho(B*)=ho(Bi) for each i. But 

r .+ l  does not occur free in the B*,  so letting h*=h(rdS,:i<~nl, we see that  
h*(B*)=hp(B*) for each i. Thus,  h*(B*)=ho(B*)=hp(B,)=&=h*(ri)  for each i. 
It follows by uniqueness of  the fixed point  that  h * = h p . ,  so that  p and p* are 
equivalent.  [] 

The fact that  formulas  B~ in a recursive system may  contain U will be needed 
later, but our  current  aim is to show that  nesting of fixed point  opera tors  in YF 
can be eliminated. So f rom now until the end of Section 5 we restrict a t tent ion 
to YF: all formulas  will be YF-formulas. We first prove a converse to the previous 
proposi t ion.  

Theorem 4.4. Let A be any YF-formula. Then there is a (p-free recursive system 
p = ( ( r  1 . . . . .  r,), (B1 . . . . .  B.)) for some n, that is equivalent to A. 

Proof.  By Theo rem 3.7 we can assume that  A is normal .  By renaming bound  a toms  if 
need be (cf. Theo rem 2.8(3)), we can also assume that  for any subformula  q)qB of A, the 
only occurrences of q in A are in B. 

If A is a formula,  we w r i t e / i  for the formula  obta ined from A by om~itting all ~0's. 

Formal ly ,  gt=q for any a tom q , T = T , - - n A = - - n / i ,  (A/xB) =A ^ B ,  Y A = Y A ,  and 
A 

q)qA = / i .  (Later  we will also use ,zi for U YF-formulas; we then include the clause 
^ ^ 

U(A, B)^= U(A, B).) We will find p as above,  with the addit ional  property:  

No  rl occurs free in A, and each Bi is a normal  subformula of ,zi, and B1 =,zi. ( .)  

We go by induct ion on A. If A is basic we let p = ( r ,  A) where r is any a tom not 

occurr ing in A. Clearly, p is equivalent  to A, and (*) holds. If the recursive system 
( f , /~ )= ( (q  . . . . .  r.), (B1 . . . . .  B.)) is equivalent  to A, and (*) holds, then ((to,f) ,  
(--1BI,/~)) is equivalent  to --1 A, where ro is a new atom; and (*) still holds. 

Assume that  A ^ A' satisfies the condit ion on bound  atoms,  and that  the recursive 
systems ( (q  . . . . .  r.), (B1 . . . . .  B.)) and ((r'l . . . . .  r~,), (B'I . . . . .  B~,)) are equivalent  to A, A', 
respectively, (.) holding for each. Then no r~ occurs free in A. If some r~ occurs free in 
A', then by the condit ion on bound  a toms  it cannot  occur  bound  in A. Hence, it does 
not  occur  at all in A, nor  in any Bj (since they are subformulas  of ,zi). In consequence,  

the functionali ty of  (f,/~) is unaffected if we replace r~ by a new a t o m  not  occurring at 
all in A ^ A'. If  we do this for all r~ where necessary, and under take  similar modifica- 
tions for the r~, then the recursive system ((ro, f, f ') ,  (B1 A B'I, B, B')), where ro is a new 
atom,  satisfies ( . )  for A A A';  and it is certainly equivalent  to A A A'. This completes  
the case of ^ .  
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Finally, we consider the case q~qA (as A is normal, the case YA does not arise). 
Assume p=( ( r l  . . . . .  r.), (B1 . . . . .  B.)) is equivalent to A, and that (*) holds. We let 
p* =((q, r2 . . . . .  r.), (BI . . . . .  B,)). By (*), all occurrences o fq  in all the Bi are pure past, 
so p* is well-formed. (This is where the assumption that A is normal is used.) 

Evidently, (*) holds for p*, q~qA. We claim that p* is equivalent to q~qA. Let h be an 
arbitrary assignment, suppose that h(q~qA)=S, say, and let h'=hq/s. Obviously, 
h'o(Bi) = h'o(ri) for each i>~ 2. But further, h~,(B1)= h'(A) since A and p are equivalent; 
and by the fixed point theorem, h'(A)=S=h'(q).  If q does occur in A then by (*), 
q¢ {rl . . . . .  r, }, and if not, then we can certainly assume this; so h'(q)= h'p(q). We have 
shown that h'p (B~)= h'p(q). Hence, h~ yields a fixed point of p*, and by uniqueness of 
fixed points, hp.(q)=h'p(q)=S=h(~oqA). So q~qA and p* are equivalent, as claimed. 
This completes the induction, and with it the proof of the theorem. [] 

We can restrict recursive systems further without losing any of their expressive 

power. 

Definition 4.5. A recursive system p=((rx . . . . .  r,), (B1 . . . . .  B,)) is said to be simple if 
(a) it is ~o-free, (b) the Bi are normal, and (c) all occurrences of the rj in the Bi lie under 
the same number of Y's - i.e., there is d > 0 such that every basic subformula of any 
Bi of the form yk rj (for any j )  is such that k = d. This unique d is called the depth of p. 

Proposition 4.6. Let p =((r l  . . . . .  r,), (B1 . . . . .  B,) ) be a q~-free recursive system. Then p is 
equivalent to a simple recursive system of  depth 1. 

Proof. By Theorem 3.7 we can assume that the Bi are normal. Let k be maximal such 
that for some j, ykrj occurs as a basic subformula of some Bi. Introduce new atoms 
i for j ~< n and 1 ~< l ~< k, and define S 1 to be the (normal) formula obtained from Bj by sj 

replacing each basic subformula Y' rj by YsJ (all l), and SJ = YsJ- 1 for each l ~> 2. Then 
let p '=(LS) ,  where g=((sJ:j<<.n): l<<.k), and similarly for 

Certainly, p' is well-formed and simple of depth 1. We claim that it is equivalent to 
p. Let h be given, and define h' by 

h'=~h, h'(sJ)=hp(Yl-Xrj)  for each j,/. 

Then for each j, h' (s J) = h'(Ys}- 1) = h' (S J) if 1/> 2, and 

h' (S} ) = h o (S¢ (S I~ Y ' -  I r,: i <<. n, l <~ k) ) = hp (B j) = hp (r j) = h' (s] ). 

Hence, h' is a fixed point assignment for p', and by uniqueness of fixed points, h '=  ho,. 
As h¢(s¢)= hp(rj) for each j, p' and p are equivalent, as claimed. [] 

4.2. Unfolding 

We need a final result on syntactic manipulation of recursive systems. 
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Definition 4.7. Let p = ((rl . . . . .  r.), (B1 . . . . .  B.)) be a simple recursive system of depth 1. 
Define formulas B k for k < 09 by induction: 
• B ° = ri for all i, 

• B k÷l is obtained by normalizing Bk(rJB/j<<,n) (i.e., replacing it by a normal 
equivalent). 

Also define recursive systems pk=((r 1 . . . . .  r.), (B k . . . . .  Bk)) for each k>~ 1. 

Lemma 4.8. Let p =((r l  . . . . .  r.), (B 1 . . . . .  B.)) be a simple recursive system of depth 1, as 
above. Then for each k >~ l, the system pk is simple, of depth k, and equivalent to p - we 
have hp = hp~ for all h, k. 

Proof. By induction on k. Assume the result for k/> 1 and let h be any assignment. 
Clearly, pk ÷ 1 is ~o-free. To normalise a q~-free formula we move all Y's in through the 
^'s and --q's using the rules Y(A ^ B ) = Y A  ^ YB and Y--qA=YT ^--qYA. These 
rewrite rules clearly preserve the total number of Y's above each atom, and it follows 
that pk÷l is simple and of depth k+  1. 

We claim that hp gives a fixed point of pk+l; the lemma will then follow by 
uniqueness of fixed points. But as hp(rj)= hp(B~) for each j, the substitution of B i for 
r i in B k makes no difference from hp's point of view, so that hp (B k 41)= hp (Bk). By the 
inductive hypothesis this last is equal to hp(ri), which completes the proof. [] 

5. Elimination of fixed point operators 

We now prove our first main result, that any formula of YF is equivalent to one 
with depth of nesting of qCs of at most 1. 

Theorem 5.1 (Elimination of fixed point nesting). Let A be any YF-formula. Then A is 
equivalent to a formula A' without nested tp 's - a boolean combination of YF-formulas of 
the form tpqB, where B is qg-free. Moreover, A' is obtainable effectively from A (in time 
polynomial in the length of A). 

The proof is rather technical. Nesting of the fixed point operator corresponds to 
recursive systems of width greater than 1. The idea of the proof is (roughly) to express 
A as a recursive system of width n, reduce n to 1 by coding the truth values of 
its formulas at regular intervals by a single atom, and obtain the value of A at 
intermediate times by interpolation. 

Notation 5.2. If k,p~[~, and p>0 ,  we write k m o d p  for the unique i with 0~<i<p and 
i = k (mod p). We write kp for k - (k mod p); kp is the largest multiple of p not greater 
than k. 
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Let A be any YF-formula. By Theorem 4.4 there is a ~p-free recursive system 
p =((r l  . . . . .  r,), (B1 . . . . .  B,)) that is equivalent to A. By Proposition 4.6, p can be taken 
to be simple of depth 1. Study of the proofs in Sections 3-4 shows that p is obtainable 
effectively from A in polynomial time. 

Let p = 2n + 3. To prove Theorem 5.1 it suffices to show the following lemma. 

Lemma 5.3. For each j <~ n there is a YF-formula D r of the form qgqC, where C is q~-free, 
such that for any assionment h and any multiple m of p, we have meh(Dr),~mehp(Br).  
The formula D r is obtainable effectively from p in polynomial time. 

For assuming the lemma, we can interpolate to get the values of A at any time. To 
see this, observe first that the "clock" formula z=~oq-qY-qYP-lq satisfies 
h(z)={mp: mete} for any assignment h. We will show the following claim. 

Claim. A is equivalent to A'=  /~O<~i<p Y z ~ B~ (rJDr: j <... n), where B~ is as in Definition 
4.7. 

Proof. Let h be any assignment, let m e n  and let i = m m o d p .  Then meh(A') if and 
only if m e h (B ~ (rJDj: j <~ n)). Now by Definition 4.7 and Lemma 4.8, B ~ is norm al and 
every occurrence of each r r in it is in a basic subformula of the form yirr" Moreover, as 
mp is divisible by p, mpeh(Dr) if and only ifmpehp(Br)=hp(rr). So as h =ehp, it follows 
that meh (B~ (rr/D/j  <~ n)) if and only if meh o (B~). But by Lemma 4.8, pi is equivalent 
to p and hence to A, so this is if and only if meh(A), proving the claim. [] 

Evidently, A' has no nested fixed point operators. Moreover, it is obtainable 
effectively from p in polynomial time, assuming that the D r are. So Theorem 5.1 
follows from the lemma. [] 

Proof of Lemma 5.3. Assume for simplicity of notation that j =  1; the proof for other 
j is the same. By Lemma 4.8 we can replace p by pP (effectively and in polynomial 
time), and thus assume that p is a simple recursive system of depth p. Choose 
a surjective function Z:l~l ~ {T, l ,  Bi: i<~n} with the following properties: 
• z(m)=x.(m+p) for all meN; 
• )~(0) = Bx; 
• if k < p - 3  and k is odd, then z(k)=-l-; 
• X ( p - 3 ) = Z ( p - 2 ) =  T; 
• x ( p -  1)= ±. 

We can find such a Z since p is large enough. Z has the important property that for 
any assignment h, the sets h(z(m)), h(z (m+l ) )  are both nonempty if and only if 
m - p - 3 ( m o d p ) .  We will design a tp-free recursive system tr=(s,C) satisfying, for 
every assignment h, 

Vmel~ (meh~(s) ,~  mehp( ymm°d P z(m) ) ). (*) 
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In part icular ,  if m is a mult iple of  p then m e h, (s) , ~  me  hp (B1). The formula  D a = tpsC 
then satisfies the conclusion of the lemma,  as by the fixed point  theorem, h(D1)= h,(s) 
for any h. 

We let the formula  C be: 

A Yi[ --qYT v (  Y2s ^ Yas)] '*  Yi[z(i)(YPrj/YP-t~s:j<~n)]. 
O<~i<p 

Here, O<~lj<p is such that  z(li)=Bfil j exists because ;~ is onto. It is clear that  C is 
obta inable  effectively in polynomia l  t ime from the Bj. Hence, the l emma will be 
established if we can prove  that  ( , )  holds for all m. 

We do this by induction on m. Fix an assignment  h. Let m e n  and assume that  ( , )  
holds for all m ' <  m. We will show that  it holds for m. 

Claim. For all i<p, Yi[--qYT v ( y 2 s / x  Yas)] is true at m under the assignment h~ iJ" 
and only if i = m m o d  p. 

Proof,  If i>m then YiA is false at m for any A under  any assignment,  and 

i¢(m m o d  p). So we can assume i<~m, in which case the left-hand side holds if and 
only if 

m- ieh~( -1YT  v (y2s A Yas)). (~f) 

But clearly h ' ( - n Y T ) - - { 0 }  for any assignment  h', so (t) holds if and only 
if m - - i  or m -  i - 2 ,  m -  i - 3  e h~ (s). By the inductive hypothesis,  this holds if and only if 
re=i, or m--i--2ehp(Yt"-i-E)m°dPz(m--i--2)) and similarly for m - i - 3 :  i.e., if and 

only if m=i or ( (m- i -2 )pehp ( z (m- i -2 ) )  and (m- i -3 )peho(z (m- i -3 ) ) ) .  But by 
choice of ~(, this holds if and only if m = i or  m -  i -  3 - p -  3 (rood p) - i.e., if and only if 
m - i ( m o d  p). This proves  the claim. [] 

Proof of L e m m a  5.3 (continued). We now prove  ( , )  for m. Let i=mmodp.  Now 

meh~(s) if and only if meh~(C), so by the claim, we see that  we must  prove  

meh~(yi[/~(i)(YPrj/Y p tJs:j<~n)]) ~ mehp(yiz(m)), 

or equivalently,  

mpeh~(z(m)( rPr j/ Y p-'j s: j <~ n) ) .~ mpe ho(z(m) ). 

N o w  z(m) is T, _1_ or a normal  formula  B k in which all occurrences of the rj are in 
normal  subformulas  of  the form YPrj, which in C are replaced by YP-~Js. So as 
h~ = ~,s hp, we need only check that  

mpeh~(YP-lJs) .*~ mpehp(YPrj) for eachj~<n.  (~) 

So let l<.j<~n. First assume that  re<p, so that  rap=0. N o w  p-lj>~l,  
so that  OCho(YP-tJs); and clearly OChp(YPrj). Hence, (:~) holds in this case. N o w  
assume m>>.p, so that  mp>~p. Then mpeh~,(YP-~Js) if and only if mp-p+ljeh~(s). 
As Ij<p, mp-p+l j<m,  so (using (*) inductively) this holds if and only if 
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m p - p  + lieho(Yl~Z(mp-p + 11)), if and only if mp-peho(x( l i ) )  = hp(Bj)= hp(rl), if and 
only if mpehp(YPrj). Thus (:~) is proved. 

So (*) holds for m, and hence by induction it holds for all meN, completing the 

proof of the lemma. [] 

6. Decidability and expressive power 

Now we return to the full U YF. We will prove that it has the same expressive power 
as the monadic second-order logic S1S, the second-order theory of one successor 
function. Our argument uses automata and is reminiscent of that of McNaughton 
[13], though much less sophisticated. Decidability of U YF will then follow from the 
known decidability of S1S. Gurevich [10] surveys the necessary general knowledge on 

S1S and automata. 
We first explain the need to invoke second-order logic. An older temporal logic, 

"US", introduced by Kamp in [12], involves in addition to the boolean connectives 
the binary temporal connective Until and its dual Since. There is no fixed point 
operator in US. Now consider the monadic first-order logic over N. Its signature 
consists of the first-order signature {=,  <}, augmented with monadic predicate 
variables Q(x), R(x) . . . .  associated with the atoms q,r . . . .  of Section 2. The semantics 
are those of first-order logic in the structure (~, <,  h). The assignment h provides the 
semantics of the unary predicate variables, so that if Q (x) is associated with the atom 
q, and n~[~, then ([~, <, h )~  Q(n) if and only if neh(q). 

It is easily seen by induction on A that for any formula A(ql . . . . .  qk) of US there is 
an equivalent monadic first-order formula $A(X, Q1 . . . . .  Qk): for all h and n~N, neh(A) 
if and only if ([~, <, h )~  ~A(n). Kamp proved that the converse also holds: for each 
monadic first-order formula there is an ([~-) equivalent US-formula. Other proofs are 
in [6, 7, 9]. Thus, we say that US is fully expressive with respect to monadic first-order 

logic over N. 
The need for second-order logic when treating the fixed point operator is prompted 

by the following observation of Wolper. 

Proposition 6.1. (1) Assume that for every atom q, either h(q) is finite or ~ \h(q) is finite 
(in the latter case we say h(q) is cofinite). Then for all formulas A of US, h(A) is either 

fn i te  or cofinite. 
(2) I f  ~k(x) is a monadic first-order formula, and h(q) is finite or cofinite for each 

Q occurring in ~, then so is { n ~ :  (~, < , h ) ~  ~b(n)}. 
(3) There is no first-order formula e(x) in the signature { =,  < } such that for all net~, 

(M, < ) ~  e(n) if and only if n is even. 

Proof. (1) By induction on the complexity of A. For atomic A we are given the result. 
The set of finite and cofinite subsets of N is closed under the boolean operations, so 
the only remaining cases are U(A, B) and S(A, B). Assume inductively that h(A) and 
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h(B) are finite or cofinite. Inspection of the semantics of U shows that if neh(U(A,  B)) 
then there is m > n  in h(A), and that n + l e h ( A )  implies nEh(U(A,B)). Hence, 
h(U(A, B)) is finite or cofinite according as h(A) is. Now assume, for contradiction, 
that h(S(A, B)) is neither finite nor cofinite. Hence, there are infinitely many ne t~ such 
that n~h(S(A, B)) but n + 1 eh(S(A, B)). Inspection of the semantics of S shows that 
n~h(A) for each such n. Hence h(A) is infinite, and so, by the inductive hypothesis, 
cofinite. But h(S(A, B ) )~  h(A)+ 1, so h(S(A, B)) is also cofinite, a contradiction. This 
completes the proof. 

(2) This is immediate from (1) and Kamp's result. 
(3) This is a special case of (2). [] 

But the UYF-formula z=tpq-7Yq satisfies h( t )={0,2 ,4  . . . .  } for all h, so the 
expressive power of U YF goes beyond that of first-order logic over [~. 

Recall the definition of SIS. The signature of this logic is as for monadic first-order 
logic (above). The formation rules for SiS-formulas are also as for first-order logic, but 
with the additional clause: if ~, is a formula and Q a monadic predicate variable then 
3Q~, is a formula. The semantics of SIS are as for monadic first-order logic in 
(1~, <,  h), with the additional second-order clause: if ~b(xl . . . . .  xn) is a formula, and 
tJ=(al . . . . .  an)~N n, then ([~, < , h ) ~  3Q~,(ti) if and only if ([~, < , h ' ) ~  ~,(ti) for some 
h' =q h. 

We want to compare the expressive power of U YF and SIS. The natural definition 
to make is the following. 

Definition 6.2. Let A be a UYF-formula and ~(x) a formula of SIS  with a single free 
variable, x. We say that A and ~, are equivalent if for all assignments h, h(A)= 
{nEN: ([~, < , h ) ~  ~b(n)}. 

It is easy to show that SIS  is at least as expressive as UYF. 

Proposition 6.3. Let A be any U YF-formula. Then there is a formula d/ A (X) of SIS  that 
is equivalent to A. There is an algorithm that constructs d/A from A. 

Proof. By induction on A. I fA is the atom q we let ~A(X) be Q(x), and we let ~,v(x) be 
x = x. The boolean clauses are as expected, ~rA (X) is 3y < X (~A(Y) A --n3Z (y < Z < X)), 
and ~VtA.B)(X) is 3y>X(Oa(y)A VZ(X<z<y~OB(Z))) .  Finally, assume that tpqA is 
well-formed and suppose that we have defined ~'A (X). The fixed point theorem shows 
that for any h,h(tpqA) is the unique S _  • such that hq/s(A)=S. So we can define 
~%qA(X) as 3Q [Q(x) A Vy(Q(y)~-~A(y))].  A standard induction on A now shows that 
~bA is always equivalent to A, and clearly the construction of OA from A is effec- 
tive. [] 

Corollary 6.4. U YF is decidable: there is an algorithm that, given a formula A of U YF, 
decides whether or not there is an assignment h such that h(A)#O. 
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Proof. This is because there is an a lgor i thm that  decides whether  or not a sentence of 

SIS has a model  (see [10]). We can apply  this a lgor i thm to the sentence 3x~kA(x), 
which by the proposi t ion is effectively constructible f rom A. [] 

In Section 7 we will show that  the decision problem for U YF is PSPACE-  

complete.  
The remainder  of this section is devoted to proving the converse of Propos i t ion  6.3. 

Theorem 6.5. For any formula of S1S with a single free variable, there is an equivalent 
U YF-formula, which is effectively constructible. 

This will establish that  U YF is "fully expressive" with respect to monadic  second- 

order  logic. The p roof  will use au tomata .  

Definition 6.6. (1) Let L be a finite set of  a toms.  A (Muller) L-automaton is a 4- 
tuple M=(S,  so, T,F) where S is a finite nonempty  set (of states), so t s  is the initial 
state, T c_ S × ~ L  x S is the transition table, and F _  gdS is the set of  accepting 

conditions. 
(2) M (as above) is said to be deterministic if for all s~S and X ~_ L there is a unique 

s'eS with (s, X, s')~ T. In this case we will often regard T as a function: S × ~ L  ~ S .  
(3) If M is an a u t o m a t o n  as above,  and h is an assignment,  a run of M over h is 

a sequence (sn: n<co) of  states, such that  for all n, 

(sn, {q~L: neh(q)}, s,+ 1)e T. 

The run is said to be accepting if 

{seS: s=s ,  for infinitely many  n < to}~F. 

Otherwise,  it is said to be rejecting. 
(4) M is said to accept an assignment  h if there exists an accepting run of M over  h. 
(5) Two L - a u t o m a t a  are said to be equivalent if they accept exactly the same 

assignments.  

An L - a u t o m a t o n  is thought  of as running along N: at each n~N it "reads" which 
a toms of L are true at n under  h, and chooses its next state in the light of this and its 

current  state. It then advances to n + 1 and the process repeats. 
The main  l emma that  we need follows after a definition. 

Definition 6.7. If h is an assignment  and meN, we write h>~m for the assignment  given 

by h>~m(q)={n~N:m+neh(q)}. 

Intuitively, an a u t o m a t o n  M accepts h >/m if and only if M would accept h if it s tarted 

its run at m instead of at 0. 
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Lemma 6.8. Let M =(S, So, T, F) be a deterministic automaton. Then there is a formula 
AM of U YF such that for any assignment h and n~ I%1, n~h(AM) if and only if M accepts 
h>~n. The formula AM is obtainable effectively from M. 

Proof. The idea is taken from [13], and we will only sketch it. Suppose that M has 
k states. We first describe a deterministic automation M* involving k + 1 "copies" 

M 0 . . . . .  M k of M. We describe the run of M*. At each time t~[~, M* releases 
a dormant  copy of M. Then for each s~S it checks to see if more than one currently 
active copy of M is in state s; if so,~it renders dormant  all but the longest-running copy 
(the one that was released first). (Thus, M* must keep track of the order of launch of 
the currently active copies of M - it can do this with finitely many extra states.) After 

this check, at most k copies of M can be active, so there will always be at least one 
dormant  copy. M* then advances to t + 1 by allowing all surviving copies of M so to 
advance, and the process repeats. 

Consider a copy M~ o of M that is released at time to. If it is later deactivated, this is 
because at some time tl>>.to it arrives in the same state as another copy Mi, of 
M released before to. At all times t>~tl, M~, (if not itself deactivated) will be in the 
same state as M~ o would have been in, had it survived. If M~, is later deactivated then it 
itself will be replaced by another copy M~ 2, launched earlier than Mil. The resulting 
sequence M~ o, M~ .. . . .  of "descendants" of Mi o is of length at most k + 1, since clearly 
all the M~j were already active at time to. Let M~, be the final descendant of M~ o. Then 
M~, is never deactivated, and as it is eventually always in the same state as M, o would 
have been in, we see that M accepts h>~to if and only if the "run" of M~ o, had it lasted, 
would have been accepting, if and only if the "run" of M~, is accepting. This is the 
condition that we have to check with U YF-formulas. 

We can simulate M* by a recursive system p =(f,/~). The atoms f involve the 
following. 

• atoms ris for each i<<,k,s~S; ris will be true at n if and only if the copy Mi of M is 
active and in state s at n. 

• atoms oij (i,j <~ k); o~j being true at some point will mean that copies Mi and Mj of 
M are both currently active, and M~ was released first. 

• atoms p~j (i,j <~ k); Po being true at a point will mean that at that point, copy M~ was 
made dormant  because it was in the same state as copy M j, which was not made 
dormant  (i.e., Mj was the oldest copy in that state). 

It is clear that, knowing the transition table of M, the values of these atoms at time 
t + l are a fixed boolean combination of their values and of the values of the atoms of 
L at time t. Thus, p can in fact be taken to be simple of depth l; the formulas/~ will not 
involve Until. By Proposition 4.3, for each a tom r of f there is a YF-formula A, such 
that for all h, h(A,)= hp(r). 

Let o _  D, - T, D ° = _l_ if i :/:j, and for d >~ 0, 

,1 = V U (Pi, i' ^ D~, j ) ,  
i'~:i i 
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D~ says that the dth descendant of Ms is Mj. Then let 

c,j Vr,sA v Eo A A l ---']ldi, j ,  . 
sES d<~k j ' # i  

Then nehp(Cij) if and only if Mi is active at time n and its final descendant is Mj. We 
can also express that the run of Mj is accepting, by 

B j = V  ( A I(ri~)A A -q l ( r j . , ' ) )  • 
XEF sEX s ' eS \X  

Here, I(q) abbreviates the formula GFq=--qU(~U(q,  3-), Y), saying that q holds 
infinitely often in the future. The formula AM is now obtained from 
Ai<~k (ri.so ~/~j<~k(Cij --,Bj)) by substituting A, for r (for each atom r of ~). [] 

To complete the argument we will need the following standard results about 
automata. 

Fact 6.9. (1) Every automaton is equivalent to a deterministic automaton, which can be 
constructed effectively. This was proved in [13]. 

(2) For every sentence a of S1S whose free monadic predicates correspond to atoms in 
the finite set L, there is an L-automaton M such that for all assignments h, M accepts h if 
and only if (N, < , h ) ~  tr. M can be constructed effectively from tr. See [10], for 
example. 

Now let ~(x) be an SIS-formula with a single free variable, x. We want to find 
a U YF-formula A equivalent to ~,. Let L be the set of atoms occurring in ~ and let 
Q be a monadic predicate variable not occurring in ~. By Fact 6.9 we can find 
a deterministic Lu{q}-automaton M=(S,  so, T,F) that accepts an assignment h if 
and only if ([~, <, h) ~ Vx (Q (x) *-~ ~ (x)). 

Definition 6.10. (1) If s~S we write Ms for any deterministic equivalent of the version 
of(S, s, T, F) that "guesses" values of h(q). Formally, Ms is a deterministic equivalent of 
the L-automaton (S, s, T', F), where T' = {(sl, X c~ L, s2): (sl, X, s2)e T}. 

(2) We write As for the formula ,4M~ of Lemma 6.8. 

Clearly, for any h there is a unique h* =q h that M accepts, namely the h* satisfying 
h* (q)= {n~/~ : (~, <,  h)~ ~ (n)}. We can simulate the run of M over h* from within h, 
obtaining the following result. 

Lemma 6.11. For any s~S there is a U YF-formula Cs such that for all assignments h and 
all n ~ ,  neh(Cs) if and only if the state of M at time n during its run on h* is s. 
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Proof. We define a recursive system p=((r~:  seS), (B~: sES)) as follows. If seS  let 
n ( s ) = { ( s ' , X ) ~ S x  goL: T ( s ' , X ) = s  or T ( s ' , X u { q } ) = s } .  We let 

Bs=A~/x V r(r~,^ A x^ A -n.v) 
(s',Xjen(s) xeX yeL\X 

for each s~S\{so},  and 

Bso  YTv[A oA Y(,A A xA A 
(s,X )en(So) xE X ye L \ X 

Note  that  the Bs are formulas  of  U YF (and not  YF). Nonetheless,  by Propos i t ion  4.3 
we can find for each s6S a formula  Cs such that  for all h, h(C~) = ho(r,). Thus, it suffices 

to show that  for any assignment  h, if s0, sl . . . .  is the (accepting) run of M on h* then for 
all n and s, nehp(r,) if and only if s=s , .  

This is clear if n = 0 .  Assume the result for n. Let X = { p 6 L :  neh(p)}, and define 

s + = T(s., X w { q } ), s -  = T(s., X). By definition of the B~ and the inductive hypothesis,  
for each seS  we have: n +  lehp(r~) if and only if 

(1) s=s  + or s = s - ,  and 
(2) n +  l~h(A~). 

And (2) holds if and only if Ms accepts h~>,+l, if and only if there is h' =q h that  
M accepts "when star ted at n + 1 in state s". 

Claim. (1) and (2) hold if and only if S=Sn+ 1. 

Proof of claim. Certainly,  s.+ x e {s +, s -} ,  and M obviously accepts h* when started in 

state s .+ l  at n + l  (its run is just  s . + l , s . + 2  . . . .  ). Conversely,  suppose we are given 
se{s+,s - } and h' as above.  We can assume that  h'(q) and h*(q) agree before n, and 
that  T(s., h'-  1 (n) n ( L  u {q})) = s. An accepting run of M on h ~ , + l  when started in 
state s, when preceded by So . . . . .  s., gives an accepting run of M on h'. By uniqueness, 
h' = h*, and so s = T(s.,  h* - 1 (n) n (L u {q})) = s. + 1, as required. This proves  the claim, 
and with it the lemma.  [] 

Corollary 6.12. There is a U YF-formula D equivalent to ~b (x). 

Proof. We let D be 

A ( CsA  A X A  A "--qY)-"*U(AT(s, Xu~q}},-l-)" 
seS, X~L  \ xeX yeL\X 

Let h be given, and let So,Sa ....  be the run of M on h*, as before. Let neN,  and write 
X for {pEL: n~h(p)}. Then neh(D) if and only ifneh(U(Arls.,Xu{q}l, l ) ) ,  if and only if 
n+l~h(Arts.,X~{q})). By the claim of L e m m a  6.11, this holds if and only if 
s.+l = T(s . ,Xw{q}) .  N o w  s .+l  = T ( s . , X w { q } )  or T(s . ,X) ,  according as neh*(q) or 
not. If  we had T(s , ,X  u {q})= T(s., X), we could replace h* by h', identical with h* 
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( 
q 

( 
Fig. 1. 

except that neh'(q) ,~  n~h*(q); then So, sl . . . .  would be an accepting run of M over h', 
contradicting the uniqueness of h*. Hence T(sn, X w { q}) v~ T(sn, X).  So n e h (D) if and 
only if neh* (q) - i.e., if and only if (t~, <,  h) ~ ~(n), as required. [] 

Thus, the proof of Theorem 6.5 is complete. We remark that the formula D of the 
theorem is effectively obtainable from ~ (since M and the Ms are). By Theorem 5.1, 
D can in fact be taken to have depth of nesting of fixed point operators of 2 (i.e., no 
branch of the formation tree of D contains more than two tp's). Thus, combining 
Proposition 6.3 and Theorem 6.5, we see that any U YF-formula is effectively 
equivalent to such a formula. I do not know if one can be constructed in polynomial 

time. 

Example 6.13. We give a very simple example of our construction. We will construct 
the formula D equivalent to the SIS-formula e(x)=3P[P(x)^Vy(P(y)~--* 
-73z (z < y ^ -73t (z < t < y) A P (z)))], defining the even numbers in N. The automaton 
M for Vx(Q(x)~*e(x)) can be taken to have three states, 0 (initial state), 1 and 2 as 

shown in Fig. i. 
The set F of accepting conditions is { {0, 1 } }. The version of M that "guesses" Q can 

accept if and only if it is initiated in state 0 or 1. Hence, we can take ,40 =,41 = T and 
A2= A_. As L = 0 ,  we obtain Bo=-n  YT v Yrl, BI = Yro, and B2 = ±. Applying Prop- 
osition 4.3 to the recursive system (f,/~), we obtain (up to equivalence) Co = E, C~ = YE 
and C2 = Z, where E=~oro(--nYT v y2ro). Observe that E is true at even numbers 
only. The formula D is thus Ai<~2(Ci ~ T`4i,), where Tq ("tomorrow, q") abbreviates 
U(q, ±), and i' is the next state of M when currently it is in state i and Q is true. Since 
0 '=1  and 1 ' = 2 ' = 2 ,  we obtain D = ( E - ~ T T ) ^ ( Y E ~ T _ L ) A ( ± - - * T _ L ) ,  which is 
equivalent to T A --7 YE ^ T, i.e., to E. Hence, we obtain the formula E as equivalent 
to ~(x). 

7. Eliminating fixed point operators 

In this section we show how to eliminate all fixed point operators from a U YF- 
formula A, at the cost of restricting the values assigned to the bound atoms of ,4. 
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This will yield an axiomatisation of U YF, as well as giving the complexity of its 
decision problem. Our main tool is Proposition 7.2, a variant of which was also 
proved independently by Strulo [17]. 

We can assume that the bound atoms of A are distinct and do not occur free in A. 
We let A t = A(q  ~/~),  where the conjunction is taken over all subformulas of A of the 
form q~qB, and A is as defined in the proof of Theorem 4.4. Equivalently, we can define 
A t by induction: q t = T t = T  for any atom q, ( ~ A ) # = ( Y A ) t = A t , ( A A B ) t =  
(U(A,B) ) t=At  A Bt, and (~oqA)t=At A (q,-~ A). 

Lemma 7.1. Let A be a formula of U YF, and let h be an assignment such that h(At) = ~. 
Then for all subformulas B of A, h(B)=h(B). 

Proof. By induction on B. We need only check the case B = q~qC, as the other cases are 
simple. Assume that tpqC is a subformula of A, and that the result holds for C. Then 
q~--,(~ is a conjunct of A t. Hence h(q)=h(C), and h(C)=h(C) by the inductive 
hypothesis. By the fixed point theorem (2.8), h(~oqC)= h(q), and h(q)= h(t~)= h(q~qC), 
as required. [] 

Prolmsilioa %2. Let A be any U YF-formula with bound atoms f. Then for any assignment 
h there is a unique assignment h a =Fh satisfying hA(At) = N. We have hA(k) = h(A) for all h. 

Proof. By induction on A. If A is atomic or T, then Fis empty, A t =  T and .4=A, so 
hA= h and the result is trivial. Assume the result for A. As YA has the same bound 
atoms as A, and (YA)t = At, we must h ~ e  hrA=h a by the uniqueness part of the 
inductive hypothesis. But then, hrA(yA)=hA(yA)=I+hA(A)=I+h(A)  by the 

inductive hypothesis, and this last is h(YA), as required. The proof for ~ A  is similar. 
Now consider U(A,B). Suppose the result holds for A,B, having bound atoms tT,/~ 
respectively. There are unique h A =~ h, h B =~h with hA(At)=hS(Bt)= ~. As ~ and 

/~ are disjoint, we can define h*=a~h by h*=#h A, h*=a h a. Then h*(U(A, B)t )=  [~, 
^ A 

and h* is unique given this condition. Moreover, we have h*(u(A, B) ̂ ) = h* (U(A, B)), 
which by the inductive hypothesis is h(U(A, B)), as required. The argument for A A B 
is similar. 

Finally, assume the result for A and consider ~oqA. Let h(tpqA)=S, and h*=(h~/s) A. 
A 

Then (i) h* (q~qA)= (hq/s) A (_~); by the inductive hypothesis this is h~/s(A), which is h(q~qA), 
by the fixed point theorem. Also, (ii) h* (At)= ~ since h* is of the form h'A; and it follows 
from (i) that (iii) h* (q) = S = h* (,4). From (ii) and (iii) we obtain (iv) h* ((qgqA)~f) = ~. Hence, 
by (i) and (iv) we can let heqA= h*. 

It remains to check uniqueness in this case. Suppose h' is any assignment such that 
h' =F, q h (where f are the bound atoms of A) and h'((q~qA)t)= ~. Then in particular, 
h'(q)=h'(.4). As h'(At)=N, Lemma 7.1 applies, and we get h'(A)=h'(A). But h'(q)= 
h'(A) yields h'(q)= S by the uniqueness part of the fixed point theorem. Hence h' =Fh~/s, 
and since h'(A~f)= N, we obtain h' =(hq/s)A= h ~qA by the uniqueness part of the inductive 
hypothesis. [] 

We say that a formula A is valid if h(A) = t~ for all assignments h. 
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Theorem 7.3. Let A be any U YF-formula. Then A is valid if and only if the U YS- 
formula m(At)---,/l is valid, where re(At) abbreviates At  A--qU(~At, T ) A  
--qS(--qAt, T). 

Proof. Let h be any assignment, and let teN.  Assume first that A is valid. If 
teh(D(At) ), we want to show that teh(,4). Clearly, h(At)=[~,  so by Lemma 7.1, 
h(,4)=h(A), which is I~ since A is valid. Hence teh(A), as required. 

Conversely, if [] (At) --, .zi is valid, we need to show that teh(A). By validity, 
t~hA([](At)--*4). By Proposition 7.2, hA(At)=~,  so tEhA(o(AJf)). Hence tehA(A), 
and as the proposition proved that JhA(A)=h(A), we obtain the result. [] 

Thus, in a sense, any U YF-formula A is "equivalent" to the U YS-formula 
[](At) ~ / ] ,  which does not involve tp at all. We can draw two corollaries from this. 

Corollary 7.4. There is a sound and complete axiomatisation of U YF. 

Proof. We can regard any U YS-formula as a formula of US, since the formula Yq is 
equivalent to S(q, _L). Sound and complete axiomatisations for US over the natural 
numbers exist: see [14, 18] and (for U only) [9]. If we add to such an axiomatisation 

the inference rule 

• (At )  -~A 

A ' 

we obtain a sound and complete axiomatisation of U YF over M. For, by the theorem, the 
new rule is sound: if the top is valid, so is the bottom. For completeness, 
assume that A is a valid U YF-formula. By Theorem 7.3, D (At) --* A is a valid US-formula. 
By completeness for US-formulas, it is provable, and we obtain t- A from the new rule. 

Notice that we only need use the new rule once, at the end of a proof of A, as the rule 
simply says that it suffices to prove [] (A'~) ~ ,4, and this can be done (if at all) within 
the US proof system. [] 

Problem. Find a finite axiomatisation of U YF using only the conventional inference 

rules. 

Corollary 7.5. The decision problem for U YF is PSPACE-complete, as is the decision 
problem for USF. 

Proof. It is shown in [16] that the problem of deciding whether a formula of US is 
valid over N is PSPACE-complete. So the decision problem for USF is certainly 
PSPACE-hard. By Remark 2.9, this problem reduces in polynomial time to the 
decision problem for U YF. But by Theorem 7.3, a U YF-formula A is valid if and only 
if the U YS-formula B = [] (At) ~ A is valid, and B is obtainable in polynomial time from 
A. By replacing all subformulas YD of B by S(D, _L), as in the preceding corollary, we 
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can obtain from B, in polynomial time, an equivalent formula C of US. By the result of 
[16], the validity of C over 1~ is decidable in PSPACE. 

Of course, the dual, satisfiability problems for USF and U YF are also PSPACE- 
complete. [] 

8. Executable temporal logic 

Finally, we discuss the connection of U YF with executable temporal logics such as 
MetateM [3]. The MetateM computer system (see [3, 15] for details) is able to 
"execute" any formula A of US, building an assignment h such that h(A)= ~. A is 
regarded as a "specification", which the system meets by making it true at all times. 
The method relies on Gabbay's "separation property" for US over ~, proved in [6, 8]. 

Future versions of MetateM will interact with the external environment. Given 
a US-formula A@,f), the atoms q may be designated as under the control of the 
environment, whilst f remain under the auspices of the system. Given an assignment h, 
such a system would build a new assignment h* =~h such that h*(A)= ~. (Here we 
assume that the environment does not react to the system, so that h can be assumed 
fixed during its operation. If this assumption is not valid, a logic such as $2S is needed 
to analyse the execution; see [1, 10].) 

Corollary 8.1. Assume we have a version of MetateM as above. Then for any assignment 

h and subset S ~ ~, if S=h(A) for  some formula A(?I) of UYF, then there is a formula 
A*(4, r,s) of US such that if MetateM treats Cl as environment-controlled atoms and 
~, s as system-controlled, and executes A* over h to construct h*, then h* (s)= S. 

Proof. Given any formula A@) of U YF, with bound atoms L we can effectively 
construct the UY-formula 

A*(F1;~,s)%fA~f ^ (s~--~,4). 

If MetateM constructs h* from h as above, then we will have h*(A*)= M. Hence 
h*(At)=t~,  so that by Proposition 7.2, h(A)=h*(.4). Since also h*(.,~)=h*(s), the 
proof is complete. [] 

So MetateM would in principle be able to evaluate any formula of U YF, and so by 
Theorem 6.5 to construct any set that is definable from the sets h(q) (q in ?t) by some 
SIS-formula. It is striking that the expressive power of monadic second-order logic 
- and of the fixed point logic U YF - would thus be achieved using only formulas of 
US, which have first-order definitions. 

We might ask whether a converse of the corollary can be established. This depends 
on the execution strategy adopted by MetateM. For example, the formula 
GFs = ~ U  (---nU(s, T ), T ) is validated by any h such that h(s) is infinite; and there are 
2 °' such h. Even if the execution strategy is assumed to be deterministic, whether it 
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yields an h such that h(s) is definable in U YF in all cases like this remains to be seen. 

(We believe that the answer will be positive.) 
A related, speculative point concerns the so-called uniformisation problem for SIS. 

Given a sentence ~O(P,Q) of SIS such that ~ ~VP3Q~O(P,Q), we can ask if there is 
another SiS-formula z(P, Q) such that N I= VP3!Qz A VPQ(z ~b). (Here, 3!Q means 
that there exists a unique Q.) This question was answered affirmatively in [4]; see also 
[10]. The corresponding problem for $2S was given a negative solution in [11]. 

Now by Theorem 6.5 we can obtain a UYF-formula A(p, q) equivalent to ~O A X =X. 
Given h, we might now execute A A A t, treating p as an environment atom and the 
rest as system atoms. We would obtain h* such that h*(A) = N, so that (N, <,  h*) ~ qJ. 
Thus, a MetateM interpreter capable of handling a fixed external environment could 
be used to "uniformise" ~b: for any given h(p) _ N it would construct a set h*(q) ~ ~ so 
that N ~ ~k(h(p), h* (q)). Again, it remains to be seen whether the execution strategy of 
such a system will itself be expressible in U YF or S1 S, but if so, an alternative proof of 
the uniformisation result of [4] might be obtained. (Note that MetateM does involve 
metalanguage features, which are discussed in [5].) 
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