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Abstract

Recently, it has been shown in a series of works that the representation of graphs by Ordered Binary Decision Diagrams
(OBDDs) often leads to good algorithmic behavior. However, the question for which graph classes an OBDD representation is
advantageous, has not been investigated, yet. In this paper, the space requirements for the OBDD representation of certain graph
classes, specifically cographs, several types of graphs with few P4s, unit interval graphs, interval graphs and bipartite graphs are
investigated. Upper and lower bounds are proven for all these graph classes and it is shown that in most (but not all) cases a
representation of the graphs by OBDDs is advantageous with respect to space requirements.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Some modern applications require such huge graphs that the usual, explicit representation by adjacency lists or
adjacency matrices is infeasible. For example, a typical state transition graph arising in the process of verification
and synthesis of sequential circuits may consist of 1027 vertices and 1036 edges. Graphs modeling street or railway
networks are usually not so large, but even those graphs become huge if they are interlinked with other components,
as for example amount of traffic, time slots, etc.

When dealing with huge graphs, one faces two problems:

(1) Algorithms with polynomial or even linear running times, may not be feasible.
(2) The space needed to store the adjacency matrices or adjacency lists may exceed the available amount of memory.

In order to solve the second problem, one can sometimes use an implicit representation of a graph. The typical ap-
proach, as introduced by Kannan, Naor and Rudich [13], is to store the vertices in such a way that adjacency is uniquely
determined by the vertex labels (a prominent example is the representation of interval graphs, where the nodes are la-
beled by intervals and two nodes are adjacent if and only if the corresponding intervals intersect). While such implicit
representations can lead to good graph compression, they do not solve Problem (1), concerning running times of algo-
rithms. Moreover, such implicit graph representations are ad hoc constructions, i.e., in order to use such implicit graph
representations, the algorithm has to “know” with which graph class it has to deal. Hence, for general applications
that have to work with arbitrary input graphs, such implicit representations cannot be used in a uniform way.
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Another approach to deal with Problem (2), is to use a generic data structure, that can represent any graph, but
where sufficiently structured graphs may be compressed, i.e., their representations requires only sublinear space (with
respect to the number of vertices or edges). Since the adjacency matrix can be considered as a Boolean function, data
structures that store Boolean functions can be used for this purpose. One of the most prominent data structures for
storing Boolean functions is the Ordered Binary Decision Diagram (OBDD), because for all important operations on
Boolean functions (e.g. the synthesis operation, substitution by constants or satisfiability test) efficient algorithms are
known. These OBDD operations allow to efficiently convert any graph represented by, e.g., an adjacency list or an
adjacency matrix to a corresponding OBDD.

Another advantage of using OBDDs is, that they may help to cope with Problem (1). Several graph problems
can be solved with a polylogarithmic number of OBDD operations, if the input graphs are represented by OBDDs.
Examples are network flow maximization [9,18], topological sorting [23] or finding shortest paths in networks [19].
It is important to emphasize that the number of OBDD operations is not directly proportional to the running time
of the algorithm, as the running time for one OBDD operation depends on the sizes of the OBDDs on which these
operations are performed. Hence, such OBDD graph algorithms are highly heuristic, and we can only expect to obtain
advantages with respect to the running times, if all OBDDs encountered during the run of such an algorithm remain
small in size. (For example, on a random graph we would expect no speedup from OBDD algorithms.) However,
in practice this heuristical approach has been very successful (see for example [4,9]). Moreover, it has been proven
for very structured graphs, such as the grid graph, that some OBDD algorithms such as topological sorting [23] and
network flow maximization [18] have only polylogarithmic running times (with respect to the number of grid vertices).

It is clear that we cannot achieve sublinear running times, if the representation of the input graph already requires
OBDDs of linear size. Therefore, in this paper we start to investigate the question, for which natural graph classes a
compression of input graphs can be achieved by using OBDDs. There are several parameters that may have significant
influence on the size of an OBDD for one specific graph (we discuss these after defining OBDDs). But in this paper
we work under the premise that an OBDD representation is used in general OBDD graph algorithms, i.e., OBDD
algorithms that work with any input graph, but where (naturally) the running time depends on the structure of that
input graph.

Specifically, we show that cographs, several types of graphs with few P4s, unit interval graphs, and interval graphs
can be compressed significantly, if represented by OBDDs. On the other hand, we show that for bipartite graphs no
significant compression can be achieved.

Note that following the conference version of the present paper, Meer and Rautenbach [14] have improved some
of our upper bounds by being less restrictive with respect to some of the parameters in the underlying OBDD model.
While this relaxed model seems less suitable for OBDD algorithms, their result shows that even better compression
factors can be achieved with OBDD representations, if one is only interested in solving Problem (2).

It should be emphasized, that our upper bound results, indicating that graphs from the graph classes mentioned
above may be compressed significantly, do not automatically imply that OBDD algorithms are fast on these graphs.
But they provide evidence that OBDD algorithms at least have a chance of being superior for sufficiently structured
input graphs. On the other hand, our negative results (for example for bipartite graphs) show that OBDD algorithms
on such graphs will not have an advantage over non-symbolic algorithms.

1.1. Graph representation by OBDDs

In the following, let Bn denote the class of Boolean functions f : {0, 1}n → {0, 1}. OBDDs have been introduced
by Bryant in 1986 [3] as a data structure for Boolean functions.

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables.

(1) A variable ordering π on Xn is a bijection π : {1, . . . , n} → Xn , leading to the ordered list π(1), . . . , π(n) of the
variables.

(2) A π -OBDD on Xn for a variable ordering π is a directed acyclic graph with one root, two sinks labeled with 0
and 1, respectively, and the following properties: Each inner node is labeled by a variable from Xn and has two
outgoing edges, one of them labeled by 0 (or drawn as a dashed line), the other by 1 (or drawn as a solid line). If
an edge leads from a node labeled by xi to a node labeled by x j , then π−1(xi ) < π−1(x j ).
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Fig. 1. Example of an OBDD representing f (x, y) ∈ B2n with f (x, y) = 1⇔ ∀i ∈ 1, . . . , n : xi = yi .

(3) For any input a = (a1, . . . , an) ∈ {0, 1}n the computation path of a is the unique root-to-sink path leading from
any xi -node over the edge labeled by the value of ai . A π -OBDD represents the Boolean function f ∈ Bn , where
for all a ∈ {0, 1}n the function value f (a) is the label of the sink reached on the computation path of a.

(4) The size of a π -OBDD G is the number of its nodes and is denoted by |G|.
(5) The π -OBDD size of a Boolean function f (π -OBDD( f )) is the minimal size of a π -OBDD computing f . The

OBDD size of a Boolean function f (OBDD( f )) is the minimal size of a π -OBDD computing f for some variable
ordering π .

Fig. 1 shows a π -OBDD with (π(1), . . . , π(2n)) = (xn, yn, . . . , x1, y1) representing f (x, y) ∈ B2n with f (x, y) =
1⇔ ∀i ∈ 1, . . . , n : xi = yi .

We denote the binary value represented by the n-bit string zn−1 . . . z0 ∈ {0, 1}n by |z| :=
∑n−1

i=0 zi 2i . Conversely
we denote by [k]n , n ≥ dlog (k + 1)e, the n-bit string representing k, i.e. the string zn−1 . . . z0 ∈ {0, 1}n with k = |z|.

Let G = (V, E) be a graph and let N = |V |. We can represent the edge set E of G by an OBDD for the
characteristic function χE : E → {0, 1} of E , where χE (v1, v2) = 1⇔ {v1, v2} ∈ E . In order to encode the vertices
by Boolean variables, we use the convention that V = {[0]n, . . . , [N − 1]n}, where N > 0 and n = dlog Ne. If N is
not a power of two we may need to store N by some n-bit integer. Another possibility is to use an OBDD for storing
the characteristic function χV of V . It is easy to see that for all variable orderings π , the π -OBDD size of the function
χV is O(n log n) = O(log N log log N ).

Note that given a variable ordering π , and a π -OBDD for a function f , it is possible to efficiently (in almost
linear time) find the minimal π -OBDD for f (see for example [22]). Therefore, we are only interested in the minimal
π -OBDD for some graph.

Definition 2. The π -OBDD size of a graph G = (V, E) (π -OBDD(G)) is the minimal size of a π -OBDD computing
χE for some labeling of the vertices. Analogously, the OBDD size of G (OBDD(G)) is the minimum of π -OBDD(G)
for all variable orderings π . The worst-case OBDD size of a graph class G is the maximum of OBDD(G) over all
G ∈ G.
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Several parameters can influence the OBDD size of a graph. First of all, the π -OBDD size of any Boolean
function is highly sensitive to the variable ordering π . Finding the optimal variable ordering is a hard problem [20].
Nevertheless in practice heuristics are often used successfully to find variable orderings with small OBDD sizes
(see [22] for a description of several approaches).

Secondly, the vertex labeling has a significant influence on the OBDD size. Even very structured graphs, such
as lines or grids, will require large OBDDs if the vertices are labeled at random. However, OBDDs can only be
advantageous, if the inputs are not random, so the hope is that if the input is a sufficiently structured graph, as for
example a grid-like graph, then the vertex labeling is also “nice”. We hope that future research will lead to heuristics,
or even efficient approximation algorithms that compute good vertex labelings. Therefore, our upper bound results
mainly indicate a principal feasibility of OBDD algorithms.

Finally, increasing the domain from which the vertex labelings are chosen can lead to a reduction of the OBDD
size. For example, it is not hard to see that the vertices for any graph G can be labeled with O(N ) bits, each, such
that OBDD(G) = O(N ). In fact, following our conference version of this paper, Meer and Rautenbach [14] showed
that our upper bounds on the OBDD sizes of cographs can be improved, if one allows c · log N bits for the vertex
encoding, for some sufficiently large constant c. Similarly, significantly better upper bounds than those derived in this
paper can easily be obtained for interval graphs, by simply using 2dlog Ne bits for each vertex label.

While such an approach can be valid, if graph compression is the only goal (see Problem (2) above), it causes
problems with OBDD algorithms. One reason is that if a domain of cardinality more than N is used for the vertex
labels, then the vertex labels have to be stored in some additional data structure. This causes incompatibility with the
existing OBDD algorithms. It also seems reasonable to assume (although we do not have any hard evidence) that the
algorithmic problems of finding a good vertex labeling and a good variable ordering is harder for larger domain sizes.
Moreover, the OBDD size of a Boolean function in n bits can be as large as Ω(2n/n). Hence, the worst-case running
time of any OBDD graph algorithm is essentially a term with an exponent proportional to the number of bits used
for the vertex labelings. Although we think of OBDD algorithms as heuristics, that are hopefully very efficient for
reasonably structured inputs, it still make sense to keep the worst-case running time as small as possible. But even
just for the graph compression problem, a “tight” domain size of N , where no additional data structure for storing the
vertex labels is needed, makes sense in many circumstances: In a pure heuristical setting one might hope for space
bounds of o(N log N ), but an explicit data structure for identifying the vertices in a graph that uses labels from a

domain of cardinality M , would require at least Ω
(

log
(

M
N

))
bits.

1.2. General upper bounds

Breitbart, Hunt III and Rosenkrantz have shown in [2] that any function f ∈ Bn can be represented by a π -OBDD
of size (2+O(1)) 2n/n (for any variable ordering π ). Hence, the π -OBDD size of any graph with N vertices is
bounded by (4+O(1)) N 2/ log N , because n < 2+ 2 log N for appropriately chosen vertex labels. In order to obtain
a general bound which is better for not very dense graphs, we may use the fact that the π -OBDD size of any function
f ∈ Bn is bounded by roughly n · | f −1(1)|.

Proposition 3. Let G = (V, E) be a graph, N = |V | and M = |E |. The OBDD size of G is bounded above by

min
{
(4+O(1)) N 2/ log N , 2M · (2 dlog Ne − blog 2Mc + 1)+ 1

}
.

Proof. An OBDD B representing G has depth 2 dlog Ne (because the input consists of two binary coded vertices).
Moreover, exactly 2M paths lead from the root to the 1-sink. In a minimal π -OBDD, there is no node from which all
paths lead to the 0-sink (because otherwise this node can be removed and all edges can be redirected to the 0-sink).
Hence, each level of the OBDD has at most 2M vertices (the i th level of a π -OBDD is the set of nodes labeled with
π(i)). However, the first blog(2M)c levels cannot have more vertices than a complete binary tree of depth blog(2M)c.
Therefore, B has at most 2blog(2M)c

− 1 ≤ 2M − 1 nodes in the first blog(2M)c levels altogether, and at most 2M
nodes on each of the following levels, and two sinks. This yields |B| ≤ 2M (2 dlog Ne − blog(2M)c)+2M+1. �

Note that if a graph G with N vertices and M edges is given by an adjacency matrix or adjacency list, then the
OBDD for G satisfying the size bound of the above Proposition can be constructed in time O(M log N log2 M).
Hence, OBDDs are a truly generic graph representation.
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Obviously, an OBDD B can be uniquely described by O (|B| · (log |B| + log n)) bits. Consider a graph G with
N vertices and M edges. The above proposition shows that an OBDD representation for dense graphs needs at
most O(N 2) bits and thus is only a constant factor larger than the representation by adjacency matrices. Since
O (M log N (log M + log log N )) bits are sufficient to store G, an OBDD representation is more space efficient than
an adjacency matrix for not very dense graphs. An adjacency list representation of G needs O ((N + M) log N ) bits.
However, an adjacency test may take linear time in the worst case. Here, OBDDs are more efficient because adjacency
can be tested in O(log N ) time (start at the root of the OBDD and traverse the graph according to the input until the
sink is found). Hence, the space requirements of OBDDs are only little worse than that of adjacency lists and much
better than that of adjacency matrices for sparse graphs, while the adjacency test is less efficient than that of a matrix
representation but much better than that of a list representation in the worst case.

But Proposition 3 covers only the worst case. We mainly use OBDDs because we hope that if graphs are sufficiently
structured, then a good “compression” may be achieved and thus the OBDD representation may be more space efficient
than any explicit representation. One well-known example where this is the case in the grid graph which can even be
represented with OBDDs of logarithmic size. However, we are interested in the representational power of OBDDs for
much more general graph classes. In the following we will show that several very natural and large graph classes have
OBDD sizes which yield a much better space behavior than that of explicit representations.

In the following Section we derive a general formula which allows us to prove lower bounds for the OBDD size of
certain graph classes with counting arguments. In Section 3 we investigate several types of graph classes which do not
contain many P4s, most prominently cographs. We show that they can be represented by OBDDs of size O(N log N )
and thus an OBDD representation outperforms any explicit representation with respect to space usage if the graphs
are not very sparse. On the other hand, our bound is optimal up to a polylogarithmic factor because – as we show –
there are cographs which require OBDDs of size Ω(N/ log N ). In Section 4 we investigate interval graphs. First, we
show that unit interval graphs have an OBDD size of O(N/

√
log N ) and give an upper bound for the OBDD size of

general interval graphs of O(N 3/2/ log3/4 N ). We also give lower bounds of Ω(N/ log N ) and Ω(N ), respectively.
Finally, in Section 5 we try to find a natural graph class which is very hard to represent for OBDDs. We show that the
representation of some bipartite graphs requires OBDDs of size Ω(N 2/ log N ). Hence, the OBDD representation of
bipartite graphs is not necessarily more space efficient than that of an adjacency matrix representation.

2. Lower bounds with counting arguments

In order to prove lower bounds we mainly use counting arguments. Wegener has shown in [22] that OBDDs of size
s can compute at most sns (s + 1)2s /s! = 2s log s+s log n+O(s) different functions f ∈ Bn . Thus, in order to achieve a
lower bound for the OBDD size of graphs from a graph class G it suffices to count the number NG(N ) of unlabeled
graphs with N vertices in G.

Corollary 4. Let G be a graph class that allows the addition of isolated vertices and let s : N→ R be a function. If

lim
N→∞

(
2s(N ) log s(N )+s(N ) log log N+O(s(N ))

·
(
NG(N )

)−1
)
< 1,

then there are N ∈ N such that there are graphs with N vertices that cannot be represented by OBDDs of size s(N )
or less.

Proof. If the limit above is less than 1, then for large enough N there are more graphs than OBDDs for functions in
n = 2 · dlog Ne variables. �

3. Graphs with few induced P4s

Hereinafter P4 denotes a chordless path with four vertices and three edges. Many graphs with few induced P4s have
common properties such as a unique (up to isomorphism) tree representation. Starting from the tree representation
developed by Lerchs (see e.g. [5]) of the well-known class of cographs (graphs with no induced P4), Jamison and
Olariu have developed and studied tree representations for various graph classes with few induced P4s such as P4-
reducible graphs [10], P4-extendible graphs, [11] and P4-sparse graphs [12]. P4-reducible graphs contain no vertex,
that belongs to more than one induced P4. P4-extendible graphs contain at most one additional vertex for each induced
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Fig. 2. A graph class inclusion diagram for the considered graph classes.

Fig. 3. Example of a cograph (constructed by + (∪ (a, b, c, d) ,∪ (e, f ))).

P4 p that induces a different P4 together with three vertices from p. In P4-sparse graphs every set of five vertices
induces one P4 at most. In the following discussion we omit P4-reducible graphs, because their class is the intersection
of the classes of P4-extendible and P4-sparse graphs. The relation between the considered graph classes is depicted in
Fig. 2.

All these graph classes have in common that they can be constructed from single vertex graphs by graph operations,
each of them joining several vertex disjoint graphs together. Consider for example two graphs G1 = (V1, E1) and
G2 = (V2, E2) on two disjoint vertex sets. Then the union of G1 and G2 is G1 ∪ G2 := (V1 ∪ V2, E1 ∪ E2) and the
join is G1+G2 := (V1 ∪ V2, E1 ∪ E2 ∪ E ′), where E ′ contains all edges {v1, v2} with v1 ∈ V1 and v2 ∈ V2. It is well
known that any cograph can be obtained from single vertex graphs by a sequence of union and join operations (see
e.g. [5]; Fig. 3 shows an example).

Now consider a set Ω of operations, each of them joining several vertex disjoint graphs together. Note, that the
operations need not be commutative like union and join. Further assume that a graph G can be constructed from
single vertex graphs by using only the joining operations in Ω . Then G has a natural representation as a rooted tree
T (G) which can be constructed recursively as follows: If G is a single vertex graph, consisting of the vertex v, then
T (G) = v. If G = ω(G1, . . . ,Gk) for an operation ω ∈ Ω , then the root of T (G) is a vertex labeled with ω
whose children are the roots of the trees T (G1), . . . , T (Gk) (note that the order of the children may be important for
noncommutative operations).

Such a tree representation of a graph is very helpful if we want to devise an algorithm deciding adjacency which
can then be turned into an OBDD for the graph. For example, if G is a cograph, then two vertices v1 and v2 are
adjacent if and only if the least common ancestor of v1 and v2 in T (G), lca(v1, v2), is labeled with +. (The least
common ancestor of two nodes v1 and v2 is unique and is defined as the deepest node that is an ancestor of both v1
and v2.)

Hence, for the algorithm it suffices to determine the lca of v1 and v2. For P4-extendible graphs and P4-sparse
graphs adjacency is not so simple to determine. However, in the following we develop a new tree representation for
these graphs such that adjacency of two vertices can be determined by computing the lca of two vertices and some
additional information. Later, we show how to compute the lca and the additional information with OBDDs.

Recall that V = {[0]n , . . . , [N − 1]n}. We label the vertices for our representation in such a way that |v1| is
less than |v2| for two vertices v1, v2, if a preorder traversal of T (G) traverses the leaf corresponding to v1 first.
Furthermore, for two vertices v1, v2 of a graph G = (V, E) with a tree representation T (G) let δd (v1, v2) be
||v1| − |v2||, if ||v1| − |v2|| ≤ d and 0 otherwise. Let c : V → N be the function with c(v) = i if the vertex v
is the i th child of its parent in T (G).

Lemma 5. Let G be the class of either cographs, P4-sparse graphs or P4-extendible graphs. Then there is a tree
representation T (G) for all graphs G = (V, E) ∈ G such that for any two vertices v1, v2 ∈ V the characteristic
function χE (v1, v2) is uniquely determined by
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Fig. 4. Example of a P4-sparse graph (constructed by ~ (↔ (d, a, e, b, f, c) , g)).

(a) lca (v1, v2), in the case of cographs,
(b) lca (v1, v2), δ1 (v1, v2), |v1| mod 2, |v2| mod 2 and the information whether |v1| < |v2|, in the case of P4-sparse

graphs,
(c) lca (v1, v2), δ4 (v1, v2), c (v1), |v1| mod 2, |v2| mod 2 and the information whether |v1| < |v2|, in the case of

P4-extendible graphs.

Proof. For cographs, the claim is obvious.

P4-sparse graphs: Jamison and Olariu have defined an operation ­ such that any P4-sparse graph can be obtained
from single vertex graphs with the operations +, ∪ and ­. Consider disjoint graphs G1 = (V1,∅) and G2 = (V2, E2)

with V2 = {v} ∪ K ∪ R such that all vertices in K are adjacent to each other, |K | = |V1| + 1 ≥ 2, every vertex in
R is adjacent to all vertices in K and nonadjacent to v, and there exists a vertex v′ in K such that v is either adjacent
only to v′ or adjacent to all vertices in K except for v′. Note, that G1 and G2 are P4-sparse graphs. Choose a bijection
f : V1 → K \

{
v′
}

and define G1­ G2 =
(
V1 ∪ V2, E2 ∪ E ′

)
, where

E ′ =

{
{{v1, f (v1)} |v1 ∈ V1} , if

{
v, v′

}
∈ E2

{{v1, v2} |v1 ∈ V1, v2 ∈ K \ { f (v1)}} , otherwise.

For our purposes, we need to substitute the operation ­ by three operations that help us obtaining the same graphs
as when using ­. Now consider an arbitrary P4-sparse graph G = G1­ G2, where G1 and G2 are as above. Clearly,
G|R and G|V ′ , where V ′ = K ∪ V1 ∪ {v}, are P4-sparse, too, and may thus be obtained by a sequence of ∪, + and
­ operations. We now define the mentioned three operations,↔, = and ~ such that

G = G|V ′ ~ G|R (1)

and G|V ′ is obtained from applying either the operation↔ or the operation = on all the single vertex graphs ({v},∅)
with v ∈ V ′.

In the following, if we use a joining operation on a single vertex v, then we mean that the joining operation is on the
single vertex graph consisting only of v. Consider two disjoint vertex sets V = {v1, . . . , vk} and U = {u1, . . . , uk}

with k ≥ 2. Then ↔ (v1, u1, . . . , vk, uk) yields the graph G(V ∪ U, E↔), where E↔ contains the edges {vi , ui }

and {vi , v j } for 1 ≤ i, j ≤ k and i 6= j . The operation = (v1, u1, . . . , vk, uk) yields the graph G(V ∪ U, E=),
where E= contains the edges {vi , u j } and {vi , v j } for 1 ≤ i, j ≤ k and i 6= j . Now consider a graph G ′ = (V ′, E ′),
V ′ = V ∪ U , obtained by one of the operations↔ or = on (v1, u1, . . . , vk, uk) and let G∗ = (V ∗, E∗) be another
arbitrary P4-sparse graph. The operation ~ is defined as:

G ′ ~ G∗ :=
(
V ∪U ∪ V ∗, E ′ ∪ E∗ ∪

{{
v, v∗

}
| v ∈ V, v∗ ∈ V ∗

})
.

It is easy to see that (1) is in fact true. An example of a P4-sparse graph obtained by these operations is given in Fig. 4.
Now consider a P4-sparse graph G and the corresponding tree representation T (G), where the inner nodes are

labeled with the operations in Ω = {∪,+,=,↔,~}. Let v1, v2 be two vertices of G and let p = lca(v1, v2). If p is
labeled with + or ∪, then the adjacency of v1 and v2 is already uniquely determined. Hence, assume that p is labeled
with one of the operations in {=,↔,~}. Recall that we choose the labels of the vertices in such a way that a preorder
traversal of T (G) traverses the leafs v in an order with an increasing number |v|.

If p is labeled↔ or =, then clearly c(v) is odd if and only if v is in V (if the operation↔ or = is carried out as
described above on vertices from V and U ). Hence, two vertices v1, v2, |v1| < |v2|, which are both children of a node
p labeled with↔ in T (G) are adjacent if and only if either |v2| − |v1| = 1 and c(v1) is odd or if c(v1) and c(v2) are
odd. On the other hand if p is labeled with =, then v1 and v2 are adjacent if either |v2| − |v1| 6= 1 and c(v1) is odd
or if c(v2) is odd. Now assume that p = lca(v1, v2) is a node labeled with ~. Then the left child of p is labeled with
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= or↔ and using the assumption |v1| < |v2| we know that v1 is a child of the left child of p. Hence, v1 and v2 are
adjacent if and only if v1 is in V , i.e. if c(v1) is odd.

To conclude, assuming |v1| < |v2|, it suffices to determine lca(v1, v2), δ1(v1, v2) as well as c(v1) mod 2 and in
the case that p is not labeled with ~ also c(v2) mod 2. But note that if we know p = lca(v1, v2) and p is labeled
with either↔, = or ~, then the parent of v1 is uniquely determined. Furthermore, if p is labeled with↔ or ~ also
the parent of v2 is uniquely determined. And if the parent of a vertex v is uniquely determined then c(v) mod 2 is
uniquely determined by |v| mod 2 (it is either |v| mod 2 or (|v|+1) mod 2, depending on whether the first child of the
parent has an odd or an even vertex coding). Thus, the adjacency of v1 and v2 is uniquely determined by lca(v1, v2),
δ1(v1, v2), |v1| mod 2, |v2| mod 2 and the information whether |v1| < |v2|.

P4-extendible graphs: Similar to P4-sparse graphs Jamison and Olariu defined additional operations sufficient to
construct P4-extendible graphs. Jamison and Olariu defined an operation named ­ in [11] which can lead to eight
different graphs (this ­-operation is different from the ­-operation for P4-sparse graphs). We substitute this operation
with eight operations, each of them joining the single vertex graphs with vertices in V = {a, b, c, d, e} to one of the
eight possible graphs obtained by the ­-operation. Let

us1
( (a, b, c, d) = ({a, b, c, d} , {{a, b} , {b, d} , {c, d}}) ,
us2
( (a, b, c, d, e) = (V, {{a, b} , {a, c} , {c, d} , {a, e} , {d, e}}) ,
us3
( (a, b, c, d, e) = (V, {{a, b} , {a, c} , {c, d} , {a, e} , {c, e} , {d, e}}) ,
us4
( (a, b, c, d, e) = (V, {{a, b} , {b, d} , {c, d} , {d, e}}) ,
us5
( (a, b, c, d, e) = (V, {{a, b} , {b, d} , {c, d} , {c, e} , {d, e}}) ,
us1
( (a, b, c, d, e) = (V, {{a, b} , {b, c} , {c, d} , {a, e} , {c, e} , {d, e}}) ,
us2
( (a, b, c, d, e) = (V, {{a, b} , {b, c} , {c, d} , {d, e}}) ,
us3
( (a, b, c, d, e) = (V, {{a, b} , {b, c} , {c, d} , {a, e} , {d, e}}) .

In addition to their ­-operation they also defined an operation, which we denote as wing-addition: Consider a graph

G1 = (V1, E1) which is one of the five graphs obtained by one of the
us
( operations and an arbitrary disjoint P4-

extendible graph G2 = (V2, E2). The wing addition g is defined as G1 g G2 := (V1 ∪ V2, E1 ∪ E2 ∪ E ′), where

E ′ := {{v1, v2} | v1 ∈ V1 is inner node of an induced P4, v2 ∈ V2}.

Now consider a P4-extendible graph G with a tree representation T (G) where each joining operation is either ∪,

+, g or one of the
us
( or

us
( operations. Let v1, v2 be two vertices of G and p = lca(v1, v2). If p is labeled with ∪ or

+, then the adjacency of v1 and v2 is clear. Now assume that the label of p is one of the
us
( or

us
( operations. Then

obviously, the adjacency is uniquely determined by c(v1) and c(v2) which is uniquely determined by δ4(v1, v2) and
the relation (< or ≥) between |v1| and |v2|. Finally consider the case that the label of p is g and assume w.l.o.g. that

|v1| < |v2|. Then v1 is a child of a vertex labeled with an
us
( operation. Hence, v1 and v2 are adjacent if and only if

v1 is an inner node. But due to the ordering of the children of such a vertex it is easy to see that v1 is an inner node if
and only if c(v1) mod 2 = 1 in the case that there are three inner vertices and c(v1) mod 2 = 0 in the case that there
are two inner vertices. But since we know the parent of v1, c(v1) mod 2 can be determined by |v1| mod 2. Hence, the
adjacency of v1 and v2 is uniquely determined by p, |v1| mod 2, |v2| mod 2 and the information whether |v1| < |v2|

in the case that p is labeled with g. �

Any OBDD can be viewed as a non-uniform algorithm which queries all variables of a function in an order
determined by the variable ordering, and then outputs the function value. The state space of the algorithm after each
variable query corresponds to the set of nodes in the OBDD labeled with the variable to be queried next. Hence, in
order to upper bound the OBDD size for a graph we can devise a corresponding algorithm which decides adjacency
with a small state space. The previous lemma shows that for cographs such an algorithm merely needs to compute the
lca of two leaves in the tree representation of that cograph.
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The following algorithm determines the lowest common ancestor (lca) of two leaves in a tree representation. The
idea of the algorithm is to search the lowest common ancestor starting from the leaf corresponding to v1 and ascending
successively while reading the vertex coding of v2.

Algorithm 1. The algorithm is defined for a fixed tree T with N leaves labeled with values from {0, 1}n , n = dlog Ne,
in such a way that if v0, . . . , vN−1 are the leaves found in a preorder traversal then |vi | = i . Note, that we do not need
such a labeling for the inner nodes. We only need to store them in such a way, that they are uniquely identifiable. The
inputs of the algorithm are x, y ∈ {0, 1}n and the output is the lca of x and y if x and y are both leaves in the tree.
If either x or y is not a leaf of T , then the output is −∞. The algorithm queries all input variables once in the order
xn−1, . . . , x0, yn−1, . . . , y0 and after each query two values b and c are stored. The value of c is one of the relations
“<”, “>” or “=” and b is a node in T .

We describe two invariants which are true after each step of the algorithm unless the algorithm terminated.
Consider a situation in which all variables up to yi , 0 ≤ i ≤ n − 1, have been queried and the algorithm has not
terminated. The first invariant is that c is the relation between |xn−1 . . . xi | and |yn−1 . . . yi | (e.g., if c = “ < ”, then
|xn−1 . . . xi | < |yn−1 . . . yi |). Now assume c = “<” and let y0

i be the leaf yn−1 . . . yi 0 . . . 0. The second invariant is
that b = lca(x, y0

i ) and y1
i = yn−1 . . . yi 1 . . . 1 is not in the subtree rooted at b. For the case c = “>”, the invariant is

analogous, but the roles of y0
i and y1

i are exchanged. In the case c = “=”, we have b = x .
Note that if these invariants are true, then by knowing c and b, the value of yn−1 . . . yi is uniquely determined. For

c = “=” this is obvious. For c = “<”, this follows from the enumeration of the leaves: In the subtree rooted at the
right child of b, there can only be one leaf an−1 . . . ai 0 . . . 0 such that an−1 . . . ai 1 . . . 1 is not in this subtree. The case
c = “>” is analogous. Hence, it suffices to describe an algorithm for which these invariants remain true after each
query of a y-variable and which – under the assumption that the invariants remain true – outputs the correct result.

Step 1: Store “=” in c. Query all x-variables and let b = x . If x is not a leaf, output−∞. Clearly, the invariants remain
true after this step unless the algorithm terminates.

Step 2: Query the next y-variable, say yi . Since the invariants were true before querying yi , by knowing b and c we
now know yn−1 . . . yi . If c = “=” and yi = bi , we can proceed with querying the next variable because the invariants
remain true. Hence, we continue with Step 1, again. If c = “=” and yi 6= bi , then we have found the most significant
bit in which x and y differ. We can change the value of c to “<” or “>” such that it reflects the relation between
|xn−1 . . . xi | and |yn−1 . . . yi |.

Once we reach this point it holds c 6= “=”. Let b′ be lca(b, y0
i ) (= lca(x, y0

i )) in the case c = “<” and
b′ = lca(b, y1

i ) (= lca(x, y1
i )) in the case c = “>”. Since we know yn−1 . . . yi and b, b′ is uniquely determined,

if it exists. However, it may happen that such a b′ does not exist. In this case y cannot be a leaf of the tree and thus we
output −∞.

Assume that c = “<” (the case c = “>” is analogous with the roles of y1
i and y0

i exchanged). If the leaf y1
i is not

in the subtree rooted at b′, then we replace b with b′. Clearly, the invariants are now true again and we proceed with
the next y-variable by going to Step 1. If on the other hand, y1

i is in the subtree rooted at b′, then obviously all leaves
yn−1 . . . yi ai−1 . . . a0 for ai−1 . . . a0 ∈ {0, 1}i are in this subtree. Hence, b′ is the lca of x and y and we output b′.

Note that after querying the last y-variable, the algorithm terminates in Step 1, because either an appropriate b′ is
not found (and the algorithm outputs −∞) or the found b′ is in fact the lca of x and y.

In the following we consider π -OBDDs with more than two possible output values. Such an OBDD has for each
possible output z a sink marked with z. The semantics is defined analogously to that of binary OBDDs: For an input
a = (a1, . . . , an) ∈ {0, 1}n , the function value f (a) of the function f represented by the OBDD equals z if and only
if the computation path of a reaches the sink labeled z.

Algorithm 1 in fact defines such a π -OBDD, where (π(1), . . . , π(2n)) = (xn−1, . . . , x0, yn−1, . . . , y0): In the i th
step the variable π(i) is queried and after the query the algorithm stores a state value qi which depends only on the
previous stored state value and the result of the variable query. Each possible stored state value qi of the algorithm
corresponds to a node labeled with the variable π(i + 1) and thus the sum of the number of possible state values qi
over all 0 ≤ i ≤ 2n is the number of OBDD nodes (q0 is the unique starting state corresponding to the root of the
OBDD and the two possible final state values q2n ∈ {0, 1} corresponding to the sinks of the OBDD). It is obvious how
to construct the π -OBDD corresponding to such an algorithm. The following lemma bounds the number of possible
states between which the algorithm has to distinguish and thus the OBDD size.
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Lemma 6. Let T be a tree as in Algorithm 1 and let π be the variable ordering with (π(1), . . . , π(2n)) =
(xn−1, . . . , x0, yn−1, . . . , y0). There is a π -OBDD computing for x, y ∈ {0, 1}n the lca of x and y, if it exists,
and −∞, otherwise. The OBDD has at most 2N − 2 x-nodes and at most 3Ndlog Ne − 2N y-nodes.

Proof. For Step 1 it suffices to store xn−1 . . . xi when these variables have been queried. Moreover, if it turns out that
|xn−1 . . . xi 0 . . . 0| is at least N , the algorithm can output −∞. Hence, it is easy to see that the π -OBDD has at most
as many nodes as a complete binary tree in the first n levels and that the (n + 1)th level has at most N nodes. Hence,
there are at most 2n

− 1 < 2N − 1 x-nodes and at most N yn−1-nodes.
Now consider Step 2. As long as b is a leaf, the value of c is “=” and once b is not a leaf anymore, the

value of c is either “<” or “>”. Hence, by knowing c, we can conclude on whether b is a leaf or not. Since
there are N leaves and at most N − 1 inner nodes, 3N states suffice for storing c and b. Therefore, there are at
most 3N yi -nodes for 0 ≤ i < n − 1. To conclude, the total number of y-nodes of the OBDD is bounded by
N + (n − 1) · 3N = 3N · dlog Ne − 2N . �

Now assume that we want to devise an OBDD for a cograph G = (V, E) with N vertices. We use the tree
representation T (G), where each inner node is either labeled with + or ∪. We label each leaf of T (G) corresponding
to a vertex v with v. Recall that in order to be able to apply Lemma 6, we have to label the vertices in such a way
that if in a preorder traversal of the tree T (G) the leaves appear in the order v0, . . . , vN−1, then |vi | = i , where
V = {v0, . . . , vN−1}. Now the above lemma yields an OBDD computing the lca of the corresponding leaves of two
vertices v1, v2 in V . We join all sinks labeled with + of this OBDD together to the 1-sink, and all sinks labeled ∪ as
well as the sink labeled with −∞ together to the 0-sink. This way we obtain an OBDD for χE . This already shows
that the OBDD size of cographs is in fact at most 3Ndlog Ne (we have to add a value of 2 for the two sinks to the total
number of inner nodes obtained in Lemma 6).

Theorem 7. The OBDD size of cographs is at most 3Ndlog Ne.

In order to obtain OBDDs for P4-sparse and P4-extendible graphs, our Algorithm 1 has to be modified in such
a way that it computes in addition to the lca of two leaves the other information which is needed in order to decide
adjacency between the vertices v1 and v2, as described in Lemma 5.

Let x = xn−1 . . . x0 = v1 and y = yn−1 . . . y0 = v2. First note that in order to obtain the information, whether
|v1| < |v2|, no additional OBDD nodes are necessary, because in our analysis of Algorithm 1 we have already taken
into account the variable c, which stores this information once the algorithm terminates. The values |v1| mod 2 = x0
and |v2| mod 2 = y0 can also be obtained very easily: Once our algorithm has queried x0, it stores its value until it
terminates. Since y0 is the variable queried last, there is nothing to be stored. However, we have to take care that if the
algorithm terminates before all variables have been queried, variable y0 must now be tested additionally. To conclude,
if we have an OBDD computing lca (v1, v2), then by first doubling the number of y-nodes and then inserting at most
two y0-nodes, we obtain an OBDD which additionally computes |v1| mod 2 and |v2| mod 2. Hence, such an OBDD
has at most 2N +O(1) x-nodes and 6Ndlog Ne − 4N +O(1) y-nodes.

The additional computation of c(v1) is also very easy, because right after Step 1, x is known completely. Hence, we
can store c(v1) from there on. This increases the number of y-nodes by a factor of cmax, where cmax is the maximum
number of leaves a node in T (G) may have as children. Note that cmax = 5 in the case of P4-extendible graphs, but
for P4-sparse graph it may be as large as N .

It is a little bit more complicated to compute δd(v1, v2). Recall that δd(v1, v2) = ||x | − |y|| if this value is at most
d and is 0 otherwise. Let ` = dlog(d + 1)e. Consider the situation in which in Step 2 of Algorithm 1 for the first
time a variable yi 6= bi is found (if this does not occur then δd(v1, v2) = 0). At this time, we still have b = x and
thus x = xn−1 . . . x0 is completely known. Assume first that yi > xi (i.e. yi = 1 and xi = 0). Then δd(v1, v2) 6= 0
only, if xi−1 = · · · = x` = 1 and yi−1 = · · · = y` = 0. If this is the case, then |y| − |x | is uniquely determined
by the least significant ` bits of x and y. Hence, the algorithm checks the corresponding x j -variables, ` ≤ j < i ,
as well as the y-variables once they are queried; if they are not all 1 or all 0, respectively, then it stores “δd = 0”.
Additionally, it stores x`−1 . . . x0 during its execution as well as y`−1 . . . y1, once they have been queried. The other
case, yi < xi works analogously, because then δd(v1, v2) 6= 0 only if xi−1 = · · · = x` = 0 and yi−1 = · · · = y` = 1.
Note that in order to distinguish between these two cases, no additional storage is necessary, because the relation of
xi and yi is uniquely determined by c, the relation between |x | and |y|. Hence, it suffices to store additionally 2` + 1
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Fig. 5. Example of an unit interval graph and its interval representation.

possible states (one for the case “δd = 0”) during the phase in which y j -variables with j ≥ ` − 1 are queried and
additionally 22`

+ 1 possible states in the remainder of the algorithm. This means that the number of y j -nodes in an
OBDD computing the lca has to be multiplied by a factor of at most 2` + 1 for j ≥ ` − 1 and by a factor of at most
22`
+ 1 for j < ` − 1. But since it is well known that a minimal OBDD has on the last k levels, k a constant, only a

constant number of nodes, it suffices to multiply the number of y-nodes by 2dlog(d+1)e
+ 1 and add an O(1) term on

top of that.
Applying these modifications on the OBDD obtained in Lemma 6 directly yields OBDDs for P4-sparse graphs and

for P4-extendible graphs that are larger only by a constant factor.

Theorem 8. The OBDD size of P4-sparse graphs and P4-extendible graphs is bounded by O(N log N ).

We contrast the above results by a lower bound for cographs, which also applies to its superclasses of P4-reducible,
P4-extendible and P4-sparse graphs. This result shows that our upper bounds are optimal up to a factor of O(log2 N ).

Theorem 9. The worst-case OBDD size of cographs is at least 1.832 · N/ log N −O(1).

Proof. As cographs can be constructed from single vertex graphs by consecutive application of join and union
operations, their number is equal to the number of two-terminal series-parallel networks. We use an asymptotic
formula for this number by Finch [7]. It says that the number of graphs in the class of cographs C satisfies

NC (N ) ∼ λκN N−
3
2 for the constants λ = 0.4127 . . . and κ = 3.5608 . . . . As κN

= 2N ·1.8322..., we gain the
result directly from Corollary 4. �

4. Interval graphs

An interval graph is defined by a set of closed intervals I ⊆ R2, each of them corresponding to a vertex in the
graph. Two vertices are adjacent if and only if the corresponding two intervals intersect.

4.1. Unit interval graphs

We first analyse unit interval graphs, i.e. interval graphs where the underlying intervals have unit length (see Fig. 5
for an example).

Therefore, we can identify the intervals with just the left endpoint. We assume w.l.o.g. that no two intervals have
the same endpoints and label the vertices in such a way that if the interval represented by a vertex v1 starts further left
than the interval represented by a vertex v2, then |v1| < |v2|.

In order to proof an upper bound we use the characterization of minimal OBDDs due to Sieling and Wegener [21].
We say that a function essentially depends on a variable xi , if the substitution xi = 0 leads to a different subfunction
than the substitution xi = 1.

Theorem 10 ([21]). Let Xn = {x1, . . . , xn} and let f ∈ Bn be a function depending on xi , 1 ≤ i ≤ n, and π be
a variable ordering on Xn . Further, let Si , 1 ≤ i ≤ n, be the set of non-constant subfunctions of f resulting from
setting all variables π( j), j < i to constants, restricted to those, that essentially depend on π(i). Then the minimal
π -OBDD for f has |Si | nodes labeled with the variable π(i).

Let G = (V, E) be a unit interval graph labeled as described above. For x ∈ {0, 1}n let the interval corresponding
to the vertex x be denoted by I (x) = [a, a + 1], where a ∈ R. Recall that the vertices are labeled in such a way that
for |x | < |y| the starting point of the interval I (x) is less than the starting point of I (y).

Let π be the variable ordering where (π(1), . . . , π(2n)) = (xn−1, yn−1, . . . , x0, y0). Further, let f = χE and sk,`,
1 ≤ k ≤ n with ` ∈ {k−1, k}, be the number of non-constant subfunctions f|α,β of f , where α is an assignment to the
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variables xn−1, . . . , xn−k and β is an assignment to the variables yn−1, . . . , yn−`. Additionally, we set s0,0 := 1. Then,
for 0 ≤ k < n, sk,k is an upper bound on the number of xn−k−1-nodes and sk+1,k is an upper bound on the number of
yn−k−1-nodes as stated in Section 1.2. For the sake of simplicity we assume k = ` using the simple observation that
sk+1,k is at most 2sk,k and denote sk,k by sk .

The following upper bound, which we will use if k is large, is true for all Boolean functions. Since there are 22m

Boolean functions in m variables, we have

sk ≤ 222n−2k
. (2)

If k is small, we need a better bound. Therefore, we derive an upper bound for the number of non-constant
subfunctions f|α,β , where α and β are assignments to the variables xn−1 . . . xn−k and yn−1 . . . yn−k , respectively,
and |α| ≤ |β|. Then sk is at most twice the result. Let (α1, β1), . . . , (αp, βp) be all different pairs of assignments
to the variables xn−1 . . . xn−k and yn−1 . . . yn−k such that |αi | ≤ |βi | and f|αi ,βi is not constant for all 1 ≤ i ≤ p.
Furthermore, assume that (|α1|, |β1|) , . . . , (|αp|, |βp|) are ordered lexicographically. We prove below that

∀ 1 ≤ i ≤ p : |βi | ≤ |βi+1|. (3)

Then, using the fact that (|α1|, |β1|), . . . , (|αp|, |βp|) are ordered lexicographically, it is easy to see that the number of
these pairs, p, is bounded by |αp|+ |βp|+1. Hence, we obtain p ≤ 2k+1

−1 and thus sk ≤ 2k+2
−2. Using the upper

bound of (2) it follows that sk ≤ min{2k+2
− 2, 222n−2k

}. Summing over all 0 ≤ k < n and applying Theorem 10
yields the following upper bound for the OBDD size of the unit interval graph G:

n−1∑
k=0

(sk + 2sk)+ 2 ≤ 3
n−b(log n)/2c∑

k=0

2k+2
+ 3

n−1∑
k=n−b(log n)/2c+1

222n−2k
= O(N/

√
log N ).

This leads to the following result.

Theorem 11. The OBDD size of unit interval graphs with N vertices is bounded above by O(N/
√

log N ).

Proof. It remains to prove claim (3). If |αi | = |αi+1|, this follows right away from the lexicographical ordering of the
pairs (|α j |, |β j |). Hence, assume |αi | < |αi+1|. If (3) is not true, i.e. |βi+1| < |βi |, then we have

|αi | < |αi+1| ≤ |βi+1| < |βi |

(recall that we only count the pairs (α j , β j ) where |α j | ≤ |β j |). Since f|αi ,βi is not the constant 0-function, there
is an assignment c to the remaining x-variables xn−k−1, . . . , x0 and an assignment d to the remaining y-variables
yn−k−1, . . . , y0 such that f|αi ,βi (c, d) = 1. Hence, χE (αi c, βi d) = 1 and thus the intervals I (αi c) and I (βi d)
intersect. Now consider additional arbitrary assignments c′ to the remaining x-variables and d ′ to the remaining y-
variables. Obviously, then |αi c| < |αi+1c′| < |βi d| and |αi c| < |βi+1d ′| < |βi d|. Hence, the intervals I (αi+1c′) and
I (βi+1d ′) are neither right of I (βi d) nor left of I (αi c). But since the latter intervals intersect, obviously I (αi+1c′)
and I (βi+1d ′) intersect, too. Because this is true for all c′ and d ′ we obtain that f|αi+1,βi+1 = 1, which contradicts the
assumption that this subfunction is not constant. This completes the proof of (3). �

4.2. General interval graphs

We now consider the more general class of arbitrary interval graphs. Here, we have to care about both start and end
points of the intervals and the upper bound technique for unit interval graphs does not work anymore. However, using
a similar idea yields the upper bound stated in the following theorem.

Theorem 12. Interval graphs with N vertices have OBDDs of size O(N 3/2/ log3/4 N ).

Proof. We can assume w.l.o.g. that no two intervals have the same endpoints. It is clear that we can label the vertices
for our representation in such a way, that the most significant different bit of v1 and v2 for two vertices v1, v2 indicates
the relation of the start points of the intervals representing v1 and v2, if the index of the most significant different bit is
odd, and the relation of the end points otherwise (the value 0 for this bit should indicate that start and end point are to
the left of the start and end point of the other interval, respectively). We just have to separate the vertices iteratively in
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Fig. 6. Example of an interval graph and its labeled interval representation.

two halves alternately distinguishing between start points and end points to attain such a labeling. It is clear, that we
can label our vertices in such a way, that V = {[0]n , . . . , [N − 1]n} where N is the number of vertices of the graph
that is to be represented and n is dlog Ne (see Fig. 6 for an example).

Let G = (V, E) be an interval graph labeled as described above. For x ∈ {0, 1}n let the interval corresponding to
the vertex x be denoted by I (x) = [a, b], where a, b ∈ R.

Let π be the variable ordering where (π(1), . . . , π(2n)) = (xn−1, yn−1, . . . , x0, y0). Further, let f := χE and let
sk be defined as in the proof of Theorem 11.

For large k we also need the upper bound (2): sk ≤ 222n−2k
. If k is small we devise an upper bound for the number

of non-constant subfunctions f|α,β with |α| ≤ |β|. Then sk is at most twice the result. Let αe denote the substring
of α which consists only of the bits with even index in α. Similarly, αo is the substring of α consisting of the bits
with odd index. We define βe and βo analogously. Further, let (βo
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p) be all different

quadruples of assignments to the variables xn−1 . . . xn−k and yn−1 . . . yn−k such that |αi | ≤ |βi | and f|αi ,βi is not
constant for all 1 ≤ i ≤ p. Furthermore, assume that (|βo

1 |, |α
e
1|, |α

o
1 |, |β

e
1 |), . . . , (|β

o
p|, |α

e
p|, |α

o
p|, |β

e
p|) are ordered

lexicographically. We prove below that

∀ 1 ≤ i < j ≤ p :
((
|αo

i | = |α
o
j |

)
∧

(
|βe

i | = |β
e
j |

))
⇒

(
|αe

i | ≤ |α
e
j |

)
. (4)

Then, using the fact that (|βo
1 |, |α

e
1|, |α

o
1 |, |β

e
1 |), . . . , (|β

o
p|, |α

e
p|, |α

o
p|, |β

e
p|) are ordered lexicographically, it is easy

to see that the number of these pairs, p, is bounded by (|αe
p| + |β

o
p| + 1)(|αo

p| + 1)(|βe
p| + 1). Hence, we obtain

p ≤ 3
2

√
2 · 2

3
2 k
− 2k and thus sk ≤ 3

√
2 · 2

3
2 k
− 2k+1. Using the upper bound of (2) it follows that

sk ≤ min{3
√

2 · 2
3
2 k
− 2k+1, 222n−2k

}.

Summing over all 0 ≤ k < n and applying Theorem 10 yields the following upper bound for the OBDD size of the
interval graph G:

3
n−1∑
k=0

sk + 2 ≤ 3

n−
⌊

2 log n−1
4

⌋∑
k=0

(
3
√

2 · 2
3
2 k
− 2k+1

)
+ 3

n−1∑
k=n−

⌊
2 log n−1

4

⌋
+1

222n−2k

≤ 16 · 2
3
2 n− 3

4 log n
− 10 · 2n− 1

2 log n
+

(
3
2

log n −
3
4

)
· 22−2,5n

+ 2

= O(N
3
2 /(log N )

3
4 ).

It remains to prove the claim (4). If |βo
i | = |β

o
j |, this follows right away from the lexicographical ordering of

the quadruples
(
|βo

k |, |α
e
k |, |α

o
k |, |β

e
k |
)
. Hence, assume |βo

i | < |β
o
j |. We assume that (4) is not true, i.e. |αe

i | > |α
e
j |,

|αo
i | = |α

o
j | and |βe

i | = |β
e
j |. Since f|αi ,βi is not the constant 1-function, there is an assignment c to the remaining x-

variables xn−k−1, . . . , x0 and an assignment d to the remaining y-variables yn−k−1, . . . , y0 such that f|αi ,βi (c, d) = 0.
Since the graph is undirected, we have f (x, y) = f (y, x) for all x and y and thus we may assume w.l.o.g. that |c| < |d|
in the case that |αi | = |βi |. We obtain χE (αi c, βi d) = 0 and thus the intervals I (αi c) and I (βi d) do not intersect
and I (αi c) is left of I (βi d) (recall that we assumed |αi | ≤ |βi | and have |c| < |d| if |αi | = |βi |). Now consider
additional arbitrary assignments c′ to the remaining x-variables and d ′ to the remaining y-variables. Obviously, then
|βo

i c| < |βo
j c′| and |αe

i d| > |αe
j d
′
| and as |αo

i | = |α
o
j | and |βe

i | = |β
e
j |, the interval I (α j d ′) ends earlier than I (αi d)

and I (β j c′) starts later than I (βi c). But since I (αi d) and I (βi c) do not intersect, obviously I (α j c′) and I (β j d ′) do
not intersect either. Because this is true for all c′ and d ′ we obtain that f|α j ,β j = 0, which contradicts the assumption
that this subfunction is not constant. This completes the proof of (4). �
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4.3. Lower bounds

We finally state a lower bound for unit interval graphs and general interval graphs obtained by counting arguments.

Theorem 13. For all ε > 0, the worst-case OBDD size of unit interval graphs with N vertices is at least
(2−ε)N/ log N−O(1) and the worst-case OBDD size of interval graphs with N vertices is at least (1−ε)N−O(1).

Proof. Finch [6] provided asymptotic formula for the size of the class of unit interval graphs U , NU (N ) ∼
1

8eκ
√
π

4N

N
3
2

,

and Gavoille and Paul [8] obtained asymptotic formula for the size of the class of general interval graphs I : NI (N ) ≥
2N log N−O(N ). The lower bounds follow directly from Corollary 4. �

5. Bipartite graphs

The goal of this section is to show for some specific graph class that graph representation is not necessarily more
space efficient with OBDDs than with adjacency matrices.

Theorem 14. For all ε > 0, the worst-case OBDD size of bipartite graphs with N vertices is at least ( 1
8 −

ε)N 2/ log N −O(1).

Proof. To apply counting arguments, we consider the class of labeled 2-coloured graphs, where different colourings
of 2-colourable (bipartite) graphs lead to different graphs. The asymptotic relation between the size of the class
of labeled 2-coloured graphs C` and the class of labeled 2-colourable graphs B` has been proven by Prömel and
Steger in [16] to be as follows: limN→∞ NC` (N ) /NB`

(N ) = 2. Therefore, a random bipartite graphs has almost
surely only one 2-colouring (and the inverse 2-colouring). Asymptotics for the number of labeled 2-coloured graphs

were given by Wright [24,17] as NC` (N ) ∼ κ2
N2
4 2N

√(
2

N ln 2

)
where κ = 1 ± 0.0000013097 . . . is a constant.

According to Prömel [15] the relation between the number of labeled and unlabeled bipartite graphs is bounded by
N !. Combining all these results leads to the following relation for the size of the class of unlabeled bipartite graphs

B : limN→∞ 2(N !)NB (N ) /2
N2
4 2N

√(
2

N ln 2

)
≤ 1. The lower bound now follows directly from Corollary 4. �

The disadvantage of proving lower bounds with counting arguments is that they only show the existence of graphs
which are hard to represent. However, such graphs might for large N never appear in applications because e.g. they
are not computable in polynomial time. A statement showing how to construct such a graph or at least telling us that
such a graph is computable in polynomial time has much more relevance. In order to achieve such results, we show
how any Boolean function can be represented by a bipartite graph. This way, we can conclude from known lower
bounds for the OBDD size of Boolean functions on lower bounds for the OBDD size of the corresponding bipartite
graphs.

Definition 15. Let f ∈ Bn , n even, be a Boolean function. The bipartite graph G f = (V1 ∪ V2, E) is given by

V1 :=

{
v1 ∈ {0, 1}

n
2+1
| |v1| < 2

n
2

}
V2 :=

{
v2 ∈ {0, 1}

n
2+1
| 2

n
2 ≤ |v2| < 2

n
2+1

}
E :=

{
{v1, v2} | v1 ∈ V1, v2 ∈ V2, f

(
[|v1|] n

2

[
|v2| − 2

n
2

]
n
2

)
= 1

}
.

Fig. 7 shows an example of a bipartite graph for a function.

Theorem 16. For each function f ∈ Bn there is a bipartite graph G f = (V, E) such that the OBDD size of χE is
not smaller than the OBDD size of f .
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Fig. 7. Example of a bipartite graph for f = x1x3 ∨ x1x2x3 ∨ x1x4.

Proof. Let us assume that an OBDD B with smaller size exists for χE . Let {x0, . . . , x n
2
, y0, . . . , y n

2
} be the set of

variables of χE , then

f
(

x1, . . . , x n
2
, y1, . . . , y n

2

)
= χE

(
0, x1, . . . , x n

2
, 1, y1, . . . , y n

2

)
follows from Definition 15. We therefore can construct an OBDD for f from B by redirecting all edges leading to
a node labeled with x0 or y0 to the appropriate 0-successor or 1-successor of this node, respectively. We represent f
with this OBDD of smaller size, which is a contradiction. �

Andreev, Baskakov, Clementi and Rolim [1] presented a Boolean function which is computable in polynomial time
and has an OBDD size of 2n−O(log2 n). According to the knowledge of the authors this is the best known lower bound
for the OBDD size of a function in P .

Corollary 17. There is a bipartite graph G f , f ∈ B2k , with N = 2k+1 vertices which is computable in polynomial
time and for which the OBDD size of χE is at least N 2/(log N )O(log log N ).
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