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1. INTRODUCTION 

This paper is concerned with a problem on control theory of hyperbolic 
differential equations as proposed by Russell in a paper [I] where he solves a 
related problem. Russell considers the equation: 

(1.1) 

where y  belongs to L2[0, 11, r is continuous on the interval [0, Z] and the function 
f is an admissible control on the interval [0, T] where T (: co, provided f is an 

element of L2[0, T]. 
He assumes that U(X, t) obeys the boundary conditions 

a,ff(O, t) + 6, g (0, t) = a,u(Z, t) + 6, g (I, t) = 0, (1.2) 

where a, , b, , a, , b, are constants with 

0 # uo2 + bo2; al2 + 612 f  0. 

The state space, I, consists of all pairs of functions U,,(N), Z+,(X) with d2u,(x)/A2 
and &,(x)/dx in L”[O, 11, the boundary condition corresponding to (1.2) is 
satisfies by U(X), and the initial condition: 

24(x, 0) = ffo(x), g (x, 0) = q&r). (1.3) 

He defines a system as (l.l), (1.2) t o b e controllable in a fixed time T > 0 if, 
for each initial conditions in I, there exists an admissible control on [O, TJ such 
that the solutions of (1. l), (1.2), (1.3) further satisfy 

u(x, T) = 0, $x, T) = 0, x E [O, Z]. (1.4) 
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This control problem is reduced to a moment problem, and using results of 
the theory of nonharmonic series he arrives at the following facts: 

(I) If T < 21 the system (1. I), (1.2) is not controllable in time T. 

(II) If T > 21 the system (1.1) (1.2) is controllable in time T, and for 
each set of initial conditions in I the problem has infinitely many solutions 
fEP[O, T]. 

(III) If T = 21 then 

(i) When b, = b, = 0 the system (1.6) is controllable in time T = 21 
and for each set of initial conditions in I the solution set for the problem is of 
the form!(f) + E, wheref(t) is a certain specified solution of the problem and E 
is a fixed (for all initial conditions in I) one-dimensional subspace of L,[O, 211. 

(ii) When exactly one of the numbers b, , hi is different from zero, 
the system (1.1) is controllable in time T = 21 and for each initial condition in I 
the problem has a unique solution. 

(iii) When neither of the numbers b, , b, is equal to zero, the system (1.1) 
:is not controllable in time T = 21 but becomes controllable if we replace 1 by 
a certain f C I whose complement in I is one-dimensional. 

At the end of his paper, Russell proposes the question: What happens for 
T = co ? This motivates the problem which we consider here. The requirement 
T = a must be thought of as the condition (1.4) replaced by: 

(l-5) 

for every x E [0, 11. The limit will be taken in the sense defined below (1.6). 
If I < CO the answer is trivial. (For if we take some T, 21 < T < CO and apply 

Russell’s result II we find a controlf(t) for t E [0, T]. Then extendingf(t) to be 0 
for t > T we answer the question affirmatively with the construction of a 
suitable control.) 

Consequently we are going to consider the case I = co. Then we have to 
replace the conditions (1.2) by: 

and (1.5) by the La-limit as t -+ co. 
In order to solve this controllability problem, we again reduce it to a moment 

problem. .But to solve it we cannot use nonharmonic series method because 
the interval is not finite in our case. Instead we use interpolation in the Hardy 
space H2 of all analytic functions defined on the right half plane and such that 
s?a 1 G(x + ;Y)] u’y is bounded uniformly in N > 0. 
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This way we arrive at a condition on infinite products of the eigenvalues of an 
appropriate boundary value problem. Such a condition is satisfied for example 
if the eigenvalues are An = K(n + o(nS-I)); n = 1, 2,... with 1 < S < 2, 
K a constant which is the case if Y(X) = 9’ for p > 2. To prove the condition 

on the eigenvalues for this case we follow a method used by Fattorini in [2]. 
As a preliminary to our controllability theorem we prove in Section 2 the 
existence and uniqueness of a weak solution of the system (1. I), ( 1.3) (I .6) for 

(x, t) E R+a under the conditions arising in the control problem. 

2. WELL-POSED NATURE OF THE CONTROL PROBLEM 

We shall consider the controllability problem with control input y(x)f(t) 

distributed on 0 < x < co for each t 3 0 as specified by the real hyperbolic 
partial differential equation: 

g - Y(X)24 - g = y(x)f(t). 

We assume: 

(i) Y(X) is continuous on [0, a~); lim,,, T(X) = ar, and 

(ii) y(x) EL~[O, 00) and the controller f(t) E L2 CT L1[O, CD). 

The boundary conditions are: 

a,u(O, t) + 6, g (0, t) = 0 = Li [a&, t) + 6, g (XI t)] 

for constants fzo2 + bs2 # 0, urs + br2 # 0. 
The initial conditions are: 

u(x, 0) = u&v), g (x, 0) = %(X)1 

(2-l) 

(2.2i) 

(2.2ii) 

for real, continuous functions u0 , v  in L2[0, cc) we seek for each such controller D 
f(t) and initial d t a a us(x), ws(x) a response or solution u(x, t) in 0 < x < 00, 
0 < t < 00 satisfying (2.1) in the open quadrant R+2, and also the given con- 
ditions (2.2). 

Since the coefficient y(x)f(t) may not be continuous, the solution u(x, t) is 
only required in the weak sense that u(x, t) E L~,,,(lR+2) and 

j-a j-- 4x, 9 Woz - 64 d - AtI dx dt - 
0 0 

Iorn G4 db 0) dx 

+ j-a uo(4 4th 0) dx = Jrn j-m y(4fW dx 4 (2.3) 
0 0 0 
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where 4(x, t) is an arbitrary real function Com(lR2) with compact support in 
R, x R. 

Let us first note that any classical solution tl(x, 2) E C2(R+2) must satisfy (2.3) 
(this can be easily proved using a standard integration by parts argument) and 
hence it is necessarily a weak solution. 

In order to construct a weak solution we proceed by the method of Fourier 
series and seek first a product solution u = eA”2fv(x) of the homogeneous 
equation 

azu -- 
ax2 Y(X)24 - g = 0. 

This yields the eigenvalue problem: 

c/(x) - Y(X) cp(x) + A&) = 0 on 0 < x < 00, (2.4) 

with boundary data 

Under our assumption (2.li) there exists an increasing sequence of eigenvalues 
{X,} with corresponding eigenfunctions P)~ , K = 1, 2,..., that form an orthonormal 
basis forL2[0, co). (See [3, p. 26, Theorem 2.7(ii)].) Also lim,,, h, = +CO. 

THEOREM 1. Consider the partial differential equation (2.1) with boundary 
and initial data (2.2), as above. In terms of the eigenvalues X, and orthonormal 
eigenfunctions am, k = 1, 2 ,..., for (2.4) consider the Fourier expansions in 

L2[0, aJ> 

Then there exists a unique weak solution u(x, t) in the sense of (2.3). 

Proof. We seek a weak solution u(x, t) as a Fourier series 

q-7 t) = f /L(t) Q%:(x). 
I=1 

The partial differential equation (2.1) indicates that fik(t) should be defined as 
the solution of 

B;(t) + &c/%(t) = -rl;f(t) on O<t<cc (2.5) 
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with 

MO) = PP Y r&‘(O) = Vk 3 (2.6) 

which, for A, > 0, is: 

&(t) = sin(h,)‘,st [& - & (f’s’ cos(A,)““S ds] 

+ c=G,)1~2t [PL + (+ J b’ f (s) sin(A#‘% A] _ (2.7) 

Then for all t 3 0 and each k > k, = min{k j X, > 0). 

where M = min,,,0 A, . Since /lk(t) forms a sequence in 1s we conclude that 

4x* 4 = z hew 9349 

belongs to L~0,(lR+2). It is easily seen that u(x, t) satisfies (2.3). In order to prove 
that U(X, t) is unique let Y,(x) E C,%(R+) with ( Y&x)( < 1 for every X, 
Y&v) = 1 on [0, NJ, and supp ul, C [0, N + 11, let b(t) E Csm( -00, T]. 

For a function 5 let 5, = <*g, , where gc(x) = (l/c) exp(--X2/e) denote the 
mollifier function. 

Set s.k.~(X, t) = WhW ~~(41, . 
If Y(X, t) is a solution of (2.3) 

T  

IS u(x, t) 
0 w+ 

‘+ (x, t) dx dt 

.I- - 
=J J 4x, t) 

0 R+ 
‘w (x, t) dx dt - jar j,+, t) y(x)‘le,r.N (x, t) dx dt 

- j 
08+ 

rlo@) Tlr.k,N(X, 0) dx + j 
Rf 

u,,(x) ‘9 (x, 0) dx 

+ joT jR+ kf(hk,N (~9 t) dx dt. 

Therefore, 
-T . 

$:, &z J ! u(x, t) 
0 R+ 

w (x, t) dx dt 

= joT jR+ 4x, 4 4”(t) ~44 dx dt = joT 44 d”(t) dtt 

where ak(t) = s m+ u(x, t) p)&) di. 
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On the other hand, 

101 

-T 

= ;!_mr F! f  
J s 

& t) 4(t) [-&&k(x) yNtx)], dx dt 
0 R' 

T  a 

=I J 
u(x, t) +(t) [--hkvk(x)] dx dt. 

0 62’ 

Furthermore, 

lim lim 
N-cc f-0 s z’o(X) 7~,k.N(~, 0) dx = 

s 
wotx) d(O) dx) dx = W)Q > 

P+ w+ 

$2 1:; 1 ~064 
Pff 

+ (x, 0) dx = /&‘(O), 

T  
l$nm l$ 

ss r&t) 7,,k,Nb t) dx dt = 
0 iw+ 

I 
oT nftt) 4(t) dt. 

Then taking limits in (2.7) for N + c;o; E + 0 we have: 

Hence LYE is a solution in the weak sense of (2.4) (2.5). Also 0~~ is unique in 

such a class. If  there should be another solution c+O(t) the function Z,(t) = 
ctk(t) - ru,O(t) satisfies 

f  

T  

&(t) [4”(t) + Ak$(t)] dt = 0. (2.10) 
0 

On the other hand, for each 1 belonging to COT we have a solution $ of 4”(t) + 
A,+(t) = t(t) with 4 in Corn then 

f 
T b&(t) c(t) dt = 0 

0 

for every 5 belonging to Corn. Therefore &(t) = 0. Since the problem also has 
a regular classical solution, the regularity of the weak solution ark follows. Then 
U(X, t) = & ak(t) am with c+(t) satisfying (2.4) and (2.5). 
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Remarks. (1) Set k, = min{k; A, > O}. Since for k > k,, 

we have 

,, +, t)r,;ma < * IlflliI~IIi / 11 $11: + II %I /I2 + ? I Bdt)1*. 
k=l 

Thus the mapping 

T: IR’ + L*(R+), 

T: t + ~(0, t) 

is an element of the space La(R+ , L2(R+)). Th e reader can easily verify that in 
fact T maps R, into C(R+, I,*&!+)), since the &‘s are continuous. 

(2) I f  b4w’2yk~ is an element of 12 as it is required in the control 

problem, it follows that 

I h’(t)l < 2 I Yk I l’flll + I Vk I + w’* I Pk I 

for k = k, + 1, k, + 2,... . 
Also 

T: R,. + L2(R+) 

T: t 4 u,(., t) 

is bounded and continuous. 

3. INTERPOLATION PROBLEM AND MAIN RESULT 

From Theorem 1 we have that the solution of (1 .l), (1.3), (1 A) can be written 
as: 

Since 

II 4x9 t)ll*,z = f I B&)l’; 
0 

/I : (xv ‘)1(2,x = c I Bkv)l” 

in order to fulfill conditions (1 S) it must be 

9-2 B&) = 0, ‘,l+z /3;(t) = 0. (3.1) 

It follows from remarks (1) and (2) to Th eorem 1 that they are quivalent. 
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Case Where All the Eigenvahes h, k = 1, 2,... Are Positive 

In this case the solutions pk of (2.4) are as on (2.6), thus conditions (3.1) for 
this case are fulfllled if the following conditions arise for k = 1, 2,... . 

I 
, 3- 

f(s) cos(X,)’ 2s ds = -vI;;yL = a, , 
0 

! ‘,‘ f(s) sin(&)’ ‘2s ds = ~~(&)r’ey, = b, . 

To continue our analysis we must make use of interpolation on Hz and 
therefore we need to impose the condition that the sequences {a,}, {bk} be 
elements of 12. Then the problem is reduced to: FindfEL2[0, co) such that for 
a given sequence {C,) E l2 it is true that: 

where Ck = a, + ib, . 

C, = fa f(S)&)li”~ ds, 
'0 

(3.2) 

The assumption that {ak} and {b,) belong to 1” is satisfied, for example, if 
[Us Y(X)], [vo(x) r(n)], and (d2vo/dx2)(x) belong to L2[0, CO) and lim inf 
l(&.)l'2yl; ! > 0 yr # 0, since in this case: 

with pk E 1”. 
Also in the same way vk = (l/h,) i& , ck E 12. 
We consider the moment problem (3.2). I n order to solve it we will use facts 

on the Hardy space H2 of the half-plane. We recall that because of the Paley- 
Wiener theorem a complex valued function G in the right half-plane belongs to 
the class Hz if and only if G has the form: 

G(w) = Trn g(t)e-“” dt 
'0 

for some function g EL2[0, co). 
Thus if we can find a function G E H’ such that 

G(1 - i(&)‘l”) = C, 

the problem will be solved because in this case: 

(3.3) 

(3.4) 
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and the solution to the control problem will be: f(s) = g(s) e-“, consequently 
f E (P n U)[O, co). 

It is known (see [4, p. 202, Lemma 4]), that if the sequence (~~1, Z~ E D is an 
interpolating sequence (D is the open unit disk in the complex plane), i.e., it 

satisfies the condition: 

> * --., 
_ 

0, k = 1, 2, 3 ,..., 

then for any square-summable sequence {or,) there is a function g in P(D) such 

that: 

(i) llg II: < f (1 - 2 log 6) 1 I ak I’, 
h 

(ii) g(z,)(l - 1 xI; ~2)1je = oLI, , k = 1, 2, 3 ,... . 

By a conformal mapping z = (W - l)/(~ + 1) of the right plane in D, the 
sequence {We} 

WI, = 1 - @,)‘;a, k = 1) 2, 3 (..., (3.6) 

is transformed in 

4h,)‘i” 

=k - 2 _ @,)“2 ’ k = 1) 2, 3 )... , 

and for this sequence the condition (3.5) is: 

&i,)‘~’ - (A#‘2 I 
Cj (4 + ((hp)li2 - (~])1~2)2)li2 2 * > O. 

(3.7) 

(3.8) 

I f  the condition (3.8) is satisfied we denote 01~: 

a. _ CA1 - I Zk I)’ 2 
I, 1 - ZI; 

with the .zL from (3.7). It follows that 1 01~ / = ! C, 1 and then the sequence {elk} 
is square-summable. 

From the above result on interpolation for {zk} and {Q) we have a function 
g E W(D) such that 

g(z,)(l - 1 Zk /p2 = CQ, . 

Let 

h(z) = g(z)(I - z). 
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Then the function G analytic on the right half plane G(w) = h((w - l)/(w + 1)) 
belongs to H2 of the right half-plane and 

G(l - z(X,)‘/~) = h(z,) = C, . 

Case ?Vhere There -&-e Negatizfe Eigemalues 

Since A,:= there are only a finite number of negative eigenvalues. Let k,, = 
max(k; A, < 0). 

For K = 1, I,..., k, the variation of parameters formula yields: 

Ifj is a function such that: 

(3.9i) 

(3.9ii) 

condition (3.1) will follow. 
If the function G in addition to condition (3.4) satisfies the condition: 

That is: 

G(1 + j A, (112) = 2 + h 1 Ak ll:2 = a, + b h’ 
Yk Yk 

(3.10) 

c7T 
g(‘)e-8elArl”as ds = 

s 

mf(s)e’Ak,% ds = ; + z 1 Ak l1’2 (3.10) 
0 

then conditions (3.9) are satisfied since: 

but f belongs to L’[O, co) and therefore the last integral tends to zero when t 
tends to infinity. 

For (3.9ii) let us denote by I(t): 

I(t) = p-lb1 “‘t 
I 
ot f (s)eltd1’2s ds, 

/4tl < llf ‘I, for every t E [0, x)). 
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Let t, be such that sc If(s)1 ds < e/2, and T > t, such that: 

e-IAh11’2(Tpt,,) ilflll < i . 

Therefore 

1 I(T)] = 1 e-~A~l”*W)I(tO) 

Thus lim,-, &.(t) = 0, and since 

it follows that lim,,, fil;‘(t) = 0. 

Now we seek a condition on the sequence (A,) (analogous to (3.8)) so that {z,> 
is an interpolating sequence suitable for the verification of (3.4) and (3.10). 

By the conformal mapping z = (w - l)/(zu + 1) the points wk = 1 + 1 A, iliz, 

h = 1, 2,..., K, , are transformed in 

1 A, 11’2 
zk = 2 + , jj, p/2 . 

Thus the condition (3.8) is replaced by the two conditions 

Ej (2 :“; y2,1; lt̂ ; &2 x 
j A, p2 + hk(( A, I1 y  T 1)” 

3 kzc+l ((2 + I hj I”“)’ + A,(1 L 1 Xj 11i2)2)1’21 

and 

3 6 :- 0, j = I) 2,. . .( h, ) (3.1 li) 

(I Ai I + A,(1 A, v2 + 1yy2 
5 ((2 + 1 A, I”‘)” + X,(1 + ( xi 11’2)2)1’2 x 

I(h,)lf” - (A,)‘:‘! 1 
(4 + ((X,)l’2 - (h,)t’a)“)= 

?=kO+l 

;> 6 > 0, h =: k” I 1, k, + 2,... 

(3. I 1 ii) 

Case Where Xko = 0 is an Eigenvalue 

The solution to (2.4), (2.5) is in this case: 
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In order to verify (3.1) for k = K, we seek an f that in addition to conditions 
(3.4) and (3.10’) also satisfies: 

i 

a. 
sf (4 ds = - CL&+~, 9 (3.12i) 

0 

(3.12ii) 

The conformal mapping z = (zu - l)/(w + I), maps wkO = 1 into z;~, = 0. 
If the sequence {zk} (the transformal of (1 + i(hk)llz}, k = 1, 2,..., k, , k, + l...) 
is an interpolating sequence we may require that the function G verify (3.4). 
(3.10) and 

G(1) = loa g(s)e+ ds = lomj(s) ds = ~~~,‘y~,, . 

Therefore, since 

1 t jta f(s) ds 1 = 1 t jta g(s)e-s ds ( < t ( jta 1 g(s)12 ds) (e-2t/2). 

Then 

and (3.1 lii) follows. 
On the other hand, for the interpolating sequence {zk} we can find a function 

Q E H2 such that: 

Q(w,> = 0 for k # k, , Q(w,o> = Q(l) = 1. 

Set 

H(w) = (- F - G’(1)) (w - 1) ~ 
0 (WI+ 1)’ 

Since H E HE of the right half-plane, the function Q . H belongs to HZ. 
Set F: 

F(w) = G(w) + Q(w) H(w). 

Clearly 

F(wJ = GW, k = 1, 2,..., 

and 

F’(1) = -pko/Yk, * 
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F has a representation: 

F(w) = /0x gl(s)e-7”S ds 

withg, EL~[O, CO). 

F( 1) = fE g,(s)e@ ds = ~,,ly~, , 
‘0 

F’(1) = - joa Sg,(s)e6 ds = -I*&+.~ . 

Therefore for f(s) = g,(s) e-” conditions (3.12) are verified, 
conditions (3.4) and (3.10) are also verified. 

In this case the conditions which turns out from (3.5) are: 

I A, F2 - I Xk P2 

k#> 
2 + I A, Il.‘2 + I A, p2 

k<ko-1 

m (I A, 1112 + hk(l A, p2 + 1)2)1’s 3 s 
x ,y+, ((2 + I A, I”“)” + X,(1 +- ( Ak /r’s)a)l’a ’ j = ‘Y, Ko 

kil (cc2 + / x”j 1!12)~~l~~~~‘~~)~l~2~~)1i2) x (hkY’2 3 3 (4 + X,)1’” 

- 

moreover 

(3.13i) 

(3.13ii) 

1, 

(3.13iii) 

xfi 
@,)l’” - (A#‘2 1 

izk (4 + ((~,)l/" _ (4)1/2)2)1/2 2 6, k = ko + '7 ko + L.. 

j=li,+1 

Hence collecting results we have proved the following theorem. 

THEORFM 2. If  the conditions of Theorem 1 are satisfied, and 

(i) The sequences {~~(h~)l/~/y~} and {v~/Y~} are elements of P, 

(ii) On each of the following cases: 

(I) If all the eigenvalues Ak , k = 1, 2... are positive the condition (3.8) 
is satisfied, 

(II) If some eigenvalues are negative the conditions (3.11) are satis$ed; 

(III) If some eigenvalues are negative, and also A, II = 0 is an eigenvalue; 
the conditions (3.13) are satisfied. 
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Then the system (l.l), (1.3), (1.6) is controllable for T = 00. (Note: When 
k, = 0 conditions (3.13) become: 

m (X,)1” 
El (4 + A,)“* a s > O9 

(Aj)l’2 I(h,)l’” - (hjy* 1 
(4 + A,)l/2 X cl (4 + ((Ak)lj2 _ (h,)112)2)1!2 2 6 > 0, i = 1, L-J 

k#i 

Remark. When r(x) = xb, b > 2 the corresponding eigenvalues A, verify 
A, = M(ks + o(ks-l)) 1 < s < 2. In this case, if the condition (i) of the 
theorem is satisfied, the system (1. l), (1.3) and (1.6) is controllable for T = CO, 
since: 

LEMMA. I f  A, = M[k8 + o(ks-l)], 1 < s < 2, the condition (4.5) is satisfied. 

Proof. If Ak = M(k” + o(k”-‘)) then A, I” = M1/*ks/*(l + 0(1/k)). When 
k --f co we call wk = +A:‘*, then 

((A#‘* - (hp)” 
4 + ((A,)*‘* - (hp)* = 1 - 

1 
1 + (wh. - w,y ’ 

let P: 

p = I-I w$Y~” - Gw*)* 
3+k 4 + (@JJ l’* - (x,)l’2)2 =rI [I-l+(w;-W)*l* ]&,. 3 

Set N,(U) the function defined by: 

N,(u) = 0 if 0 < u < wi , 
= k if wk < u < wk+r , k # n, 

=n-I if 2(‘,-r < u < w,+r . 

1% p = Lx 1% (1 -  1 + (1_ w j2) 
l#k 3 

+ Sa log il - EZRA - u)’ i dNn(u). %+1 
Integrating by parts and using the following facts 
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we have: 

1% p = (n - ‘1 [log (1 - 1 + (wn 1B w,J ‘) 

- log (’ - 1 + (w, I- ZUJ 11 

+ j-y-’ [’ + (w n 
2T$;(w” - u) d” 

I 

CL 

+ 
2N&4 

1o,+1 [’ + (%I - f421@n - 4 d” 

> c”>“-’ 
2NnW 

-q [’ + (%I - 421(w, - u) d” 
rcx 

+ J 
2NM 

“a+l [’ + (wn - 421(% - 4 d”. 

The asymptotic relationship (4.1) implies: 

-2 + o(1) < N,,(u) - u2’6 < o(1). 

Then: 

s “n-1 4 + 4’) - 
1’ + h - 421(% - 4 

du 
WI 

s 
cc 4 + o(l) - 

t(‘,+l [1 + (w, - u)Z](w, - u) d” = zl + zz - z3 - z* . 

lim log ’ + (wn - ‘I’ = 0; (%I - 4” = o 1 
?I+= (wn - u)’ log 1 + (wn - WI)2 0 ?I ’ 

%+1 - wn log - - 
W, - %-1 

= o(l), log 1 + (Wn 
1 + (%I - %-1)” = o(l); 

- wn+1 )” 

we have I3 + I4 = o(l). 
Also: 

I1 + I2 = -2 J”“-@’ (w, + zp - (Wn - .)2’S dv 
tu,-*c,-1 (1 + qv 
%+4-l (w, + v)2/s 

-2 Jm”+l-,L,n (1 + V2)V dv - Ju;-u,I (6 :J;” dv 

= -s1 - s2 - s,; 
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from (wn + v)z/S - (wn - w)sjs < w(v)~/s it follows that: 

s, < c/(cos (; - 1) * ;) = K(s), 

s3 < J&y-w, 
(2v + w1)2’s (jw = ;cI 

(1 + W,‘)Z~ 

and as ((wn + w)‘l”)/((l + v*)w) is an increasing function 

s, < (n + 1) ;;,y - 1 = 
11 

y + o(1) = h' + o(l). 

Then 
p > e-K-N-N+o(l) > 6 > 0. 
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