On Farthest Points of Sets

B. B. Panda

Regional Engineering College, Rourkela, Orissa, India

AND

O. P. Kapoor

Indian Institute of Technology, Kanpur, U.P., India

Submitted by Ky Fan

A set K in a normed linear space is said to be M-compact if any maximizing sequence in K is compact. A sequence $\{g_n\}$ in K is called maximizing if for some $x \in X$, $\{\|x - g_n\|\}$ converges to the farthest distance between x and K. In this paper we study M-compact sets, relate the continuity behavior of the associated farthest-point map with the Gateaux differentiability of the farthest-distance function, and prove that in a normed space admitting centers any nonempty M-compact set having the unique farthest-point property must be a singleton.

1. Introduction

First we present some notation and definitions. Let X be a real normed linear space and let X^* be its dual. Let K be a nonempty, bounded subset of X. Let $F_K: X \to \mathbb{R}$ be the farthest-distance function defined by $F_K(x) = \sup \{\|x - y\|: y \in K\}$. The set-valued map $q: X \to K$ defined by $q(x) = \{y \in K: \|x - y\| = F_K(x)\}$ is called the farthest-point map supported by K. Every element $y \in q(x)$ is called farthest point of K from x and the set of all farthest points of K is written as $\text{far}(K)$. If $q(x)$ is nonempty (respectively singleton) for each $x \in X$, then K is said to have the farthest-point property (respectively unique farthest-point property). A sequence $\{g_n\}$ in K is said to be maximizing if for some $x \in X$, $\|x - g_n\| \to F_K(x)$. K is said to be M-compact (or $\text{w}M$ compact, see [4]) if every maximizing sequence in K is compact.

The notation $U(X)$, $S(X)$ will denote the unit ball $\{x \in X: \|x\| \leq 1\}$ and the unit sphere $\{x \in X: \|x\| = 1\}$ of the space X. The closed ball with center x and radius r will be denoted by $B[x, r]$. We say that the space X is compactly locally uniformly rotund (CLUR) if for any $x \in S(X)$, $g_n \in U(X)$ with $\|x + g_n\| \to 2$, the sequence $\{g_n\}$ is compact. X is ($\text{w}M$) if for any $x_0, x_n \in S(X)$ and $f_0 \in S(X^*)$ with $f_0(x_0) = 1$ and $\|x_n + x_n\| \to 2$, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such
that \(f_0(x_n) \to 1 \). \(X \) is (I) if every closed and bounded convex set in \(X \) can be represented as the intersection of a family of closed balls.

Remark. In a previous paper [8] we called CLUR spaces "spaces with property (M)." Later we found that these spaces were extensively used by Vlasov, who called them compactly locally uniformly rotund [10]. See, for example, the survey paper by Vlasov [11].

The question of existence of farthest points in bounded closed sets has been investigated by Asplund [1] and Edelstein [5]. In the next section we strengthen some of their results in the setting of CLUR and (\(wM \)) spaces. In Section 3 we construct \(M \)-compact sets in CLUR spaces and study some of their properties. In Section 4, a formula for the subdifferential of \(F_K \), where \(K \) is an \(M \)-compact set, is obtained. The continuity behavior of the farthest-point map and the Gateaux differentiability of the farthest-distance function are considered in Section 5. In the last section we prove that in a normed linear space which admits centers any nonempty \(M \)-compact set having unique farthest-point property must be a singleton.

2. Existence of Farthest Points

It has been shown by Asplund [1] that in a reflexive, locally uniformly convex Banach space \(X \), the set of points which admit farthest points in a given closed bounded set \(K \) is dense in \(X \). There is also the result of Edelstein [5] that in a uniformly convex Banach space \(X \) with the property (I), the relation \(\overline{co}(K) = \overline{co}(\text{far}(K)) \) is satisfied for every closed bounded subset \(K \) of \(X \). We have the following extensions of these results.

Theorem 2.1. Let \(K \) be either (i) a bounded, closed subset of a reflexive, (CLUR) space \(X \), or (ii) a bounded, weakly sequentially closed subset of a reflexive, (\(wM \)) space \(X \). Then the set \(D \) of all points in \(X \) that admit farthest points in \(K \) is dense in \(X \). Moreover, \(X \sim D \) is of the first category in \(X \).

Proof. With some modifications the proof given by Asplund [1] for his result gives the present result.

Theorem 2.2. Let \(K \) and \(X \) be as in Theorem 2.1. In addition let \(X \) have the property (I). Then \(\overline{co}(K) = \overline{co}(\text{far}(K)) \).

Proof. Once we have the proof of Theorem 2.1 it is quite easy to construct a proof of this theorem along the lines of one given by Edelstein [5].

3. \(M \)-Compact Sets

Recall that a set is \(M \)-compact if every maximizing sequence in it is compact. Clearly every compact set is \(M \)-compact. We shall see below that there are
M-compact sets which are not even precompact. The set K consisting of the open unit square together with its corners in the two-dimensional Euclidean space \mathbb{R}^2 is M-compact but is not closed.

Proposition 3.1. Every M-compact set has the farthest-point property.

Proof. This follows from the definition of M-compact sets.

Proposition 3.2. The closure of an M-compact set is M-compact.

Proof. Let K be an M-compact set in a normed linear space X, and let $\{g_n\} \subset K$, $x \in X$, and $\|x - g_n\| \rightarrow F_K(x)$. Clearly $F_K(x) = F_K(x)$ and for each n, there exists $g_n' \in K$ such that $\|g_n - g_n'\| < 1/n$. Clearly, then, the sequence $\{g_n\}$ and $\{g_n'\}$ has the same set of cluster points and the result follows.

Proposition 3.3. The farthest-point map supported by an M-compact set is upper semicontinuous.

Proof. See Blatter [4].

The converse of this proposition is not true. Indeed the unit ball $U(X)$ of an infinite-dimensional (CLUR) space supports an upper semicontinuous farthest-point map but it is not M-compact.

The following property of the unit ball of a (CLUR) space will be needed in constructing a large class of M-compact sets in these spaces.

Lemma 3.4. Let X be a (CLUR) space. Let x be a nonzero element of X and $\{g_n\} \subset U(X)$ be such that $\|x + g_n\| \rightarrow 1 + \|x\|$. Then the sequence $\{g_n\}$ is compact.

Proof. See Panda and Kapoor [8].

Proposition 3.5. Let X be a reflexive (CLUR) Banach space, and let $K \subset X$ be a compact set which intersects the complement of the unit ball of X. Then both $U(X) \cup K$ and $\text{co}(U(X) \cup K)$ are M-compact.

Proof. This is easy to prove with the help of Lemma 3.4.

Proposition 3.6. Let X be a (CLUR) normed linear space and let K be an M-compact set consisting of more than one element. Then the set $K_a = K + aU(X)$, $a > 0$ is also M-compact.

Proof. Let $x \in X$ and $y \in K_a$. Then y can be written in the form $y = u + av$, where $u \in K$ and $v \in U(X)$. It is easy to see that $F_{K_a}(x) = F_K(x) + a$. Let
\{g_n\} \subset K_a$ be a maximizing sequence for an $x \in X$. Expressing g_n in the form $g_n = u_n + \alpha v_n$, we see that

$$F_K(x) + a = \lim_{n \to \infty} \| x - g_n \| \leq \lim \inf_{n \to \infty} \| x - u_n \| + a$$

$$\leq \lim \sup_{n \to \infty} \| x - u_n \| + a \leq F_K(x) + a.$$

This shows that $\| x - u_n \| \to F_K(x)$ and hence there exists a subsequence $\{u_{n_i}\}$ of $\{u_n\}$ such that $u_{n_i} \to u_0 \in K$. Therefore,

$$\lim_{i \to \infty} \frac{1}{a} (x - u_0) - v_{n_i} = \lim_{i \to \infty} \frac{1}{a} (x - u_{n_i}) - u_{n_i} = 1 + \frac{1}{a} \| x - u_0 \|$$

and, since $F_K(x) = \| x - u_0 \| \neq 0$, applying Lemma 3.4 we see that the sequence $\{v_{n_i}\}$ is compact in $U(X)$. Consequently, $\{g_n\}$ is compact in K_a and the result follows.

4. THE SUBDIFFERENTIAL OF THE FUNCTION F_K

Let f be a proper convex function on X. Then the subgradient of f at x is an $x^* \in X^*$ such that

$$f(y) \geq f(x) + (y - x, x^*) \quad \forall y \in X.$$

The set of all subgradient of f at x is denoted by $\partial f(x)$ and is called the subdifferential of f at x.

In the following theorem a formula for the subdifferential of the function F_K, where K is an M-compact set, at a point x in X is obtained. Such a formula for the subdifferential of a function f which is equal to the supremum of a family of convex functions f_α, α ranging over a compact set Ω, has been given by Valadier [9]. A formula for ∂F_K, where K is a compact set, has been observed by Holmes [6, p. 182].

Theorem 4.1. Let X be a normed linear space, K an M-compact set, and $x_0 \in X$. Let $f_\alpha(x) = \| x - y \|$. Then

$$\partial F_K(x_0) = \text{weak*}-\text{closed convex hull of} \{\partial f_\alpha(x_0) : y \in q(x_0)\}$$

$$= \text{weak*}-\text{closed convex hull of} \{\psi \in S(X^*) : \psi(x_0 - y) = F_K(x_0) \text{ for some } y \in K\}.$$

Proof. The first part of the proof is exactly the same as that in [6, p. 182].
We need only show that for any fixed $z \in X$, there is a point $y_0 \in q(x_0)$ such that
\[F'_K(x_0; z) \leq f'_{y_0}(x_0; z), \]
where the prime denotes the right directional derivative.

Let $g_n \in q(x_0 + (1/n) z)$, then $\{g_n\}$ is a maximizing sequence in K for x_0 and, by the M-compactness of K, contains a subsequence converging to some element y_0 of $q(x_0)$. Without any loss of generality, we may assume that $g_n \to y_0$. Then by the property of a convex function
\[F'(x_0; z) \leq \frac{F_K(x_0 + (1/n) z) - F_K(x_0)}{1/n}, \]
for $n \geq 1$.\hfill (4.1)

If ϕ_n is a subgradient of the norm at $x_0 + (1/n) z - g_n$, then
\[\|x_0 - g_n\| \geq \|x_0 + \frac{1}{n} z - g_n\| - \frac{1}{n} \phi_n(z), \]
where
\[\phi_n = 1 \quad \text{and} \quad \phi_n(x_0 + \frac{1}{n} z - g_n) = \|x_0 + \frac{1}{n} z - g_n\|. \hfill (4.2) \]

Let X_0 be the linear span of $x_0 - y_0$ and z. Since $\phi_n(z) \leq \|z\|$, it can be assumed that $\phi_n(z)$ is convergent. Moreover,
\[\lim_{n \to \infty} \phi_n(x_0 + (1/n) z - g_n) = \lim_{n \to \infty} \phi_n(x_0 - y_0) = \|x_0 - y_0\|. \]
Thus we can define a bounded linear functional ϕ_0 on X_0 by the relation
\[\phi_0(x) = \lim_{n \to \infty} \phi_n(x) \quad \text{for all} \quad x \in X_0. \]
It is clear that $\|\phi_0\|_{x_0} = 1$ and $\phi_0(x_0 - y_0) = \|x_0 - y_0\|$. Extend ϕ_0, by the Hahn–Banach theorem, to the whole of X with preservation of the norm. Clearly, then, ϕ_0 is a subgradient of the norm at $x_0 - y_0$. Therefore,
\[\|x_0 - y_0 + \frac{1}{n} z\| \geq \|x_0 - y_0\| + \frac{1}{n} \phi_0(z), \quad \text{for all} \quad n \geq 1. \hfill (4.3) \]

But from (4.1) and (4.2), we have after taking the limit
\[F'_K(x_0; z) \leq \phi_0(z), \]
and so from (4.3)
\[F''_K(x_0; z) \leq \lim_{n \to \infty} \frac{\|x_0 - y_0 + (1/n) z\| - \|x_0 - y_0\|}{1/n} = f'_{y_0}(x_0; z) \]
and the theorem is established.
5. CONTINUITY OF THE FARthest-POINt MAP

We shall now consider the continuity of the farthest-point map.

Theorem 5.1. Let X be a reflexive Banach space satisfying the (CLUR) condition, and let K be any nonempty, bounded, closed subset of X. Then there exists a subset G dense in X such that

(a) if $x \in G$, then every maximizing sequence in K for x is compact in K, and

(b) the farthest-point map q restricted to G is upper semicontinuous.

Proof. By Theorem 2.1, there exists a subset D dense in X such that every point $x \in D$ admits at least one farthest point in K. If $y \in q(x)$, then every point of the half-ray $\{\alpha x + (1 - \alpha) y : \alpha > 1\}$ admits y as a farthest point in K. The set G of the union of all half-rays of the form $\{\alpha x + (1 - \alpha) y : \alpha > 1\}$, $x \in D$, and $y \in q(x)$ is clearly dense in X. As $K \subset B[x, F_K(x)]$, by Lemma 3.4, it is clear that any maximizing sequence $\{x_n\} \subset K$ for an element $\alpha x + (1 - \alpha) y$, $\alpha > 1$ is compact in $B[x, F_K(x)]$. As K is closed, the sequence $\{x_n\}$ is also compact in K and this establishes (a). The proof of (b) follows from Proposition 3.3.

Theorem 5.2. Let X be a locally uniformly convex Banach space, and let K be a subset of X having unique the farthest-point property. Then the farthest-point map supported by K is continuous on a dense subset of X.

Proof. Clearly, the set $G = \bigcup_{x \in X} \{\alpha x + (1 - \alpha) q(x) : \alpha > 1\}$ is dense in X and for all $\alpha \geq 1$, $q(\alpha x + (1 - \alpha) q(x)) = q(x)$. If $x_n \to \alpha x + (1 - \alpha) q(x)$, then $\{q(x_n)\}$ is a maximizing sequence for $\alpha x + (1 - \alpha) q(x)$ and, by the local uniform convexity of the norm (see Lemma 3.4), $q(x_n) \to q(x)$. This proves the result.

Theorem 5.3. Let X be a smooth normed linear space, and let K be a subset of X having unique farthest-point property. Then at a point x of continuity of the farthest-point map, the function F_K is Gateaux differentiable and the derivative

$$F'_K(x; z) = G(x - q(x); z),$$

for all $z \in X$, where $G(x; y)$ is the Gateaux derivative of the norm at x in the direction y.

Proof. The derivative $G(x; y)$ being, in particular, a subgradient of the norm, we get

$$\|x - q(x + tz)\| \geq \|x + tz - q(x + tz)\| + G(x + tz - q(x + tz); -tz);$$

that is,

$$F_K(x + tz) \leq F_K(x) + G(x + tz - q(x + tz); tz). \quad (5.1)$$
Similarly, by interchanging x and $x + tz$, we get

$$F_K(x + tz) \geq F_K(x) + G(x - q(x); tz). \quad (5.2)$$

The G-derivative of the norm being norm-to-weak*-continuous [3, Cor. 3, p. 461], letting $t \to 0$, we obtain from (5.1) and (5.2) the required result.

If the space X is not necessarily smooth, then the function F_K is still differentiable in the direction of a certain vector z (see [4]). This is shown in the following theorem.

Theorem 5.4. Let X be a normed linear space, and let K be a subset of X having the unique farthest-point property. Then at a point x of continuity of the farthest-point map

$$\lim_{t \to 0} \frac{F_K(x + t(x - q(x)) - F_K(x)}{t} = F_K(x).$$

Proof. This result can also be easily proved by following the proof of the preceding theorem.

Theorem 5.5. Let X be a locally uniformly convex Banach space, and let $K \subset X$ have the unique farthest-point property. If $x \in X$ is a point of continuity of the farthest-point map $q: X \to K$, then every maximizing sequence in K for x is convergent.

Proof. Let \(\{g_n\} \subset K \) and \(\|x - g_n\| \to F_K(x) \). By the Hahn–Banach theorem, there exists a \(\psi_n \in S(X^*) \) such that \(\psi_n(x - g_n) = \|x - g_n\| \). Let \(t_n^2 = F_K(x) - \|x - g_n\| \) and \(t_n \leq 0 \). We can assume that \(t_n < 0 \), if necessary, by passing onto a subsequence. Then

$$F_K(x + t_n(x - q(x)) \geq \|x + t_n(x - q(x)) - g_n\|$$

$$\geq \|x - g_n\| + t_n\psi_n(x - q(x))$$

$$= F_K(x) - t_n^2 + t_n\psi_n(x - q(x));$$

that is,

$$\frac{F_K(x + t_n(x - q(x)) - F_K(x)}{t_n} \leq -t_n + \psi_n(x - q(x))$$

$$\leq -t_n + \|x - q(x)\|.$$

Applying the previous theorem, we get \(\lim_{n \to \infty} \psi_n(x - q(x)) = F_K(x) \). Set

$$z_n = (x - g_n)/\|x - g_n\| \quad \text{and} \quad z = (x - q(x))/F_K(x).$$
Then
\[2 = \lim_{n \to \infty} \psi_n(z_n + z) \leq \lim \inf_{n \to \infty} \| z_n + z \| \leq \lim \sup_{n \to \infty} \| z_n + z \| \leq 2, \]
and hence \(\| z_n + z \| \to 2 \). By the local uniform convexity of the norm, \(z_n \to z \) and consequently, \(g_n \to q(x) \). Thus the theorem is proved.

6. Uniqueness of Farthest Points

Suppose that \(K \) is a nonempty bounded subset of a normed linear space \(X \) such that every point \(x \) in \(X \) admits a farthest point in \(K \). A natural question which then arises is: When are the farthest points unique? In that case must \(K \) be a singleton? This problem has been considered by Asplund [2], Blatter [4], Klee [7], and others; but except when \(X \) is finite dimensional [2] no solution is known for general infinite-dimensional normed linear spaces. A partial answer has been provided by Blatter [4], using the axiom of choice. In this section we shall use the idea of a Chebyshev center and obtain a result for spaces admitting centers. In this case we shall not assume the completeness of \(X \).

A center (or Chebyshev center) of a bounded, nonempty set \(K \) in a normed linear space \(X \) is an element \(x_0 \) in \(X \) for which \(F_K(x_0) = \inf\{F_K(x): x \in X\} \). The number \(F_K(x_0) \) is called the Chebyshev radius of \(K \) and is denoted by \(r(K) \). Clearly, \(r(K) \) is the radius of the smallest ball in \(X \) (if one exists) which contains the set \(K \). The collection of the centers of all such balls is denoted by \(E(K) \). We shall say that a normed linear space \(X \) admits centers if for every bounded, nonempty set \(K \) of \(X \) the set \(E(K) \) is nonempty. It is known [6] that all conjugate Banach spaces, the space \(L^1(\mu) \) of absolutely integrable functions, and the space \(C_0(\Omega) \) of real-valued, bounded continuous functions, where \(\Omega \) is paracompact, admit centers.

Theorem 6.1. Let \(X \) be a normed linear space admitting centers, and let \(K \) be a nonempty subset of \(X \) having the unique farthest-point property. Suppose that for every \(x \) in \(K + r(K) \cup (X) \), the farthest-point map \(q: X \to K \) restricted to the line segment \([x, q(x)]\) is continuous at \(x \), then \(K \) must consist of a single point.

Proof. Suppose that \(K \) is not a singleton. We may assume that the origin \(0 \in E(K) \). Then there exists an element \(\theta \in K \) in the interior of the ball \(B[0, r(K)] \). So \(\theta \in \text{int} B[x, r(K)] \subseteq K + r(K) \cup (X) \). Denote \(x_0 = q(\theta) \) and \(g_n = q((1/n) x_0) \). Suppose that \(\phi_n \) is a subgradient of the norm at \(g_n - (1/n) x_0 \). Then
\[\| g_n \| \geq \| g_n - \frac{1}{n} x_0 \| + \frac{1}{n} \psi_n(x_0). \] (6.1)
However, $B[\theta, r(K)]$ being the minimal ball containing K, we obtain

$$0 < \left\| g_n - \frac{1}{n} x_0 \right\| - \left\| g_n \right\| \leq - \frac{1}{n} \phi_n(x_0);$$

that is,

$$\phi_n(x_0) < 0. \quad (6.2)$$

Since $g_n \to x_0$, we get

$$\lim_{n \to \infty} \phi_n(x_0) = \lim_{n \to \infty} \phi_n \left(g_n - \frac{1}{n} x_0 \right) = \lim_{n \to \infty} \left\| g_n - \frac{1}{n} x_0 \right\| = \left\| x_0 \right\|,$$

which contradicts (6.2). Thus the theorem is proved.

Corollary 6.2. Let X be as above, and let $K \subset X$ be a nonempty M-compact set having the unique farthest-point property. Then K must be a singleton.

Proof. Follows from Theorem 6.1 and Proposition 3.3.

Note added in proof. Some of the results in this paper extend similar results in the authors' paper with the same title which has appeared in *Rev. Roumaine Math. Pures Appl.* 21 (1976), 1369–1377.

References