

J. Math. Anal. Appl. 328 (2007) 295-301

On some applications of the Briot–Bouquet differential subordination

J. Dziok

Institute of Mathematics, University of Rzeszów, ul. Rejtana 16A, PL-35-310 Rzeszów, Poland
Received 3 March 2006
Available online 15 June 2006
Submitted by William F. Ames

Abstract

Recently Srivastava et al. [J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003) 7–18; J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1–13; Y.C. Kim, H.M. Srivastava, Fractional integral and other linear operators associated with the Gaussian hypergeometric function, Complex Var. Theory Appl. 34 (1997) 293–312] introduced and studied a class of analytic functions associated with the generalized hypergeometric function. In the present paper, by using the Briot–Bouquet differential subordination, new results in this class are obtained.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Analytic functions; The generalized hypergeometric function; The Carlson–Shaffer operator; The Briot–Bouquet differential subordination

1. Introduction

Let A denote the class of functions which are *analytic* in U = U(1), where

$$\mathcal{U}(r) = \{ z \colon z \in \mathbb{C} \text{ and } |z| < r \}.$$

We denote by A_0 the class of functions $f \in A$ with the normalization f(0) = f'(0) - 1 = 0.

E-mail address: jdziok@univ.rzeszow.pl.

We say that a function $f \in \mathcal{A}$ is *subordinate* to a function $F \in \mathcal{A}$ and write $f(z) \prec F(z)$, if and only if there exists a function $\omega \in \mathcal{A}$,

$$\omega(0) = 0, \qquad |\omega(z)| < 1 \quad (z \in \mathcal{U}),$$

such that

$$f(z) = F(\omega(z)) \quad (z \in \mathcal{U}).$$

Moreover, we say that f is subordinate to F in $\mathcal{U}(r)$, if $f(rz) \prec F(rz)$. We shall write

$$f(z) \prec_r F(z)$$

in this case. In particular, if F is univalent in \mathcal{U} , we have the following equivalence (cf. [10]):

$$f(z) \prec F(z) \iff f(0) = F(0) \text{ and } f(\mathcal{U}) \subset F(\mathcal{U}).$$

For analytic functions

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 and $g(z) = \sum_{n=0}^{\infty} b_n z^n$,

by f * g we denote the *Hadamard product or convolution* of f and g, defined by

$$(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n.$$

Let $q, s \in \mathbb{N} = \{1, 2, ...\}$, $q \le s + 1$. For complex parameters $a_1, ..., a_q$ and $b_1, ..., b_s$ ($b_j \ne 0, -1, -2, ...; j = 1, ..., s$), we define the *generalized hypergeometric function* ${}_qF_s(a_1, ..., a_q; b_1, ..., b_s; z)$ by

$$_{q}F_{s}(a_{1},\ldots,a_{q};b_{1},\ldots,b_{s};z)=\sum_{n=0}^{\infty}\frac{(a_{1})_{n}\cdots(a_{q})_{n}}{(b_{1})_{n}\cdots(b_{s})_{n}}\frac{z^{n}}{n!}\quad(z\in\mathcal{U}),$$

where $(\lambda)_n$ is the Pochhammer symbol defined, in terms of the Gamma function Γ , by

$$(\lambda)_n = \frac{\Gamma(\lambda + n)}{\Gamma(\lambda)} = \begin{cases} 1 & (n = 0), \\ \lambda(\lambda + 1) \cdots (\lambda + n - 1) & (n \in \mathbb{N}). \end{cases}$$

Corresponding to a function $h(a_1, \ldots, a_a; b_1, \ldots, b_s; z)$ defined by

$$h(a_1, \ldots, a_a; b_1, \ldots, b_s; z) = z_a F_s(a_1, \ldots, a_a; b_1, \ldots, b_s; z),$$

we consider a linear operator

$$H(a_1,\ldots,a_q;b_1,\ldots,b_s):\mathcal{A}_0\to\mathcal{A}_0,$$

defined by the convolution:

$$H(a_1, \ldots, a_q; b_1, \ldots, b_s) f(z) = h(a_1, \ldots, a_q; b_1, \ldots, b_s; z) * f(z).$$

In particular, for s = 1 and q = 2 and $a_2 = 1$, we have the Carlson-Shaffer operator

$$\mathcal{L}(a_1, b_1) f(z) = H_1(a_1, 1; b_1) f(z),$$

which was introduced by Carlson and Shaffer [1] (see also [8]).

After some calculations we obtain

$$aH(a+1)f(z) = zH'(a)f(z) + (a-1)H(a)f(z),$$
(1)

where, for convenience,

$$H(a_1) f(z) = H(a_1, ..., a_q; b_1, ..., b_s) f(z).$$

The linear operator $H(a_1, ..., a_q; b_1, ..., b_s)$ and some other linear operators and fractional calculus was investigated by many mathematicians (cf. [2,3,9,11,12]).

Now suppose that the parameters a_1, \ldots, a_q and b_1, \ldots, b_s are positive real numbers. Also let

$$0 \leqslant B \leqslant 1$$
 and $-B \leqslant A < B$.

We denote by

$$V(a_1; A, B) = V(a_1, \dots, a_q; b_1, \dots, b_s; A, B)$$

the class of functions $f \in A_0$ which satisfy the following condition:

$$a_1 \frac{H(a_1+1)f(z)}{H(a_1)f(z)} + 1 - a_1 < \frac{1+Az}{1+Bz}.$$
 (2)

The class $V(a_1, \ldots, a_q; b_1, \ldots, b_s; A, B)$ for functions with negative coefficients was introduced and studied by Dziok and Srivastava [5] (see also [4,6]). The class $V(a, 1; c; 2\alpha - 1, 1)$ was investigated by Kim and Srivastava [8].

Let h and q be analytic functions in U with h(0) = q(0) = 1 and let h be univalent. The first-order differential subordination

$$q(z) + \frac{zq'(z)}{\beta q(z) + \gamma} \prec h(z) \tag{3}$$

is called the Briot–Bouquet differential subordination. This particular differential subordination has a surprising number of important applications in the theory of analytic functions (for details see [10]).

In the paper we present one more application of the Briot–Bouquet differential subordination.

2. Main results

Eenigenburg et al. [7] proved, that for convex function h, with $\text{Re}(\beta h(z) + \gamma) \ge 0$, the Briot–Bouquet differential subordination (3) implies $p(z) \prec h(z)$. Thus we have the following lemma.

Lemma 1. If q is an analytic function in U(r), q(0) = 1 and

$$q(z) + \frac{zq'(z)}{q(z) + \gamma} \prec_r \frac{1 + Az}{1 + Bz} \quad \left(\gamma + \frac{1 + A}{1 + B} \geqslant 0\right),$$

then

$$q(z) \prec_r \frac{1 + Az}{1 + Bz}$$
.

Making use of the above lemma, we get the following theorem.

Theorem 1. If $a \geqslant \frac{B-A}{1+B}$, then

$$V(a+m; A, B) \subset V(a; A, B) \quad (m \in \mathbb{N}).$$

Proof. It is clear that it is sufficient to prove the theorem for m = 1. Let a function f belong to the class V(a + 1; A, B) or equivalently

$$(a+1)\frac{H(a+2)f(z)}{H(a+1)f(z)} - a < \frac{1+Az}{1+Bz}.$$
 (4)

It is sufficient to verify condition (2). If we put

$$R = \sup\{r: H(a) f(z) \neq 0, z \in \mathcal{U}(r)\},\$$

then the function

$$q(z) = a \frac{H(a+1)f(z)}{H(a)f(z)} + 1 - a \tag{5}$$

is analytic in $\mathcal{U}(R)$ and q(0) = 1. Taking the logarithmic derivative of (5) we get

$$\frac{z[H(a+1)f(z)]'}{H(a+1)f(z)} - \frac{z[H(a)f(z)]'}{H(a)f(z)} = \frac{zq'(z)}{q(z)+a-1} \quad (z \in \mathcal{U}(R)).$$

Applying (1) and (5) we obtain

$$(a+1)\frac{H(a+2)f(z)}{H(a+1)f(z)} - a = q(z) + \frac{zq'(z)}{q(z)+a-1} \quad (z \in \mathcal{U}(R)).$$
 (6)

Thus by (4) we have

$$q(z) + \frac{zq'(z)}{q(z) + \gamma} \prec_R \frac{1 + Az}{1 + Bz}.$$

Lemma 1 now yields

$$q(z) \prec_R \frac{1+Az}{1+Bz}.\tag{7}$$

By (5) it suffices to verify that R = 1. From (7), (5) and (1) we conclude that H(a) f(z) is starlike in U(R) and consequently it is univalent in U(R). Thus we see that H(a) f(z) cannot vanish on |z| = R if R < 1. Hence R = 1 and this proves Theorem 1. \square

Using Lemma 1 we show the following sufficient conditions for functions to belong to the class V(a; A, B).

Theorem 2. Let $m \in \mathbb{N}$, $B - A \le (1 + B)a$, $2B^2a \le (2B + 1)(B - A)$. If a function $f \in A_0$ satisfies the following inequality:

$$\left| \frac{H(a+m+1)f(z)}{H(a+m)f(z)} - 1 \right| < \frac{2B-A}{(a+m)(1+B)} + \frac{B-A-aB}{(a+m)(B-A+a-aB)} \quad (z \in \mathcal{U}),$$
(8)

then f belongs to the class V(a; A, B).

Proof. By Theorem 1 it is sufficient to consider the case m = 1. Let a function f belong to the class A_0 . Putting

$$q(z) = \frac{1 + Aw(z)}{1 + Bw(z)} \quad (z \in \mathcal{U}(R))$$
(9)

in (6), we obtain

$$(a+1)\frac{H(a+2)f(z)}{H(a+1)f(z)} - a = \frac{1+Aw(z)}{1+Bw(z)} + \frac{(aB+A-B)zw'(z)}{a+(aB+A-B)w(z)} - \frac{Bzw'(z)}{1+Bw(z)}.$$

Consequently, we have

$$F(z) = w(z) \left\{ \frac{zw'(z)}{w(z)} \left(\frac{aB + A - B}{a + (aB + A - B)w(z)} - \frac{B}{1 + Bw(z)} \right) - \frac{B - A}{1 + Bw(z)} \right\}, \tag{10}$$

where

$$F(z) = (a+1)\frac{H(a+2)f(z)}{H(a+1)f(z)} - a - 1.$$

By (2), (5) and (9) it is sufficient to verify that w is analytic in U and

$$|w(z)| < 1 \quad (z \in \mathcal{U}).$$

Now, suppose that there exists a point $z_0 \in \mathcal{U}(R)$, such that

$$|w(z_0)| = 1$$
, $|w(z)| < 1$ $(|z| < |z_0|)$.

Then, applying Lemma 1, we can write

$$z_0 w'(z_0) = k w(z_0), \quad w(z_0) = e^{i\theta} \quad (k \ge 1).$$

Combining these with (10), we obtain

$$|F(z_{0})| = \left| k \left(\frac{B - A - aB}{a + (aB + A - B)e^{i\theta}} + \frac{B}{1 + Be^{i\theta}} \right) + \frac{B - A}{1 + Be^{i\theta}} \right|$$

$$\geqslant k \operatorname{Re} \left(\frac{B - A - aB}{a + (aB + A - B)e^{i\theta}} + \frac{B}{1 + Be^{i\theta}} \right) + \frac{B - A}{1 + B}$$

$$\geqslant k \left(\frac{B - A - aB}{a + B - A - aB} + \frac{B}{1 + B} \right) + \frac{B - A}{1 + B}$$

$$\geqslant \frac{2B - A}{1 + B} + \frac{B - A - aB}{a + B - A - aB}.$$

Since this result contradicts (8) we conclude that w is the analytic function in $\mathcal{U}(R)$ and |w(z)| < 1 ($z \in \mathcal{U}(R)$). Applying the same methods as in the proof of Theorem 1 we obtain R = 1, which completes the proof of Theorem 2. \square

Putting $A = 2\alpha - 1$ and B = 1 in Theorems 1 and 2 we obtain the following two corollaries.

Corollary 1. Let $0 \le \alpha < 1$, $a \ge 1 - \alpha$, $m \in \mathbb{N}$. If a function $f \in A_0$ satisfies the following inequality:

$$\operatorname{Re}\left\{(a+m)\frac{H(a+m+1)f(z)}{H(a+m)f(z)}+1-a-m\right\} > \alpha \quad (z \in \mathcal{U}),$$

then

$$\operatorname{Re}\left\{a\frac{H(a+1)f(z)}{H(a)f(z)} + 1 - a\right\} > \alpha \quad (z \in \mathcal{U}).$$

Corollary 2. Let $m \in \mathbb{N}$, $0 \le \alpha < 1$, $1 - \alpha \le a \le 3(1 - \alpha)$. If a function $f \in A_0$ satisfies the following inequality:

$$\left| \frac{H(a+m+1)f(z)}{H(a+m)f(z)} - 1 \right| < \frac{2(1-\alpha)^2 + 3(1-\alpha) - a}{2(a+m)(1-\alpha)} \quad (z \in \mathcal{U}),$$

then

$$\operatorname{Re}\left\{a\frac{H(a+1)f(z)}{H(a)f(z)} + 1 - a\right\} > \alpha \quad (z \in \mathcal{U}).$$

Putting s = 1, q = 2, $b_1 = b$ and $a_2 = 1$, in Theorems 1 and 2 we obtain the following two corollaries.

Corollary 3. If $a \geqslant \frac{B-A}{1+B}$ and

$$(a+m)\frac{\mathcal{L}(a+m+1,b)f(z)}{\mathcal{L}(a+m,b)f(z)} + 1 - a - m < \frac{1+Az}{1+Bz},$$

then

$$a\frac{\mathcal{L}(a+1,b)f(z)}{\mathcal{L}(a,b)f(z)} + 1 - a < \frac{1+Az}{1+Bz}.$$

Remark 1. Putting m = a = B = 1 and $A = 2\beta - 1$ in Corollary 3 we have the result of Kim and Srivastava [8], obtained by using another methods.

Corollary 4. Let $m \in \mathbb{N}$, $B - A \le (1 + B)a$, $2B^2a \le (2B + 1)(B - A)$. If a function $f \in A_0$ satisfies the following inequality:

$$\left| \frac{\mathcal{L}(a+m+1,b)f(z)}{\mathcal{L}(a+m,b)f(z)} - 1 \right| < \frac{2B-A}{(a+m)(1+B)} + \frac{B-A-aB}{(a+m)(B-A+a-aB)} \quad (z \in \mathcal{U}),$$

then

$$a\frac{\mathcal{L}(a+1,b)f(z)}{\mathcal{L}(a,b)f(z)} + 1 - a < \frac{1+Az}{1+Bz}.$$

Putting a = b = m = 1 in Corollary 4 we obtain the sufficient condition for starlikeness.

Corollary 5. Let $B - A \ge 2AB$. If a function $f \in A_0$ satisfies the following inequality:

$$\left|\frac{zf''(z)}{f'(z)}\right| < \frac{2B - A}{1 + B} - \frac{A}{1 - A} \quad (z \in \mathcal{U}),$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz},$$

i.e., the function f is starlike in \mathcal{U} .

Putting a = 2 and b = m = 1 in Corollary 4 we obtain the sufficient condition for convexity.

Corollary 6. Let $B - B^2 - 2AB - A \ge 0$. If a function $f \in A_0$ satisfies the following inequality:

$$\left| \frac{z^3 f'''(z) + 4z^2 f''(z) + 2z f''(z)}{z^2 f''(z) + 2f'(z)} \right| < \frac{2B - A}{1 + B} - \frac{B + A}{2 - (B + A)} \quad (z \in \mathcal{U}),$$

then

$$\frac{zf''(z)}{f'(z)} + 1 < \frac{1 + Az}{1 + Bz}$$

i.e., the function f is convex in U.

Remark 2. Putting B = 1 and $A = 2\alpha - 1$ in Corollaries 5 and 6 we obtain the sufficient conditions for starlikeness of order α and convexity of order α , respectively.

References

- [1] B.C. Carlson, D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984) 737–745.
- [2] J. Dziok, Applications of the Jack lemma, Acta Math. Hungar. 105 (2004) 93–102.
- [3] J. Dziok, Some relations including various linear operators, Demonstratio Math., in press.
- [4] J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003) 7–18.
- [5] J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1–13.
- [6] J. Dziok, H.M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math. 5 (2) (2002) 115–125.
- [7] P.J. Eenigenburg, S.S. Miller, P.T. Mocanu, O.M. Reade, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978) 289–305.
- [8] Y.C. Kim, H.M. Srivastava, Fractional integral and other linear operators associated with the Gaussian hypergeometric function, Complex Var. Theory Appl. 34 (1997) 293–312.
- [9] J.-L. Liu, H.M. Srivastava, Certain properties of the Dziok–Srivastava operator, Appl. Math. Comput. 159 (2004) 485–493.
- [10] S.S. Miller, P.T. Mocanu, Differential Subordinations: Theory and Applications, Monogr. Textbooks Pure Appl. Math., vol. 225, Dekker, New York, 2000.
- [11] H.M. Srivastava, S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J. 106 (1987) 1–28.
- [12] H.M. Srivastava, S. Owa, Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, New York, 1989.