
Journal of Discrete Algorithms 6 (2008) 458–471

www.elsevier.com/locate/jda

A 3-approximation algorithm for the subtree distance between
phylogenies

Magnus Bordewich a, Catherine McCartin b, Charles Semple c,∗

a Department of Computer Science, Durham University, Durham DH1 3LE, United Kingdom
b Institute of Information Sciences and Technology, Massey University, Palmerston North, New Zealand

c Biomathematics Research Centre, Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

Available online 5 January 2008

Abstract

In this paper, we give a (polynomial-time) 3-approximation algorithm for the rooted subtree prune and regraft distance between
two phylogenetic trees. This problem is known to be NP-complete and the best previously known approximation algorithm is
a 5-approximation. We also give a faster fixed-parameter algorithm for the rooted subtree prune and regraft distance than was
previously known.
© 2007 Elsevier B.V. All rights reserved.

MSC: 05C05; 92D15

Keywords: Rooted subtree prune and regraft; Agreement forest

1. Introduction

Phylogenetic (evolutionary) trees are used in evolutionary biology to represent the tree-like evolution of a collec-
tion of present-day species. For many groups of species, including most mammals, this representation is appropriate.
However, not all groups of species are suited to this type of representation. Collectively known as reticulation events,
non-tree-like evolutionary processes such as hybridization, horizontal gene transfer, and recombination result in
species being a composite of genes derived from different ancestors. Such groups of species include certain plant
and fish species.

Historically, one of the main mathematical tools that has been used to understand and model reticulate evolution is
the graph-theoretic operation called ‘subtree prune and regraft’. Informally, this operation prunes a subtree of a rooted
tree and then reattaches it to another part of the tree. The use of this tool in evolutionary biology dates back to at least
1990 [9] and has been regularly used since as a way to model reticulate evolution (see, for example, [11,12,15]). The
reason for this use is that if two phylogenetic trees on the same set of species are inconsistent, but this inconsistency
can be explained by a single reticulation event, then one tree can be obtained from the other by a single subtree prune
and regraft operation. Moreover, if the inconsistency of the two trees requires more than one reticulation event, the

* Corresponding author. Tel.: +64 3 364 2600; fax: +64 3 364 2587.
E-mail addresses: m.j.r.bordewich@durham.ac.uk (M. Bordewich), C.M.McCartin@massey.ac.nz (C. McCartin),

c.semple@math.canterbury.ac.nz (C. Semple).
1570-8667/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2007.10.002

http://www.elsevier.com/locate/jda
mailto:m.j.r.bordewich@durham.ac.uk
mailto:C.M.McCartin@massey.ac.nz
mailto:c.semple@math.canterbury.ac.nz
http://dx.doi.org/10.1016/j.jda.2007.10.002

M. Bordewich et al. / Journal of Discrete Algorithms 6 (2008) 458–471 459
Fig. 1. Each of T1 and T2 are obtained from T by a single rSPR operation.

minimum number of subtree prune and regraft operations that transforms one tree into the other provides a lower
bound on the number of such events. This lower bound gives an indication of the extent to which reticulation has
influenced the evolutionary history of the present-day species under consideration. Here one thinks of the two initial
trees as correctly representing the tree-like evolution of different parts of the genomes of the present-day species.

This paper is concerned with the problem of computing the above minimum number of operations. In the rest of
this section, we formalize this problem, provide some additional background, and informally state the main results of
the paper. The organization of this paper is given at the end of the section.

A rooted binary phylogenetic X-tree is a rooted tree whose root has degree two and all other interior vertices have
degree three, and whose leaf set is X. For example, ignoring ρ and its incident edge, T is such a tree in Fig. 1, where
X = {1,2,3,4}. Let T be a rooted binary phylogenetic X-tree. For the upcoming definition of a rooted subtree prune
and regraft operation, we regard the root of T as a vertex ρ at the end of a pendant edge adjoined to the original root
(see Fig. 1). Now let e = {u,v} be an edge of T not incident with ρ, where u is the vertex that is in the path from ρ

to v. Let T ′ be the rooted binary phylogenetic tree obtained from T by deleting e and then adjoining a new edge f

between v and the component Cu that contains u by:

(i) creating a new vertex u′ which subdivides an edge in Cu, and adjoining f between u′ and v, and
(ii) contracting the degree-two vertex u.

We say that T ′ has been obtained from T by a single rooted subtree prune and regraft (rSPR) operation. Note that, up
to isomorphism, T ′ may be equal to T if u′ is adjacent to u. We define the rSPR distance between two arbitrary rooted
binary phylogenetic X-trees T1 and T2 to be the minimum number of rooted subtree prune and regraft operations that
is required to transform T1 into T2. We denote this distance by drSPR(T1,T2). It is well known that, for any such pair
of trees, one can always obtain one from the other by a sequence of single rSPR operations. Thus this distance is
well defined. Moreover, this distance is a metric on the collection of rooted binary phylogenetic X-trees. To illustrate,
consider Fig. 1. Each of T1 and T2 are obtained from T by a single rSPR operation.

The computational problem that is the focus of this paper is the following:

Problem RSPR
Instance: Two rooted binary phylogenetic X-trees T and T ′, and an integer k.
Question: Is drSPR(T ,T ′) � k?

Using a characterization of this problem in terms of ‘agreement forests’ (see Section 2) and ideas originating from
Hein et al. [10], Bordewich and Semple [3] showed that RSPR is NP-complete.

Two positive approaches for dealing with a computationally hard problem are to find polynomial-time approxi-
mation algorithms and fixed-parameter algorithms for the problem. In this paper, we give both a polynomial-time
3-approximation algorithm for RSPR, and a fixed-parameter algorithm for RSPR. The approach used in the algorithms
is new and builds upon ideas used in the fixed-parameter algorithms for related problems by Hallett and McCartin [7]

460 M. Bordewich et al. / Journal of Discrete Algorithms 6 (2008) 458–471
and Hallett et al. [8]. A short summary of approximation and fixed-parameter algorithms as well as a comparison of
these new algorithms with previous algorithms is given next.

1.1. Approximation algorithm

For a minimization problem, an algorithm is said to be an r-approximation if for all instances it guarantees to
output a feasible solution which is at most r times the size of an optimal solution. The existence of polynomial-time
approximation algorithms varies greatly amongst NP-hard problems. For example, for any constant r , there is no such
algorithm for the general traveling salesman problem unless P = NP, while for the traveling salesman problem in the
Euclidean plane there is such an algorithm for every r > 1 [1]. In this latter case, we say that the problem exhibits a
polynomial-time approximation scheme (PTAS).

Using a different definition of agreement forest not corresponding to RSPR, two approximation algorithms have
appeared in the literature [10,13]. Both algorithms work in a similar way and are stated as 3-approximation algorithms.
However, each contains an oversight in the analysis. Nevertheless, Bonet et al. [2] show that with careful analysis these
approaches give a 5-approximation algorithm for RSPR with running time O(n), where n = |X|. Our new algorithm,
which takes a different approach, improves the approximation ratio to 3, but with running time O(n5). It is known
that, unless P = NP, there is no PTAS for RSPR and, in particular, no (polynomial-time) r-approximation algorithm
for r < 2113

2112 [4].

1.2. Fixed-parameter algorithm

The idea behind fixed-parameter complexity is that while the general case of RSPR is NP-hard, many biologically
relevant cases require a relatively small number of rSPR operations and so may be tractable. In particular, if we take
k as the parameter, we show that RSPR may be solved in time O(4kk4 + n3), where n = |X|. The importance of
this result is in the separation of the variables n and k; it shows that, for a reasonable range of k, the problem may
be tractable even for a very large n. This last algorithm greatly improves the running time of the O((56k)2k + n3)

fixed-parameter algorithm for RSPR given by Bordewich and Semple [3]. We refer readers unfamiliar with fixed
parameterability to [6].

The paper is organized as follows. Section 2 details some notation and concepts that will be used throughout the
paper. Also included in Section 2 is the above-mentioned characterization of RSPR in terms of agreement forests. This
characterization is crucial to obtaining the results in this paper. In Sections 3 and 4, we describe our polynomial-time
3-approximation and O(4kk4 + n3) fixed-parameter algorithms for RSPR, respectively. These sections also contain
the two main results of the paper: theorems stating the correctness of the algorithms. The proofs of these theorems
rely on two key lemmas. The proofs of these lemmas are given in Section 5. Unless otherwise stated, the notation and
terminology in this paper follows [14].

2. Preliminaries

For ease of reading, we will denote the union of two sets P and Q by P + Q. If Q = {q}, that is, Q is a singleton,
we denote P + Q by P + q and P − Q by P − q .

2.1. Phylogenetic trees, forests, and partial orders

Let T be a rooted binary phylogenetic X-tree. The set X is referred to as the label set of T and is frequently
denoted by L(T). A collection F of subtrees of T is a forest of T if F can be obtained by deleting a (possibly empty)
subset of edges of T . For a subset E of the edge set of F , we denote the forest obtained by deleting each of the edges
in E by F − E. If C is a component of F , then the intersection of X with the vertex set of C is referred to as the label
set of C.

For a forest F , we impose a partial order on the set that is the union of the vertex and edge sets of F . In particular,
for elements g and h in this union, we write g < h if g and h are in the same component of F , g �= h, and h is on the
path from g to the root in this component. The set

{g: g < h, g is a vertex or edge of F}

M. Bordewich et al. / Journal of Discrete Algorithms 6 (2008) 458–471 461
is referred to as the set below h. Furthermore, if x and y are vertices of the same component of F , the most recent
common ancestor of x and y is the minimal vertex of F that is an ancestor of both x and y under this partial order.
Note that, when restricted to the vertex set of F , this partial order differs from that used in [14], but is more consistent
with the other definitions used in this paper.

Lastly, let C be a component of F and let X′ be a subset of the label set of C. The minimal rooted subtree of C
that connects the vertices of C labeled by the elements of X′ is denoted by C(X′). Furthermore, the restriction of C
to X′, denoted by C|X′, is the rooted binary phylogenetic tree that is obtained from C(X′) by contracting any non-root
vertices of degree two.

2.2. Agreement forests

Let T and T ′ be two rooted binary phylogenetic X-trees. For the purposes of the definitions in this subsection, we
regard the root of both T and T ′ as a vertex ρ at the end of a pendant edge adjoined to the original root. Furthermore,
we also regard ρ as part of the label sets of both T and T ′, thus we view their label sets as X + ρ.

An agreement forest for T and T ′ is a collection {Tρ,T1,T2, . . . ,Tk} of trees, where Tρ is a rooted tree with label
set Lρ and T1,T2, . . . ,Tk are rooted binary phylogenetic trees with label sets L1,L2, . . . ,Lk such that the following
properties are satisfied:

(i) The label sets Lρ,L1, . . . ,Lk partition X + ρ and, in particular, ρ ∈ Lρ .
(ii) For all i ∈ {ρ,1,2, . . . , k}, Ti = T |Li = T ′|Li .

(iii) The trees in {T (Li): i ∈ {ρ,1,2, . . . , k}} and {T ′(Li): i ∈ {ρ,1,2, . . . , k}} are vertex-disjoint rooted subtrees of
T and T ′, respectively.

It is easily seen that if F is an agreement forest for T and T ′, then, up to contracting non-root vertices of degree
two, F can be obtained from each of T and T ′ by deleting k edges. A maximum-agreement forest for T and T ′ is an
agreement forest in which k (the number of components minus one) is minimized. The minimum possible value for
k is denoted by m(T ,T ′). In Fig. 2, F1 and F2 are both agreement forests for T and T ′. Indeed, it is easily checked
that F1 is a maximum-agreement forest for T and T ′, and so m(T ,T ′) = 2.

Bordewich and Semple [3] showed that drSPR(T ,T ′) can be characterized in terms of agreement forests. In partic-
ular, they proved the following theorem.

Theorem 2.1. Let T and T ′ be two rooted binary phylogenetic X-trees. Then drSPR(T ,T ′) = m(T ,T ′).

The importance of this result for us is that any r-approximation algorithm for approximating the size of a
maximum-agreement forest for T and T ′ equates to an r-approximation algorithm for drSPR(T ,T ′). A similar in-

Fig. 2. F1 and F2 are agreement forests for T and T ′.

462 M. Bordewich et al. / Journal of Discrete Algorithms 6 (2008) 458–471
Fig. 3. A forest of T that yields an agreement forest for T and T ′ .

Fig. 4. The layout of a minimal incompatible triple.

terpretation can be made for fixed-parameter algorithms that find the exact size of a maximum-agreement forest for T
and T ′.

Let F be a forest of T . We say that F yields an agreement forest {Tρ,T1,T2, . . . ,Tk} for T and T ′ if F has compo-
nents Cρ,C1,C2, . . . ,Ck such that Ci |Li = Ti for all i ∈ {ρ,1,2, . . . , k}, where Li is the label set of Ci . Informally, F
yields an agreement forest if deleting (iteratively) all degree-1 vertices that are not labeled with an element in X + ρ,
and contracting all non-root degree-2 vertices results in the agreement forest. To illustrate, consider the two rooted
phylogenetic X-trees T and T ′ shown in Fig. 2. Fig. 3 shows a forest of T that yields the agreement forest F2 for T
and T ′ shown in Fig. 2.

We denote by e(F ,T ′) the size of a minimum set E of edges of F such that F − E yields an agreement forest
for T and T ′. This is well defined since taking E to be the set of all pendent edges of F yields the agreement
forest consisting of isolated vertices. In the case that E is such a minimum set of edges, we say that F − E yields a
maximum-agreement forest for F and T ′. Observe that e(T ,T ′) = m(T ,T ′) = drSPR(T ,T ′).

2.3. Incompatible triples

A triple is a rooted binary phylogenetic tree with exactly three leaves. In the literature, triples are also called rooted
triples. We denote the triple with leaf set {a, b, c} that has the property that the path from a to b and the path from c

to the root are vertex disjoint by ab|c or, equivalently, ba|c.
Let T and T ′ be two rooted binary phylogenetic X-trees, and let F be a forest of T . Let {a, b, c} be a subset of X.

We say that ab|c is a triple of F if there is a component Ci of F whose label set contains a, b, and c and has the
property that Ci |{a, b, c} is ab|c. Analogously, ab|c is a triple of T ′ if T ′|{a, b, c} is ab|c. For example, ab|c and cd|a
are triples of the tree shown in Fig. 4. Furthermore, ab|c is an incompatible triple of F with respect to T ′ if ab|c is a
triple of F , but ab|c is not a triple of T ′. For such an incompatible triple, we define rabc to be the most recent common
ancestor of a and c in F (or equivalently b and c in F), and define rab to be the most recent common ancestor of a

and b in F .

M. Bordewich et al. / Journal of Discrete Algorithms 6 (2008) 458–471 463
Fig. 5. The layout of a pair of overlapping components Ts and Tt . The set S (resp. T) is the subset of Ls (resp. Lt) whose members lie below vst

in T ′ .

Let ab|c be a minimal incompatible triple of F with respect to T ′. We denote the child edge of rab leading to a by
ea and the child edge of rab leading to b by eb. Furthermore, we denote the child edge of rabc leading to rab by er .
Finally, let ec denote the first edge on the path from rabc to c with the property that, for all elements c′ of X − c

below ec , the triples cc′|a and cc′|b are triples of both F and T ′. We denote the parent vertex of the edge ec by rc .
Note that ec may be the parent edge of c. These definitions are illustrated in Fig. 4, where, for the moment, ignore the
dashed ovals and associated labels.

Lastly, we impose a partial order on the triples of F . In particular, we write ab|c < xy|z if (i) rabc is a descendant
of rxyz or (ii) rabc = rxyz and rab is a descendant of rxy . An incompatible triple of F with respect to T ′ is minimal if
it is minimal with respect to this partial order.

2.4. Overlapping components

Let T and T ′ be two rooted binary phylogenetic X-trees, and let F be a forest of T that contains no incompatible
triple with respect to T ′. Let Ts and Tt be two components of F with label sets Ls and Lt . It is important to note that,
because of this assumption on triples, T |Ls = Ts |Ls = T ′|Ls and T |Lt = Tt |Lt = T ′|Lt . We say Ts and Tt overlap
in T ′ if T ′(Ls) and T ′(Lt) share a common vertex. For such a pair of overlapping components, we define a minimal
common vertex, vst say, in T ′ to be a minimal vertex in T ′(Ls) ∩ T ′(Lt) with respect to the partial order on vertices
in T ′. Furthermore, with respect to the partial order on edges of F , we let es denote the minimal edge in F whose set
of descendants in X is precisely the descendants of vst in Ls . Analogously, we let et denote the minimal edge in F
whose set of descendants in X is precisely the descendants of vst in Lt . These definitions are illustrated in Fig. 5.

3. Approximation algorithm

In this section we present our polynomial-time 3-approximation algorithm for RSPR, and state the key lemma and
resulting theorem proving the correctness of this algorithm. We will prove the theorem in this section, but the proof
of the lemma, Lemma 3.1, is deferred until the last section.

Called SPR-APPROX, the pseudocode for the approximation algorithm is given in Algorithm 3.1, while an intuitive
description of the algorithm and why it works is given below. The algorithm SPR-APPROX takes as input two rooted
binary phylogenetic X-trees T and T ′. It proceeds by deleting edges from T to obtain a forest F of T , until F yields
an agreement forest of T and T ′. To obtain such a forest, it iteratively finds a minimal incompatible triple ab|c of F
with respect to T ′, and deletes the associated edges ea , ec, and er from F . When there are no more incompatible
triples of F with respect to T ′, the algorithm iteratively finds components Ts and Tt of F which overlap in T ′, and
deletes the associated edges es and et . When there are no more overlapping components, F yields an agreement forest
for T and T ′, and the algorithm outputs both the forest F and the number of edges that have been deleted. We show
in Lemma 3.1 that, whenever we delete a set of edges from F corresponding to either an incompatible triple of F with
respect to T ′ or a pair of components in F that overlap in T ′, the value e(F ,T ′) decreases by at least one. Since we

464 M. Bordewich et al. / Journal of Discrete Algorithms 6 (2008) 458–471
delete at most three edges at each iteration, it follows that the entire run of the algorithm deletes at most three times
more edges than the minimal possible.

The proof of the following lemma is given in the last section.

Lemma 3.1. Let T and T ′ be two rooted binary phylogenetic X-trees, and let F be a forest of T .

(i) If there exists a minimal incompatible triple ab|c of F with respect to T ′, then

e
(
F − {ea, ec, er},T ′) � e(F ,T ′) − 1.

(ii) If there is no incompatible triple of F with respect to T ′, but there exist two components Ts and Tt of F that
overlap in T ′, then, for some j ∈ {s, t},

e(F − ej ,T ′) = e(F ,T ′) − 1.

(iii) If there is no incompatible triple of F with respect to T ′, and no two components of F that overlap in T ′, then

e(F ,T ′) = 0.

Theorem 3.2. Let T and T ′ be two rooted binary phylogenetic X-trees, and let n = |X|. Let (F , k) be the output of
SPR-APPROX(T ,T ′). Then F is an agreement forest for T and T ′, and k is a 3-approximation for drSPR(T ,T ′).
Moreover, the running time of SPR-APPROX is O(n5).

Proof. Referring to Algorithm 3.1, suppose that in the running of SPR-APPROX(T ,T ′) there were k1 iterations of
the first while loop, and k2 iterations of the second while loop. We begin by showing that

(3.1)k1 + k2 � drSPR(T ,T ′) � 3k1 + 2k2 = k.

To this end, let F0 = T and, for all i ∈ {1,2, . . . , (k1 + k2)}, let Fi be the forest generated after the first i iterations of
the while loops in SPR-APPROX(T ,T ′). We first prove by induction that, for all i,

(3.2)e(Fi ,T ′) + i � e(T ,T ′) � e(Fi ,T ′) + 3i1 + 2i2,

where i1 = min{i, k1} and i2 = max{i − k1,0}.
For i = 0, (3.2) trivially holds. Now suppose that (3.2) holds for all i′ < i, where i′ � 0. If i � k1, i.e. the ith

iteration is in the first while loop, then, by the inductive hypothesis,

e(Fi−1,T ′) + (i − 1) � e(T ,T ′) � e(Fi−1,T ′) + 3(i − 1).

By Lemma 3.1(i), e(Fi ,T ′) � e(Fi−1,T ′) − 1, hence e(Fi ,T ′) + i � e(T ,T ′). Furthermore, since Fi has three
fewer edges than Fi−1, we have e(Fi−1,T ′) � e(Fi ,T ′) + 3, so e(T ,T ′) � e(Fi ,T ′) + 3i and (3.2) holds.

F ← T
k ← 0
while there exists an incompatible triple of F with respect to T ′

do

⎧⎪⎨
⎪⎩

ab|c ← minimal incompatible triple of F with respect to T ′
E ← {ea, ec, er } with respect to ab|c
F ← F − E

k ← k + 3

while there exist a pair of components in F that overlap in T ′

do

⎧⎪⎨
⎪⎩

Ts ,Tt ← components of F overlapping in T ′
E ← {es , et } with respect to Ts ,Tt

F ← F − E

k ← k + 2

return (F , k)

Algorithm 3.1. SPR-Approx(T ,T ′).

M. Bordewich et al. / Journal of Discrete Algorithms 6 (2008) 458–471 465
If i > k1, then the ith iteration is in the second while loop. Therefore, by the inductive hypothesis,

e(Fi−1,T ′) + (i − 1) � e(T ,T ′) � e(Fi−1,T ′) + 3k1 + 2(i − k1 − 1).

By Lemma 3.1(ii), e(Fi ,T ′) � e(Fi−1,T ′) − 1, and so e(Fi ,T ′) + i � e(T ,T ′). Now Fi has two fewer edges than
Fi−1, so e(Fi−1,T ′) � e(Fi ,T ′) + 2. Thus e(T ,T ′) � e(Fi ,T ′) + 3k1 + 2(i − k1) and (3.2) holds.

It now follows by (3.2) that

e(F ,T ′) + k1 + k2 � e(T ,T ′) � e(F ,T ′) + 3k1 + 2k2.

Since there are no more while loops to complete, Lemma 3.1(iii) implies that e(F ,T ′) = 0. Recalling that e(T ,T ′) =
drSPR(T ,T ′), we obtain (3.1). Hence k is a 3-approximation for drSPR(T ,T ′).

In order to bound the running time of SPR-APPROX, note that there are at most O(n) iterations. Each iteration in
the first while loop involves finding a minimal incompatible triple. There are O(n3) triples of F to consider, and a
minimal incompatible triple of F with respect to T ′ can be found in time O(n4), if one exists. Once such a minimal
incompatible triple is found, determining and deleting the edges ea , ec , and er can certainly be done in time O(n4).
Each iteration in the second while loop involves finding a pair of components in F that overlap in T ′. There are O(n2)

pairs of components of F to consider, and such a pair of overlapping components can be found in time O(n3), if one
exists. Again, once the pair is found, determining and deleting the edges es and et is fast. Hence each iteration takes
time at most O(n4) and the overall running time is O(n5) as claimed. �
4. Fixed-parameter algorithm

In this section we present our fixed-parameter algorithm, SPR-EXACT, for RSPR. Like SPR-APPROX, the proof
of its correctness depends upon a key lemma. The proof of this lemma, Lemma 4.1, is deferred until the last section,
while the theorem stating this correctness is established here.

The pseudocode for SPR-EXACT is given in Algorithm 4.1, while an intuitive description of the algorithm and
its correctness is given below. The algorithm SPR-EXACT takes as input two rooted binary phylogenetic X-trees T
and T ′, and a parameter k. It proceeds in a similar fashion to SPR-APPROX: deleting edges from T to obtain a forest
F of T , until F yields an agreement forest of T and T ′. However, instead of deleting a set E of edges from F at each
iteration, it branches into |E| computation paths with each path corresponding to the deletion of one element of E.

F ← T
if k < 0

do return(no)

else if there exists an incompatible triple of F with respect to T ′

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ab|c ← minimal incompatible triple of F with respect to T ′
E ← {ea, eb, ec, er } with respect to ab|c
Ansa ← SPR-EXACT(F − ea,T ′, k − 1)

Ansb ← SPR-EXACT(F − eb,T ′, k − 1)

Ansc ← SPR-EXACT(F − ec,T ′, k − 1)

Ansr ← SPR-EXACT(F − er ,T ′, k − 1)

if Ansa = yes or Ansb = yes or Ansc = yes or Ansr = yes
do return (yes)
else return (no)

else if there exists a pair of components of F that overlap in T ′

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ts ,Tt ← components of F overlapping in T ′
E ← {es , et } with respect to Ts ,Tt

Anss ← SPR-EXACT(F − es ,T ′, k − 1)

Anst ← SPR-EXACT(F − et ,T ′, k − 1)

if Anss = yes or Anst = yes

do return (yes)
else return (no)

else return (yes)

Algorithm 4.1. SPR-EXACT(T ,T ′, k).

466 M. Bordewich et al. / Journal of Discrete Algorithms 6 (2008) 458–471
As with SPR-APPROX, the algorithm SPR-EXACT begins by iteratively finding a minimal incompatible triple ab|c
of F with respect to T ′, and deleting each of the associated edges ea, eb, ec and er from F in a separate computation
path. When, with respect to T ′, there are no more incompatible triples between F and T ′, the algorithm iteratively
finds components Ts and Tt of F which overlap in T ′, and deletes each of the associated edges es and et in a separate
computation path.

The algorithm runs for at most k iterations before declaring either that along some computation path it has reached
a forest F which yields an agreement forest for T and T ′, or that no such forest can be obtained by deleting k or fewer
edges. We show in Lemma 4.1 that in each iteration, one of the computation paths deletes a single edge from F such
that e(F ,T ′) decreases by one. This means that the algorithm does find a solution if one exists. Since we branch into
at most four paths in each iteration and it turns out that each iteration takes time O(n4), it follows that the entire run
of the algorithm takes time O(4kn4), where n = |X|. The remark at the end of this section explains how the running
time can be improved to O(4kk4 + n3), as claimed in the introduction.

The proof of the following lemma is given in the last section.

Lemma 4.1. Let T and T ′ be two rooted binary phylogenetic X-trees, and let F be a forest of T .

(i) If there exists a minimal incompatible triple ab|c of F with respect to T ′, then, for some i ∈ {a, b, c, r},
e(F − ei,T ′) = e(F ,T ′) − 1.

(ii) If there is no incompatible triple of F with respect to T ′, but there exist two components Ts and Tt of F that
overlap in T ′, then, for some j ∈ {s, t},

e(F − ej ,T ′) = e(F ,T ′) − 1.

(iii) If there is no incompatible triple of F with respect to T ′, and no two components of F that overlap in T ′, then

e(F ,T ′) = 0.

Theorem 4.2. Let T and T ′ be two rooted binary phylogenetic X-trees, and let n = |X|. Let k be an integer. Then the
output of SPR-EXACT(T ,T ′, k) is ‘yes’ if and only if drSPR(T ,T ′) � k. Moreover, the running time of SPR-EXACT

is O(4kn4).

Proof. Using induction on k, we first show that, for any forest F of T , the output of SPR-EXACT(F,T ′, k) is ‘yes’
if and only if e(F ,T ′) � k. Since drSPR(T ,T ′) = e(T ,T ′), it will follow that the output of SPR-EXACT(T ,T ′, k) is
‘yes’ if and only if drSPR(T ,T ′) � k.

If k = 0, then all calls to SPR-EXACT from within SPR-EXACT(F,T ′, k) will have parameter −1 and therefore
return ‘no’. Thus SPR-EXACT(F,T ′, k) outputs ‘yes’ precisely if F is a forest of T ′, and so e(F ,T ′) = 0,

Now suppose that the algorithm returns the correct answer whenever the input parameter is at most k′, where
k′ � 0 and k′ + 1 = k. First assume that e(F ,T ′) > k′ + 1. Then, for all edges ei , we have e(F − ei,T ′) > k′.
Therefore, within the algorithm SPR-EXACT(F,T ′, k′ + 1), Ansi = no for all i ∈ {a, b, c, r, s, t} since each call
to SPR-EXACT(F − ei,T ′, k′) returns ‘no’. Furthermore, since F is not a forest of T ′, there is either some in-
compatible triple of F with respect to T ′, or some pair of components of F overlap in T ′. Hence, in this case,
SPR-EXACT(F,T ′, k) returns ‘no’.

Now assume that e(F,T ′) � k′ + 1. There are three cases to consider:

(i) there exists a minimal incompatible triple ab|c of F with respect to T ′,
(ii) there is no incompatible triple of F with respect to T ′, but there exist Ts and Tt , two components of F such that

Ts and Tt overlap in T ′, and
(iii) there is no incompatible triple of F with respect to T ′, and no two components of F that overlap in T ′.

If (i) holds, then, by Lemma 4.1(i), there is some i ∈ {a, b, c, r} such that e(F−ei,T ′) = e(F ,T ′)−1 � k′. Hence, by
the induction hypothesis, Ansi in SPR-EXACT(F,T ′, k) returns ‘yes’. If (ii) holds, but not (i), then, by Lemma 4.1(ii),
there is some j ∈ {s, t} such that e(F − ej ,T ′) = e(F,T ′) − 1 � k′, and so, by the induction hypothesis, Ansj in

M. Bordewich et al. / Journal of Discrete Algorithms 6 (2008) 458–471 467
SPR-EXACT(F,T ′, k) returns ‘yes’. Lastly, if (iii) holds, then SPR-EXACT(F,T ′, k) returns ‘yes’. Hence the output
of SPR-EXACT(F,T ′, k′ + 1) is ‘yes’ if and only if e(F ,T ′) � k′ + 1 = k.

We bound the running time of SPR-EXACT by induction on k. If k = −1, then the algorithm answers ‘no’ in
constant time. Now suppose that the running time of SPR-EXACT is O(4k′

n4) for all k′, where −1 � k′ < k. As for
SPR-APPROX, determining if there exists, and if so finding, a minimal incompatible triple of F with respect to T ′
can be done in time O(n4), while determining the existence of, and finding a pair of components in F that overlap
in T ′ can be done in time O(n3). Since the algorithm makes at most four calls to SPR-EXACT, each with parameter
k − 1, the running time is O(n4 + 4 · 4k−1n4) = O(4kn4) as claimed. �
Remark. The running time of SPR-EXACT can be easily improved to O(4kk4 +n3) by first applying the kernalization
of Bordewich and Semple [3]. This kernalization can be computed in time O(n3) [5] and involves two types of
reductions each of which reduces the size of the label sets of the two initial trees T and T ′ while preserving the rSPR
distance between them. At the completion of the kernalization, the resulting two rooted binary phylogenetic trees, T̂
and T̂ ′ say, have leaf sets of size at most 28drSPR(T ,T ′). Thus, if the size of the leaf set of T̂ is greater than 28k we
answer ‘no’; otherwise we input (T̂ , T̂ ′, k) to SPR-EXACT, which now runs in time O(4kk4).

5. Proofs of Lemmas 3.1 and 4.1

In this section we prove the two key lemmas of the paper, namely, Lemmas 3.1 and 4.1. The proofs of these lemmas
will in turn require some additional lemmas.

Let F be an arbitrary forest of a rooted binary phylogenetic X-tree T , and let u and v be vertices of F . We will
write u ∼ v if u and v are in the same component of F , or equivalently, if F contains a (undirected) path from
u to v. For the purposes of this section, two forests F and F ′ of T are isomorphic if they consist of components
Cρ,C1,C2, . . . ,Ck and C′

ρ,C′
1,C′

2, . . . ,C′
k , respectively, such that, up to the ordering of these components, the label sets

of Ci and C′
i agree for all i ∈ {ρ,1,2, . . . , k}. Essentially, two forests of T are isomorphic precisely if their components

partition X +ρ in the same way. Observe that if F and F ′ are isomorphic, then Ci |Li = C′
i |Li for all i ∈ {ρ,1, . . . , k},

where Li is the common label set of Ci and C′
i . The first of the additional lemmas, Lemma 5.1, will be used frequently

in this section.

Lemma 5.1. Let T be a rooted binary phylogenetic X-tree and let F be a forest of T . Let e and f be edges in the
same component of F , and let E be a subset of edges of F such that f ∈ E but e /∈ E. Let vf be the end-vertex of f

closest to e and let ve be an end-vertex of e. If

(i) vf ∼ ve in F − E, and
(ii) for all x ∈ X + ρ, we have x �∼ vf in F − (E + e),

then F − (E − f + e) is isomorphic to F − E.

Proof. It suffices to show that if x, y ∈ X + ρ, then x ∼ y in F − E if and only if x ∼ y in F − (E − f + e).
First suppose that x ∼ y in F − E, but x �∼ y in F − (E − f + e). Then the path from x to y in F − E uses e,
but not f . Therefore (i) implies that either x ∼ vf or y ∼ vf in F − (E + e); a contradiction to (ii). Thus x ∼ y in
F − (E − f + e).

Now suppose that x �∼ y in F − E, but x ∼ y in F − (E − f + e). Then the path from x to y in F − (E − f + e)

uses f , but not e. But then either x ∼ vf or y ∼ vf in F − (E + e); again a contradiction to (ii). Thus x �∼ y in
F − (E − f + e), completing the proof of the lemma. �

Throughout the rest of this section, T and T ′ will always denote two rooted binary phylogenetic X-trees, and F will
always denote a forest of T . Also, E will denote a subset of edges of F such that F −E yields a maximum-agreement
forest for F and T ′. Moreover, extending the notation introduced earlier, let ab|c be a minimal incompatible triple of
F with respect to T ′. Relative to F , we will use A, B , and C to denote the subsets of X that are descendants of ea , eb ,
and ec, respectively. Furthermore, D1 and D2 will denote those subsets of X − (A+B +C) such that ad1|c is a triple
of F for all d1 ∈ D1, and cd2|a is a triple of F for all d2 ∈ D2. Observe that if X′ is the set of descendant labels of

468 M. Bordewich et al. / Journal of Discrete Algorithms 6 (2008) 458–471
rabc , then D1 and D2 partition the set X′ − (A + B + C). These definitions are illustrated in Fig. 4. The above set-up
will simplify the statements of the upcoming lemmas.

Lemma 5.2. Let ab|c be a minimal incompatible triple of F with respect to T ′. Then

(i) For all a′ ∈ A, y ∈ B + D1, and c′ ∈ C, the triple a′y|c′ is an incompatible triple of F with respect to T ′.
(ii) If there exist a′ ∈ A and y ∈ B + D1 such that a′ ∼ y in F − E, then c′ �∼ d ′ in F − E for all c′ ∈ C and

d ′ ∈ D1 + D2.

Proof. For the proof of (i), suppose that there are elements a′ ∈ A, y ∈ B + D1, and c′ ∈ C such the a′y|c′ is a triple
of T ′. First assume that |A|, |B|, |C| � 2. By the minimality of ab|c, we have that aa′|c′ is a triple of T ′, and so
ay|c′ must be a triple of T ′. Also, by the definition of ec, the triple cc′|a is a triple of T ′, so ay|c is a triple of T ′. If
y ∈ B , then by|c is a triple of T ′ and so it follows that ab|c is a triple of T ′; a contradiction. If y ∈ D1, then, by the
minimality of ab|c, we have that ab|y is a triple of T ′. Again it follows that ab|c is a triple of T ′; a contradiction.
Furthermore, if A = {a}, B = {b}, or C = {c}, then the analogous arguments work, thus completing the proof of (i).

To prove (ii), suppose that there are elements a′ ∈ A, y ∈ B + D1, c′ ∈ C, and d ′ ∈ D1 + D2 such that a′ ∼ y

and c′ ∼ d ′ in F − E. By (i), the components of F − E containing a′ and y, and containing c′ and d ′ are distinct.
Furthermore, as a′y|c′ is an incompatible triple of T ′, either yc′|a′ or a′c′|y is a triple of T ′. Since a′ ∼ y and c′ ∼ d ′
in F −E, this implies that both c′d ′|a′ and c′d ′|y are triples of T ′. Assume that c′ �= c and a′ �= a. Then, as cc′|a and,
by minimality, aa′|c are triples of T ′, it is routine to check that cd ′|a is a triple of T ′. If c′ = c or a′ = a, an analogous
but easier argument shows that cd ′|a is a triple of T ′. This fact about cd ′|a is used several times in the remainder of
the proof.

There are three disjoint cases to consider depending upon the location of d ′: (I) d ′ is in D1; (II) d ′ is in D2 but is
not descendant of rc; and (III) d ′ is a descendent of rc .

In (I), since the components of F − E containing a′ and y, and c′ and d ′ are disjoint, a′y|d ′ is a triple of F .
Moreover, by the minimality of ab|c, we have that a′y|d ′ is a triple of T ′. Therefore, as c′ ∼ d ′ in F − E, it follows
that a′y|c′ is a triple of T ′; a contradiction to (i).

If rc is the same as rabc , then neither (II) nor (III) arises, so we may assume that rc is not the same as rabc . Then,
by the definition of ec, there is an element d ∈ D2 that is a descendant of rc such that either cd|a or cd|b is an
incompatible triple of F with respect to T ′. Without loss of generality, we may assume that cd|a is an incompatible
triple of F with respect to T ′.

Consider (II). In this case, cd|d ′ is a triple of F . Since cd ′|a is a triple of T ′, but cd|a is not, cd|d ′ is not a triple
of T ′. Thus cd|d ′ is an incompatible triple of F with respect to T ′, contradicting the minimality of ab|c.

Lastly, consider (III). If d = d ′, then cd ′|a is an incompatible triple of F with respect to T ′, contradicting the fact
that cd ′|a is a triple of T ′. Therefore assume that d �= d ′. Then dd ′|c is a rooted triple of F . Since cd ′|a is a triple of
T ′, but cd|a is not, dd ′|c is not a triple of T ′. Hence dd ′|c is an incompatible triple of F with respect to T ′, again
contradicting the minimality of ab|c. This completes the proof of the lemma. �
Lemma 5.3. Let ab|c be an incompatible triple of F with respect to T ′. Then there exists an edge f ∈ E such that,
for some i ∈ {a, b, c, r}, the forest F − (E − f + ei) is isomorphic to F − E.

Proof. First suppose that, for all a′ ∈ A, we have a′ �∼ rab in F − E. Then take f to be the first edge in E that is on
the path from rab to a in F . It follows by Lemma 5.1 that F − E is isomorphic to F − (E − f + ea). Similarly, if
b′ �∼ rab (resp. c′ �∼ rc) in F − E for all b′ ∈ B (resp. c′ ∈ C), then taking f to be the first edge in E on the path from
rab to b (resp. rc to c) in F , we have that F − E is isomorphic to F − (E − f + eb) (resp. F − (E − f + ec)).

Now suppose that there are elements a′ ∈ A, b′ ∈ B , and c′ ∈ C such that a′ ∼ rab ∼ b′ and c′ ∼ rc in F − E. By
Lemma 5.2(i), a′b′|c′ is not a triple in T ′, so there is an edge in E that is on the path from rab to rc in F . Let f be the
edge in E on this path that lies closest to rc .

There are two cases to consider depending upon the location of f . Firstly, assume that f is on the path from rabc

to rc . Since c′ ∼ rc in F − E, it follows by Lemma 5.2 that d ′ �∼ rc in F − E for all d ′ ∈ D1 + D2. Therefore, by
Lemma 5.1, F − E is isomorphic to F − (E − f + ec). Secondly, assume that f is on the path from rab to rabc .

M. Bordewich et al. / Journal of Discrete Algorithms 6 (2008) 458–471 469
Since f was chosen closest to rc, we have that c′ ∼ rabc in F − E. Thus, by Lemma 5.2, d ′ �∼ rabc in F − E for all
d ′ ∈ D1 + D2; otherwise c′ ∼ d ′ in F − E. Hence, by Lemma 5.1, F − E is isomorphic to F − (E − f + er). �
Lemma 5.4. Let ab|c be an incompatible triple of F with respect to T ′. Then there exists an edge f ∈ E such that
F − (E − f + {ea, ec, er}) is isomorphic to a subforest of F − E.

Proof. Similar to the proof of Lemma 5.3, first suppose that, for all a′ ∈ A (resp. c′ ∈ C), we have a′ �∼ rab (resp.
c′ �∼ rc) in F −E. Take f to be the first edge in E on the path from rab to a (resp. rc to c) in F . Then, by Lemma 5.1,
F − E is isomorphic to F − (E − f + ea) (resp. F − (E − f + ec)), and so the statement of the lemma holds.
Therefore, suppose that there are elements a′ ∈ A and c′ ∈ C such that a′ ∼ rab and c′ ∼ rc in F − E.

Assume there exists some y ∈ B + D1 such that y ∼ rab ∼ a′ in F − E. By Lemma 5.2, a′y|c′ is an incompatible
triple of T ′ and, for all d ′ ∈ D1 + D2, we have c′ �∼ d ′ in F − E. Hence c′ �∼ y in F − E, so E contains some edge
on the path from rab to rc . Now let f be the closest such edge to rc . If f is on the path from rabc to rc, then, by
Lemma 5.1, F − E is isomorphic to F − (E − f + ec). If f is on the path rab to rabc , then c′ ∼ rabc and so, by
Lemma 5.2, d ′ �∼ rabc for all d ′ ∈ D1. Therefore, by Lemma 5.1, F − E is isomorphic to F − (E − f + er). Thus
under this assumption the lemma holds.

On the other hand, now assume that there is no y ∈ B + D1 such that y ∼ rab ∼ a′ in F − E. Then, in particular,
b′ �∼ rab for all b′ ∈ B . Under this assumption, take f to be the first edge in E on the path from rab to b in F . To show
that F − (E −f +{ea, ec, er}) is isomorphic to a subforest of F −E it is enough to show that for all x, y ∈ X+ρ such
that x ∼ y in F − (E − f + {ea, ec, er}), we have x ∼ y in F − E. So, for the purposes of obtaining a contradiction,
suppose that there exist x, y ∈ X + ρ such that x ∼ y in F − (E − f + {ea, ec, er}), but x �∼ y in F − E. Then, in
F − (E − f + {ea, ec, er}), the path from x to y contains f but none of the elements in {ea, ec, er}. It follows that,
without loss of generality, x ∈ B and, moreover, that y /∈ A. Furthermore, by Lemma 5.1, F − E is isomorphic to
F − (E − f + eb), and so y /∈ B . Since er is not in the path from x to y in F − (E − f + {ea, ec, er}), it follows that
y ∈ D1, implying that y ∼ rab; a contradiction. This completes the proof of the lemma. �
Lemma 5.5. Suppose that no triple of F is incompatible with T ′. Let Ts and Tt be two components of F such that Ts

and Tt overlap in T ′. Then there exists an edge f ∈ E such that, for some i ∈ {s, t}, the forest F − (E − f + ei) is
isomorphic to F − E.

Proof. With respect to Ts and Tt , let vst be a minimal common vertex of T ′. Furthermore, let S denote the subset
of Ls that are descendants of vst in T ′ and let T denote the subset of Lt that are descendants of vst in T ′, where
Ls and Lt are the label sets of Ts and Tt , respectively. Recall that es is the minimal edge in F whose set of label
descendants is precisely S and et is the minimal edge in F whose set of label descendants is precisely T (see Fig. 5).
Since F − E yields a maximum-agreement forest for F and T ′, either (I) there is no path in F − E connecting an
element in S with an element in Ls − S or (II) there is no path in F − E connecting an element in T with an element
in Lt − T .

Without loss of generality, we may assume that (I) holds. If es ∈ E, then the statement holds trivially with f = es ,
so suppose es /∈ E and let rs be an end-vertex of es . Then either (i), for all s′ ∈ S, we have s′ �∼ rs in F − E or (ii),
for all s′′ ∈ Ls − S, we have s′′ �∼ rs in F − E. If (i) holds, then fix an element s1 ∈ S and take f to be the first edge
on the path from rs to s1 in F which is in E. If (ii) holds, then fix an element s2 ∈ Ls − S and take f to be the first
edge on the path from rs to s2 in F which is in E. In either case, Lemma 5.1 implies that F − E is isomorphic to
F − (E − f + es). This completes the proof of the lemma. �

At last, we prove the two key lemmas of the paper.

Proof of Lemma 3.1. First suppose that ab|c is a minimal incompatible triple of F with respect to T ′. Let E be
a minimum subset of edges of F such that F − E yields a maximum-agreement forest of F and T ′. Note that
|E| = e(F ,T ′). By Lemma 5.4, there exists an f ∈ E such that F − (E − f + {ea, ec, er}) is a subforest of F − E.
Hence F − (E −f +{ea, ec, er}) yields an agreement forest of F −{ea, ec, er} and T ′. Thus e(F −{ea, ec, er},T ′) �
|E − f | = e(F ,T ′) − 1. This inequality gives (i) in the statement of the lemma.

470 M. Bordewich et al. / Journal of Discrete Algorithms 6 (2008) 458–471
Now suppose F contains no incompatible rooted triple with respect to T ′, but it does contain two components
Ts and Tt that overlap in T ′. Let E be a minimum subset of edges of F such that F − E yields a maximum-
agreement forest of F and T ′. By Lemma 5.5, there exists an f ∈ E and j ∈ {s, t} such that F − E is isomorphic to
F − (E −f +ej). Thus F − (E −f +ej) yields a maximum-agreement forest for F and T ′, and so F − (E −f +ej)

yields an agreement forest for F − ej and T ′. Therefore

e(F − ej ,T ′) � |E − f | = e(F ,T ′) − 1.

On the other hand,

e(F − ej ,T ′) � e(F,T ′) − ∣∣{ej }
∣∣ = e(F ,T ′) − 1.

Combining the last two inequalities gives (ii) in the statement of the lemma.
Lastly, suppose that F contains no incompatible triple with respect to T ′, and no two components that overlap

in T ′. Assume that F consists of components Cρ,C1,C2, . . . ,Ck , with label sets Lρ,L1, . . . ,Lk , respectively. Then,
as F is a forest of T , we have T |Li = Ci |Li for all i ∈ {ρ,1,2, . . . , k}, and the trees in {T (Li): i ∈ {ρ,1,2, . . . , k}}
are vertex disjoint subtrees of T . On the other hand, as F contains no incompatible triples with respect to T ′, every
triple of F is a triple of T ′ and so, by [14, Theorem 6.4.1], T ′|Li = Ci |Li for all i ∈ {ρ,1,2, . . . , k}. Furthermore, as
no two components of F overlap in T ′, the trees in {T ′(Li): i ∈ {ρ,1,2, . . . , k}} are vertex disjoint subtrees of T ′.
Hence F yields the agreement forest

{
Ci |Li : i ∈ {ρ,1,2, . . . , k}}

for T and T ′. Part (iii) now follows from the definition of e(F ,T ′). �
Proof of Lemma 4.1. Let ab|c be a minimal incompatible triple of F with respect to T ′, and let E be a minimum
subset of edges of F such that F − E yields a maximum-agreement forest of F and T ′. Note that |E| = e(F ,T ′).
By Lemma 5.3, there exists an f ∈ E and i ∈ {a, b, c, r} such that F − E is isomorphic to F − (E − f + ei). Hence
F − (E − f + ei) yields a maximum-agreement forest of F and T ′, and therefore F − (E − f + ei) yields an
agreement forest of F − ei and T ′. Thus

e(F − ei,T ′) � |E − f | = e(F ,T ′) − 1.

Moreover,

e(F − ei,T ′) � e(F,T ′) − ∣∣{ei}
∣∣ = e(F ,T ′) − 1.

Combining the last two inequalities gives (i).
Parts (ii) and (iii) in the statement coincide with Lemma 3.1(ii) and (iii), and so this completes the proof of the

lemma. �
Acknowledgements

The first author was supported by an EPSRC postdoctoral fellowship (EP/D063574/1), while the second and third
authors were supported by the New Zealand Marsden Fund.

References

[1] S. Arora, Polynomial time approximation scheme for Euclidean TSP and other geometric problems, in: Proc. IEEE FOCS’96, 1996, pp. 2–11.
[2] M.L. Bonet, K.St. John, R. Mahindru, N. Amenta, Approximating subtree distances between phylogenies, Journal of Computational Biol-

ogy 13 (2006) 1419–1434.
[3] M. Bordewich, C. Semple, On the computational complexity of the rooted subtree prune and regraft distance, Annals of Combinatorics 8

(2004) 409–423.
[4] M. Bordewich, C. Semple, Computing the minimum number of hybridisation events for a consistent evolutionary history, Discrete Applied

Mathematics 155 (2007) 914–928.
[5] M. Bordewich, C. Semple, Computing the hybridization number of two phylogenetic trees is fixed-parameter tractable, IEEE/ACM Transac-

tions on Computational Biology and Bioinformatics 4 (2007) 458–466.
[6] R. Downey, M. Fellows, Parameterized Complexity, Springer, New York, 1998.

M. Bordewich et al. / Journal of Discrete Algorithms 6 (2008) 458–471 471
[7] M. Hallett, C. McCartin, A faster FPT algorithm for the maximum agreement forest problem, Theory of Computing Systems 41 (2007)
539–550.

[8] M. Hallett, C. McCartin, F. Stephens, A faster FPT algorithm to compute the hybrid number between evolutionary trees, submitted for
publication.

[9] J. Hein, Reconstructing evolution of sequences subject to recombination using parsimony, Mathematical Biosciences 98 (1990) 185–200.
[10] J. Hein, T. Jing, L. Wang, K. Zhang, On the complexity of comparing evolutionary trees, Discrete Applied Mathematics 71 (1996) 153–169.
[11] W. Maddison, Gene trees in species trees, Systematic Biology 46 (1997) 523–536.
[12] L. Nakhleh, T. Warnow, C.R. Linder, K.St. John, Reconstructing reticulate evolution in species—theory and practice, Journal of Computational

Biology 12 (2005) 796–811.
[13] E.M. Rodrigues, M.-F. Sagot, Y. Wakabayashi, Some approximation results for the maximum agreement forest problem, in: Approximation,

Randomization and Combinatorial Optimization: Algorithms and Techniques (APPROX and RANDOM), in: Lecture Notes in Computer
Science, vol. 2129, Springer, Berlin, 2001, pp. 159–169.

[14] C. Semple, M. Steel, Phylogenetics, Oxford University Press, 2003.
[15] Y.S. Song, J. Hein, Parsimonious reconstruction of sequence evolution and haplotyde blocks: finding the minimum number of recombination

events, in: Algorithms in Bioinformatics (WABI 2003), in: Lecture Notes in Bioinformatics, vol. 2812, Springer, Berlin, 2003, pp. 287–302.

	A 3-approximation algorithm for the subtree distance between phylogenies
	Introduction
	Approximation algorithm
	Fixed-parameter algorithm

	Preliminaries
	Phylogenetic trees, forests, and partial orders
	Agreement forests
	Incompatible triples
	Overlapping components

	Approximation algorithm
	Fixed-parameter algorithm
	Proofs of Lemmas 3.1 and 4.1
	Acknowledgements
	References

