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a b s t r a c t

Brugada syndrome (BS) and early repolarization syndrome (ERS) are newly introduced electrical

disorders responsible for ventricular fibrillation (VF) and sudden cardiac death in patients with

structurally normal hearts. The electrocardiographic J wave, a hallmark of these two syndromes, plays

a critical role in the pathophysiology of malignant ventricular tachyarrhythmias. BS and ERS share

many clinical characteristics, including male preponderance, circadian distribution of VF episodes,

prevalence of concomitant atrial tachyarrhythmias, dynamic behavior of J waves, and response to

therapeutic managements. In this review, we compare the key clinical manifestations of BS and ERS

with their underlying cellular electrophysiologic mechanisms.

& 2013 Japanese Heart Rhythm Society. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Sudden cardiac death (SCD) in the absence of structural heart
diseases accounts for 5–10% of all sudden cardiac deaths and is
caused by primary electrical disorders or ion channel diseases
[1,2]. Identification of the ion channels and their genetic muta-
tions responsible for SCDs has opened a new area of translational
research in cardiac electrophysiology [3–8].

Long QT syndrome has been recognized as an important cause
of SCD [3]. The genetic mutation and the basic electrophysiologic
mechanisms in SCD were elucidated recently, long after the
rt Rhythm Society. Published by E
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recognition of its clinical entity [4]. In contrast, key cellular
electrophysiologic features underlying the development of ventri-
cular fibrillation (VF) associated with Brugada syndrome (BS) and
early repolarization syndrome (ERS) were described well before
the recognition of clinical entities [9–11]. Unlike other ion channel
diseases, BS and ERS share many electrocardiographic and clinical
features [5,12]. Both syndromes are represented by electrocardio-
graphic J waves that demonstrate similar dynamic behavior such as
a pause or bradycardia dependence and short-coupled extrasys-
tole-induced polymorphic ventricular arrhythmia [13]. J waves
can be suppressed in both ERS and BS with the administration of
isoproterenol and quinidine and with pacing. ERS and BS have
been reported to occur simultaneously in the same individual or in
different members of the same family [14]. In this review, we
describe similarities and differences in the cellular electrophysiol-
ogy and clinical features of BS and ERS.
lsevier B.V. All rights reserved.
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2. Demographic and arrhythmia characteristics: gender,
circadian pattern of VF, and atrial arrhythmias

The prevalence and arrhythmic risk of BS and ERS differ consider-
ably. The BS ECG pattern occurs rarely in the general population,
while the ER pattern is a common ECG phenomenon, especially in
young men and athletes (Fig. 1). The BS pattern portends a high risk
of developing arrhythmias, while the ER pattern portends a relatively
low risk of sudden death. In a Japanese population study, the
prevalence of the typical coved-type BS ECG is estimated to occur
in approximately 0.12% of the general population [15]. The odds ratio
of sudden unexpected death in this BS ECG group was 52.63, relative
to that of control subjects [16].

The prevalence of the ER pattern depends on the definition of
ER. When the traditional definition of ER (more emphasis on
the ST segment elevation with or without the J wave) is used,
the prevalence is approximately 2% [17,18]. When defined as J
wave41 mm regardless of the ST segment elevation (a new
definition), the prevalence is approximately 5–12% [19–23]. The
suggestion that ER may be associated with fatal ventricular tachyar-
rhythmia (VTA) resulted in considerable confusion in clinics because
of the high prevalence of ER in the general population. Over the past
several years, numerous case-control and population studies have
introduced a renewed concept on the prognosis of individuals with
the ER pattern [17–23]. In brief, ER can be categorized into several
types. The traditional definition of ER that emphasizes on the ST
segment elevation is not associated with adverse outcome [17,18].
The new definition of ER includes J wave with or without ST
segment changes. ER with ‘‘J wave and rapidly ascending ST
segment’’ is considered a benign variant. However, ‘‘J waves with
Fig. 1. Prevalence of early repolarization electrocardiograms in the general

population. All 1,395 patients had their ECG recorded between 1 May 2007 and

15 May 2007 at the department of Health Medicine, Asan Medical Center

(modified from reference [45] with permission).

Fig. 2. Circadian pattern of ventricular tachyarrhythmias in patients with Brugada syn

arrest as the initial presentation (blue column) and appropriate implantable-cardioverte

the number of ventricular tachyarrhythmias (cardiac arrest and appropriate shock) were

reference [32] with permission).
horizontal/descending ST segment’’ changes have been associated
with an increased risk of arrhythmic death [22]. There is confusion
because of the marginally increased risk of arrhythmic deaths.
Although statistically significant, the absolute value of the risk of
arrhythmic death in this group is still extremely low, with an odds
ratio of 13.8 for developing idiopathic VF in a case-control study [24]
and a relative risk of 1.43 for arrhythmic death in a population study
[22]. Before the publication of these studies, ER pattern was
regarded as ‘‘forme fruste’’ BS because of their similar electrocardio-
graphic and electrophysiologic background in basic experimental
studies [25,26]. Considering the low odds of malignant arrhythmia,
it is yet too premature to assume that all the subjects with ECG ER
pattern (even those with the malignant form of ER) require medical
attention for a risk of SCD.

Both ERS and BS show a strong male preponderance. In papers
published on BS, men account for approximately 70–90% of
patients. In the experimental model of canine wedge preparation,
the spike-and-dome morphology of the action potential (AP) was
more prominent in the male than in the female dog preparations
[27]. The prominent epicardial notch was caused by higher ITo

density in the male ventricular epicardial cells than in the female
preparations. This provides the electrophysiologic background for
male dog wedges to develop tachyarrhythmias (phase 2 reentry) in
response to class IC antiarrhythmic agents, the combined blockade
of Naþ and Ca2þ currents induced by terfenadine or increased
outward Kþ current induced by pinacidil [27]. This difference in AP
morphology is thought to underlie the gender-associated differ-
ences in the prevalence of ER pattern in the general population.

The difference in ventricular AP morphology observed between
male and female subjects may be related to the presence of different
sex hormones. Experiments in ovariectomized rats show that estro-
gen may be involved in one of the mechanisms responsible for the
reduction in Kv4.3 expression and function in the myometrium.
Testosterone has been reported to shorten the AP duration by
enhancing slowly activating delayed rectifier Kþ current (IKs) and
suppressing the L-type Ca2þ current (IcaL) [28]. Shimizu et al. showed
a strong positive association between BS and higher testosterone
levels (hypertestosteronemia) and a strong inverse association
between BS and body mass index [29]. The disappearance of the
Brugada phenotype after surgical castration is a direct evidence of the
role of sex hormones. Typical Brugada-type ECG patterns that had
persisted over several decades were eliminated after surgical castra-
tion [30]. In addition, it was reported that electrocardiographic
ST segment levels were significantly decreased after androgen-
deprivation therapy, which suggests that testosterone may modulate
the early phase of ventricular repolarization, as seen in patients with
BS and ERS [31].

The circadian variation of VF shows a similar nocturnal pattern
in patients with BS and ERS [32] (Fig. 2). This is in contrast to the
drome (BS) and early repolarization syndrome (ERS). Circadian patterns of cardiac

r defibrillator shocks (red column) in patients with ERS and BS. Significant peaks in

observed between 12 AM and 6 AM in both the ERS and BS groups (modified from
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circadian pattern of VTAs in patients with ischemic heart diseases
[33]. In a Korean cohort of patients with ERS and BS who
underwent implantable cardioverter defibrillator (ICD) implanta-
tion, the timing of VTAs, including that of cardiac arrest and
appropriate shocks, peaked between midnight and early morning
(12 AM and 6 AM). A significant seasonal peak of appropriate
shocks was observed between spring and summer in patients
with ERS, whereas no such consistent seasonal pattern was
observed in patients with BS [33].

VTAs in patients with structural heart diseases occur more
commonly during the daytime and in winter when the ventricular
myocardium is more vulnerable to ischemia. This is associated
with neurohumoral activation (plasma catecholamine concentra-
tion) that results in increased cardiac workload, higher coronary
resistance, higher blood pressure, and increased blood viscosity
during the daytime and in the winter. Ventricular refractoriness
shows a consistent variation, with the shortest refractory period
observed during waking hours and the longest observed during
sleep. This ventricular myocardial status may provide additional
risk in the maintenance of VF under acute ischemia [34].

The similarity in the circadian patterns of ERS and BS may be due
to their shared effect of vagal activity. Vagal activity is highest
during the night when the incidence of cardiac arrest and appro-
priate shock peaks in ERS and BS patients, whereas sympathetic
activity is highest in the morning and in winter when the incidence
of VTAs peaks in patients with structural heart diseases [35]. The
loss of the epicardial AP dome is the basis for an elevated J point and
ST segment elevation, and phase 2 reentry serves as a trigger of
circus movement reentry that are responsible for VF in patients with
BS. The loss of the epicardial dome (BS) or the depression of
epicardial plateau (ERS) is caused by an outward shift in the balance
of currents at the end of phase 1 of the AP. Vagal stimulation or
autonomic neurotransmitters such as acetylcholine facilitate loss of
the epicardial AP dome by suppressing ICa and/or augmenting
potassium current, whereas b-adrenergic agonists restore the dome
by augmenting ICa. These experimental results are in line with the
circadian distribution of VF in BS and ERS patients.

Atrial tachyarrhythmias have been documented in a significant
proportion of patients with BS and are an important cause of
inappropriate shock. The incidence of atrial tachyarrhythmias and
the development of inappropriate shock is also similar in patients
with BS and ERS [36]. In our Korean patient cohort of BS and ERS,
during a mean follow-up of approximately 5 years, no significant
differences were found in the prevalence of atrial tachyarrhyth-
mias (mostly atrial fibrillation) and in the incidence of inap-
propriate shocks due to these atrial tachyarrhythmias. It is
speculated that the arrhythmogenic substrate in both BS and
ERS is not restricted to the ventricular level but may be extended
to the atrium [37].
3. Cellular electrophysiologic basis of BS and ERS

Ventricular AP exhibits considerable variation or regional
difference across the transmural direction of the ventricular
myocardium. The J wave originates from the heterogeneous
distribution of a transient outward current-mediated spike-and-
dome morphology of the AP across the ventricular wall. The
presence of a prominent AP notch in the epicardium but not in the
endocardium provides a voltage gradient that manifests as a J
wave or as an elevated J-point in the ECG [38,39]. This unique
epicardial AP shape indicates that epicardial repolarization is
more susceptible to changes in response to drive cycle lengths,
extrastimulation, drugs, or ischemia [40–42]. The heterogeneous
loss of the AP dome caused by ischemia, bradycardia, or pharma-
cologic interventions (sodium channel blocker flecainide or
acetylcholine) results in the development of a large dispersion
of repolarization within the epicardium by abbreviation and
marked prolongation of AP durations [40–42]. A dispersion of
repolarization also occurs between the epicardial and M cell APs.
This exaggerated dispersion of repolarization is followed by local
re-excitation (phase 2 reentry) because of the AP dome propagat-
ing from sites where it was maintained to sites where it was
abolished. The ECG J wave, a clinical marker of the AP notch,
represents the vulnerability of the epicardial AP to a sudden
disappearance of the AP dome (known as all-or-none repolariza-
tion) and susceptibility to fatal VTAs (Fig. 3A).

Based on the close relationship of the canine wedge model to
human ECGs, individuals with prominent J waves (ERS) or J/ST
elevation (BS) are thought to have accentuated ventricular AP notch
and the potential to lose their AP dome because of extrinsic factors
such as vagal stimulation, sodium channel blocker, or ischemia. The
known genetic mutations discovered in patients with BS are
compatible with the above electrophysiologic abnormalities. Loss-
of-function mutations in the genes responsible for inward sodium
current (INa) and inward calcium current (ICa) cause a decrease in the
inward current components of the AP and gain-of-function muta-
tions in the transient outward potassium current (ITo), ATP-
dependent potassium current (IK-ATP) genes cause an increase in
the outward current components. This results in a net outward shift
in the balance of currents, rendering the AP dome more susceptible
to collapse. The sudden disappearance of the AP dome markedly
abbreviates the AP duration while the repolarization duration is
maintained where the AP dome is preserved (Fig. 3A).

The basic electrophysiology underlying normal J/ST/T wave,
ER, and BS ECGs is a continuous spectrum. In normal hearts, the J
wave is not prominent, and the ST segment is isoelectric because
there are no voltage gradients in the AP plateau phase. In some
physiologic or pathologic conditions (genetic, hormonal, or drug
induced) in which the AP notch is accentuated either by poor
inward currents or increased outward currents, the voltage
gradients manifest as J wave and ST segment elevation. Accent-
uation of the AP notch is more pronounced in the right ventricular
epicardium, where the notch is intrinsically more prominent.
Until these changes progress to a certain degree, the T wave
remains positive because the epicardial repolarization is followed
by endocardial and M cell repolarization. This explains the typical
ECG features of ER pattern (Fig. 3B, left panel). As these electro-
physiologic processes become more pronounced, further accent-
uation of the AP notch delays development of ICa, delaying the
epicardial dome and repolarization even later than that of the M
cell or endocardial regions. This reverses the final repolarization
sequence through the transmural myocardial layers, inducing a
coved-type ST segment elevation (Fig. 3B, right panel). In a
profoundly abnormal condition, an extreme accentuation of the
AP notch causes further shift in the balance of inward/outward
currents, which leads to the loss of the AP dome and initiates
phase 2 reentry, as described above (Fig. 3A). Therefore, the basic
pathophysiology of malignant tachyarrhythmias in patients with
BS and ERS seems identical and only differs in the severity of the
background electrophysiologic milieu.
4. Electrocardiographic features: J wave dynamics and mode
of onset of VF

BS is characterized by unique ECG features of coved-type J/ST/
T waves (type I Brugada ECG pattern) and a high risk of develop-
ing VF. Suggestive but less confirmative ECG findings are saddle-
back type J/ST/T waves, or type II/III Brugada patterns. Prompted
by the similarity in ECG features and the potential of converting
this ER to Brugada ECG patterns, the benign nature of the ER



Fig. 4. Dynamic behaviors of J waves in patients with BS and ERS. (A) A 49-year-

old male patient presented with aborted sudden cardiac death. ECG (V1 and V2)

recorded 7 h after resuscitation revealed AF with variable R–R intervals. The J

wave following the longer R–R interval (second arrow) is slightly augmented

compared with that after the shorter interval (first arrow). A full-blown type I BS

ECG pattern was induced by the intravenous administration of flecainide. (B) A 12-

lead ECG from a 39-year-old male patient with ERS and atrial fibrillation.

A dynamic change in the amplitudes of the J waves is noted. The J waves are

augmented after a long R–R interval of a slow ventricular response.

Fig. 3. The proposed mechanism of ventricular arrhythmias and ECG changes in BS and ERS. (A) Ventricular action potentials (APs) demonstrate a considerable variation

across the transmural direction of the ventricular myocardium. The presence of a prominent AP notch in the epicardium but not in the endocardium provides a voltage

gradient that manifests as a J (Osborn) wave or elevated J-point in the ECG (top). Heterogeneous loss of the AP dome by ischemia, bradycardia, or pharmacologic

interventions (sodium channel blocker flecainide or acetylcholine) results in the development of a large dispersion of repolarization within the epicardium by abbreviation

and marked prolongation of AP durations. A dispersion of repolarization also occurs between the epicardial and M cell APs. This exaggerated dispersion of repolarization is

followed by local re-excitation (phase 2 reentry) caused by the AP dome propagating from sites where it was maintained to sites where it was abolished (middle and

bottom). (B) In normal hearts, the J wave is not prominent, and the ST segment is isoelectric because there are no voltage gradients in the AP plateau phase. In some

physiologic or pathologic conditions (genetic, hormonal, or drug induced) in which the AP notch is accentuated, the AP notch manifests as J wave and ST segment elevation.

Until these changes progress to a certain degree, the T wave remains positive because the epicardial repolarization is followed by the endocardial and M cell repolarization.

This explains the typical ECG features of ER pattern (left panel). As the above electrophysiologic process becomes more pronounced, further accentuation of the AP notch

delays the development of an inward calcium current, delaying the epicardial dome and repolarization even later than that of the M cell or endocardial regions. This

reverses the final repolarization sequence through the transmural myocardial layers, inducing a coved-type ST segment elevation (right panel). In a profoundly abnormal

condition, an extreme accentuation of the notch causes further shift in the balance of inward/outward currents, which leads to the loss of the AP dome and initiation of

phase 2 reentry, as explained above (modified from reference [43] with permission).
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pattern was questioned based on a few clinical case reports and
basic electrophysiologic studies by using canine wedge prepara-
tion [25,26].

The ECG features of these two syndromes are based on the
presence of J waves, in addition, the dynamic behavior of the J waves
in both syndromes shows similar cycle length-dependent pattern.
The J wave and ST segment elevation in BS demonstrate a pause-
dependent accentuation and acceleration-dependent attenuation
[44]. The amplitudes of J waves in ERS accentuate after long cycle
lengths or after long coupling intervals (Fig. 4).

Although the J/ST waves show similar dynamic patterns, the
mode of onset and coupling intervals of premature ventricular
contractions (PVCs) initiating VF episodes are slightly different
[45]. In patients with ERS, most (42/58, 72.4%) VF episodes were
precipitated by PVCs with a short–long–short sequence of activa-
tion, while this cycle length alternans was less frequently (13/86,
15.1%) observed in patients with BS (Fig. 5). Coupling intervals
were significantly shorter in patients with ERS than in those with
BS (Fig. 6). The reason for this distinction in the mode of onset of
VF between BS and ERS is not clear. A plausible explanation is
that, in BS, the electrophysiologic milieu for arrhythmogenesis is
mature enough for a single VPC to initiate VF, whereas in ERS,
only a critically timed PVC in the presence of maximum disper-
sion of refractoriness provided by long preceding coupling inter-
val can precipitate VF [45]. This distinction does not negate the
close association between ERS and BS. Rather, it supports the idea
that ERS is a ‘‘forme fruste’’ or a clinical variant of BS, with both
being part of the same broader category of ‘‘J wave syndrome’’.



Fig. 5. Mode of onset of ventricular fibrillation (VF) in patients with BS and ERS. (A) Upper panel shows an intracardiac electrogram at the onset of VF in a patient with BS.

VF was initiated by a single premature ventricular contraction without a short–long–short sequence. Lower panel shows an intracardiac electrogram at the onset of VF in a

patient with ERS. VF was initiated after post-ectopic pause following bigemini ventricular premature beats with a short–long–short sequence of activation. (B) The number

of VF episodes initiated by PVCs with (SLSþ) and without (SLS�) a short–long–short (SLS) sequence of activation in patients with BS (lilac) and ERS (magenda).

VF episodes in ERS patients were commonly initiated by PVCs with a SLS sequence of activation. A SLS sequence was observed in 42/58 (72.4%) VF episodes in the ERS

patients, but in only 13/86 (15.1%) of VF episodes in patients with BS (modified from reference [45] with permission).

Fig. 6. Coupling intervals of premature beats at the onset of ventricular fibrillation (VF) in patients with BS and ERS. (A) Upper panel shows an electrocardiogram at the

initiation of VF in a 60-year-old female patient with BS. VF was initiated by a single premature ventricular contraction with a coupling interval of 420 ms. Lower panel

shows an ECG recorded at the onset of VF in a 43-year-old male patient with ERS. VF was initiated by a bigemini premature ventricular contraction (PVC) with a short–

long–short sequence and a coupling interval of 320 ms. (B) The PVCs preceding the VF episodes in patients with ERS exhibited significantly shorter coupling intervals than

the PVCs preceding the VF episodes in patients with BS (328 [320,340] ms vs. 395 [350,404] ms, po0.01) (modified from reference [45] with permission).
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In contrast to the above similarities, the prevalence of positive
late potentials [12,45–47] and the response to sodium channel
blockade [48,49] differ between patients with BS and those with
ERS. Roten et al. observed that the ER pattern in patients with
ERS was attenuated by the administration of intravenous
ajmaline. This novel finding, together with the low prevalence
of late potentials, was proposed as evidence supporting the
repolarization hypothesis of ERS. This is in contrast with the
electrophysiologic findings (accentuation of J/ST wave changes,
prevalent late potentials, and the presence of delayed potentials
in the epicardium) in patients with BS, which supports the
depolarization hypothesis. However, the pathogenetic mechan-
ism in BS and ERS is not a simple dichotomy of depolarization and
repolarization abnormalities. The early phase of ventricular repo-
larization is an overlap of late depolarization and early repolar-
ization processes. In addition, these two processes affect each
other. A change in the depolarization process causes a change in
the repolarization process. This explains why a mutation or
pharmacologic suppression of the sodium channel (and decrease
in inward sodium current) is linked to an increased or accentu-
ated phase 1 notch of repolarization process. Therefore, the
response of BS patients to sodium channel antagonists may also
be viewed as evidence supporting the repolarization hypothesis.
Likewise, the response to ajmaline or attenuation of inferolateral
ER pattern in patients with ERS may have been due to the
conduction delay (and increased S wave amplitude) that masked
or attenuated the J waves of ER pattern. The results and inter-
pretation of the effects of sodium channel blocker in patients with
BS or ERS need to be redefined.

5. Phenotype overlap in patients with BS and ERS

The typical type I BS ECG pattern shows spontaneous fluctua-
tion and often manifests remote from VF events or in the absence
of class IC antiarrhythmic drugs. By contrast, J waves and ER
pattern in patients with ERS are stable over a long term and



Fig. 7. Augmentation of J wave and ST segment elevation and phenotype transition in ERS. A 50-year-old male patient presented with recurrent seizure-like episodes and

aborted sudden cardiac arrest. The initial ECG revealed small J waves present in the lateral precordial leads. The follow-up ECG taken 30 min before the onset of ventricular

fibrillation (VF) revealed greatly augmented J waves (red arrows) in both the lateral precordial and right precordial leads. Change in the right precordial lead (V2) mimics

ECG changes of BS.
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transiently manifest only during the peri-event period. Except for
minor changes in amplitudes, the distribution of J wave or ST
segment elevation in each ERS patient seldom changes signifi-
cantly during follow-up. Although uncommon, a considerable
overlap or shift in shape or distribution of the J waves (phenotype
transition) may occur in patients with BS and ERS. For example,
some patients with BS have been reported to demonstrate a
background ER pattern [14]. In contrast, some patients with
inferolateral ERS showed prominent J wave augmentation in the
right precordial leads during peri-event periods (Fig. 7). This is an
important clue that suggests ERS shares a key electrophysiologic
mechanism with BS, providing further evidence to support the
concept of ‘‘J wave syndrome’’.
6. Risk stratification

The risk stratification of subjects who display a BS-type ECG
pattern remains controversial. A history of syncope is the most
important prognostic marker, but the predictive value of electro-
physiologic study remains controversial. The prognostic impor-
tance of electrophysiologic study proposed in the early reports by
Brugada et al. [50,51] has been challenged by subsequent inves-
tigations that failed to prove the efficacy of electrophysiology
studies [52–55]. The annual cardiac event rate was reported as
7.7% in patients with aborted SCD, 1.9% in patients with syncope,
and 0.5% in asymptomatic patients [54]. Because of this low risk
and the uncertain predictive role of electrophysiologic study, a
simpler approach is used, wherein the decision regarding ICD
implantation is based largely on fatal ventricular arrhythmia or
symptoms (syncope) [56]. An electrophysiologic study in asymp-
tomatic subjects was designated a Class IIb indication. Other
factors such as family history and SCN5A mutations were con-
cluded to have little prognostic importance [54].

The risk stratification of patients with ERS is even more
confusing and further studies are required. As mentioned in the
demographics, the traditional definition of ER emphasizes the
presence of ST segment elevation, and the subjects with ER with
this traditional concept do not have adverse outcomes [17,18].
In contrast, patients with ER according to the new definition (the
presence of the terminal QRS notch or slur, irrespective of the ST
segment changes) [19–22], have prognostic implications. More
specifically, individuals with J waves that were followed by
ascending ST segment changes do not show an increased risk of
arrhythmic death; however, those with J waves that were accom-
panied by horizontal/descending ST segment changes had an
increased risk of arrhythmic death compared with those without
the ER pattern [22]. Nevertheless, the hazard ratio of the arrhyth-
mic death risk in the latter subgroup rises only slightly (hazard
ratio, 1.43). Considering the low risk of arrhythmic death
observed in the population study, even the high-risk marker of
ER pattern (J wave and horizontal/descending ST) seems to reflect
a modifying factor for specific arrhythmic risk in patients with
acquired structural heart diseases, rather than an indicator of a
primary arrhythmic syndrome, as discussed by the authors [22].

Although other risk markers such as high amplitude J waves in
the inferior leads have been suggested, a better scheme for risk
stratification is necessary. The presence of a type I BS ECG pattern
indicates the necessity for ICD implantation in patients with
syncope of unknown causes. Currently, electrocardiographic ER
parameters are hardly useful for risk stratification in primary
prevention purposes, and none of these parameters are used as
indicators of ICD implantation [57]. Global appearance of J waves
and ST segment elevation has been known to indicate a highly
arrhythmogenic substrate [13]. However, patients with electrical
storm manifest this phenotype only during a short time window
of peri-event periods that last several minutes or hours. The
‘‘ambulatory’’ phase ECG in these patients with electrical storms
shows an ER pattern that is practically indistinguishable from that
of a benign ER pattern [58].
7. Treatment and prevention of VF in patients with BS or ERS

Pharmacologic management of BS and ERS is identical owing
to the shared pathophysiologic mechanism. The suppression of
electrical storm in patients with BS or ERS can be achieved by
administering intravenous isoproterenol [45,59,60]. In patients
with ERS, the occurrence of VF episodes is always accompanied by
a prominent accentuation of the J wave and commonly preceded
by bigeminy PVC in a short–long–short sequence [45]. These
electrocardiographic indicators are extremely useful for guiding
therapy and estimating the response to treatment in patients
admitted for the management of the electrical storm. In patients
with a pacemaker or ICD, atrial pacing at 490 beats/min abol-
ished the ECG changes and prevented the recurrence of VF [45].

For long-term management, quinidine and cilostazol have
been shown to be effective in both BS and ERS [45,59–62].
Catheter ablation of trigger PVCs targeting the earliest ventricular
endocardial activation or targeting the Purkinje potential may be
successfully performed in patients with BS and ERS [12,63]. In
selected patients with BS, substrate ablation in the epicardial
region of delayed potentials has also been proposed [64].
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8. Conclusions

Patients with BS and ERS share common electrocardiographic
and clinical features. The J waves observed in patients with both
these syndromes are believed to play a key role in VF pathogen-
esis. Similarities in the clinical manifestations, ECG features
(particularly J wave dynamics), and responses to autonomic or
pharmacologic interventions suggest that BS and ERS are different
variants of a common broader syndrome or ‘‘J wave syndrome’’.
Identifying subjects with a high risk of SCD remains a matter of
debate.
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