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We show that there exists a representation of a matrix-valued gauge field via intrinsic “BRST” operator 
assigned to matrix-valued generators of a gauge algebra. In this way, we reproduce the standard 
formulation of the ordinary Yang–Mills theory. In the case of a generating quasigroup/groupoid, we give 
a natural counterpart to the Yang–Mills action. The latter counterpart does also apply as to the most 
general case of an involution for matrix-valued gauge generators.
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1. Introduction and summary

All modern models describing the fundamental forces in the 
Nature are based on the concept of gauge fields [1–8]. It is a 
well-known fact that the BRST symmetry [9,10] is the most power-
ful method to represent the invariance properties of a gauge field 
system [11,12]. Usually, in simple examples, in Hamiltonian for-
malism, gauge generators have the form of secondary constraints 
similar to the “Gauss law” represented as covariant divergence of 
canonical momenta. These generators are in involution that repre-
sents a gauge algebra on the phase space of the system [13,14]. By 
introducing ghost canonical pairs, one is able to define the respec-
tive nilpotent BRST operator containing the first class constraints in 
its lowest terms, linear in ghost coordinates. In the respective La-
grangian formalism, the gauge generators are represented in terms 
of Lagrangian field variables, as the coefficients linear in the origi-
nal antifields, entering the minimal master action. In this way, usu-
ally, space-like components of relativistic fields are identified with 
Hamiltonian coordinates, while time – like components are identi-
fied with Lagrange multipliers to secondary first-class constraints. 
In the simplest example, the Yang–Mills theory, Lagrangian matrix-
valued gauge field is a linear combination of matrix-valued gener-
ators of adjoint representation of a generating Lie group. Thus, if 
one has defined the respective intrinsic “BRST” operator assigned 
to matrix-valued generators of adjoint representation, one can de-
fine the matrix-valued gauge field as a commutator of intrinsic 
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“BRST” operator with an auxilliary “gauge” Fermion linear in the 
adjoint component of the Yang–Mills field. Thus, one has arrived 
at the intrinsic “BRST” representation to the matrix-valued gauge 
field.

In the present article, we study in detail the approach based 
on the intrinsic “BRST” representation. In the case of a Lie group 
we have shown that the new approach does reproduce exactly the 
standard formulation of the Yang–Mills theory. Then, we consider 
the case of a quasigroup/groupoid [15–22], where the structure co-
efficients of the intrinsic algebra of matrix-valued generators are 
matrix-valued themselves. In that case, we have found a natural 
counterpart to the Yang–Mills action. Finally, we consider the most 
general case of being the matrix-valued generators in the general 
involution among themselves.

2. Outline of the construction

Let Aμ(x) be a boson N × N matrix-valued vector field as de-
fined by the formula

Aμ(x) = [Aμ(x), Q ], [Aμ(x), Q ] = 0,

ε(Aμ) = 0, gh(Aμ) = 0, (2.1)

where Q is a nilpotent Fermion operator,

Q 2 = 1

2
[Q , Q ] = 0, ε(Q ) = 1, gh(Q ) = 1, (2.2)

and Fermion vector field Aμ(x) has ghost number −1,
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ε(Aμ) = 1, gh(Aμ) = −1. (2.3)

In more detail, Q is an N × N matrix-valued operator and, at the 
same time does depend on m Fermion canonical pairs of ghosts 
(Ca, Pa), a = 1, . . . , m, ε(Ca) = ε(Pa) = 1, gh(Ca) = 1, gh(Pa) =
−1,

[Ca, Cb] = 0, [Ca,Pb] = δa
b, [Pa,Pb] = 0. (2.4)

We assume these operators to be realized as n ×n matrices, so that 
in fact the Q is defined on tensor product of the original matrix 
arguments and the ones of ghosts in (2.4). The same status we do 
assume as to the Aμ in (2.1), (2.3). The assumption of a matrix 
realization of ghosts, together with the relations (2.4), allows one 
to get simple expressions for traces of homogeneous CP normal 
ordered monomials with ghost number zero. In what follows, we 
will use the two simple examples,

tr(CaPb) = n

2
δa

b, (2.5)

tr(CaCbPcPd) = n

4

(
δa

dδb
c − δa

c δ
b
d

)
. (2.6)

These two formulae do follow from the general representation 
for ghost canonical pairs in terms of two conjugate sets of n × n
gamma matrices,

2Ca = γ a+ + γ a−, 2Pa = (γ b+ − γ b−)gba, (2.7)

where gab = gba is a constant invertible metric, gab = gba is its 
inverse, and the γ matrices do commute as

γ a± γ b± + (a ↔ b) = (±)2gab 1, (2.8)

γ a± γ b∓ + γ b∓ γ a± = 0. (2.9)

It follows from (2.7) that (2.5), (2.6) do generalize to

tr(X(C,P)) =
(

X

(
∂

∂ J
,

∂

∂ K

)
exp

{
1

2
K a Ja

}
n

)∣∣∣
J=0,K=0

, (2.10)

ε( J ) = 1, gh( J ) = −1, ε(K ) = 1,

gh(K ) = 1, ε(X) = 0, gh(X) = 0. (2.11)

By inserting the doublet (exact) form, the first in (2.1), into the 
curvature form

Gμν = ∂μ Aν − ∂ν Aμ + [Aμ, Aν ], (2.12)

we have

Gμν = [Q ,Gμν ], (2.13)

Gμν = ∂μAν − ∂νAμ + (Aμ,Aν)Q , (2.14)

where in (2.14) the quantum antibracket (X, Y )Q is defined for any 
two operators X, Y , as [23]

2(X, Y )Q = [X, [Q , Y ]] − [Y , [Q , X](−1)(εX +1)(εY +1). (2.15)

When deriving (2.14), we have used the general property

[[Q , X], [Q , Y ]] = [Q , (X, Y )Q ] =
= ([Q , X], Y )Q − (X, [Q , Y ])Q (−1)εX . (2.16)

Notice that the quantum antibrackets do satisfy the Jacobi identity 
modulo a doublet (exact) form

(X, (Y , Z)Q )Q (−1)(εX +1)(εZ +1) + cyclic perm.(X, Y , Z) =
= 1 [(X, Y , Z)Q (−1)(εX +1)(εZ +1), Q ], (2.17)
2

where (X, Y , Z)Q is the so-called quantum 3-antibracket,

3(X, Y , Z)Q =
= −(−1)(εX +1)(εZ +1)([X, (Y , Z)Q ](−1)[εX (εZ +1)+εY ] +

+ cyclic perm.(X, Y , Z)), (2.18)

and so on [24] (see also [25–27]). The modified Leibnitz rule for 
quantum antibracket reads

(XY , Z)Q − X(Y , Z)Q − (X, Z)Q Y (−1)εY (εZ +1) =
= 1

2
([X, Z ][Y , Q ](−1)εZ (εY +1) + [X, Q ][Y , Z ](−1)εY ). (2.19)

In terms of the curvature (2.13), the General “Yang–Mills” La-
grangian reads

L = −1

2
tr(GμνGμν) = −1

2
tr([Q ,Gμν ][Q ,Gμν ]). (2.20)

Let us consider infinitesimal gauge transformations with an 
operator-valued Fermion “parameter” �, ε(�) = 1, gh(�) = −1, 
� → 0,

δAμ = −(∂μ[Q ,�] + [Aμ, [Q ,�]]). (2.21)

It follows from the first in (2.1), and (2.16), that the respective vari-
ation in Aμ can be chosen in the form

δAμ = −(∂μ� + (Aμ,�)Q ). (2.22)

Due to (2.14), (2.17), it follows that the respective variation in Gμν

can be chosen in the form

δGμν = −(Gμν,�)Q . (2.23)

Now, we have, as to the respective variation in (2.20)

δL = − tr([Q , δGμν ][Q ,Gμν ]) =
= tr([[Q ,Gμν ], [Q ,�]][Q ,Gμν ]) =
= tr([Q ,Gμν ][Q ,�][Q ,Gμν ] − [Q ,�][Q ,Gμν ][Q ,Gμν ]) =
= 0. (2.24)

Here, in the second equality we have used (2.16) backward, and 
we have moved the last commutator to the leftmost position in 
the second term in the left-hand side of the last (fourth) equality. 
Thereby, we have confirmed explicitly that the Lagrangian (2.20)
is gauge invariant. Thus, we have constructed a family of gauge-
invariant classical theories of the type (2.20), closely related to the 
“general Yang–Mills theory”. Every of those classical theories can 
certainly be considered as a starting point as to apply the Hamil-
tonian BFV or Lagrangian BV quantization scheme, although we do 
not do that in the present article.

In what follows below through the article, we assume the oper-
ator Q as represented in CP normal form. In that case, it follows 
in terms of the quantum antibrackets, with no further assumptions,

(Ta, Tb)Q = 0, (2.25)

(Pa,Pb)Q + Cc(Pc,Pa,Pb)Q = U c
abPc, (2.26)

2(Pa, Tb)Q = [Ta, Tb], (2.27)

where we have denoted

Ta = [Pa, Q ], U c
ab = [[Pa, [Pb, Q ]], Cc], (2.28)

and the quantum 3-antibracket of the ghost momenta reads

(Pa,Pb,Pc)Q = [Pa, [Pb, [Pc, Q ]]]. (2.29)
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In turn, by commuting the Q with (2.26), we get

[Ta, Tb] + [Q , Cc(Pc,Pa,Pb)Q ] = U c
ab Tc + [Q , U c

ab]Pc . (2.30)

If we assume that Aa
μ and �a are c-numbers, and

Aμ = Aa
μPa, � = �aPa (Mod [Q ,Anything]) (2.31)

then we get, due to the first in (2.1) and in (2.28),

Aμ = Aa
μTa, [�, Q ] = �a Ta. (2.32)

If, moreover, U c
ab are c-numbers, and the metric,

ηab = (Nn)−1 tr(Ta Tb), (2.33)

is invertible, so that ηab is its inverse, then we have for the field 
components

Aa
μ = (Nn)−1 tr(AμTb)η

ba, (2.34)

and, therefore, their gauge transformation presents

δAa
μ = −∂μ�a − Ac

μ�d(Nn)−1 tr([Tc, Td]Tb)η
ba. (2.35)

3. Yang–Mills theory generated by a compact semisimple 
Lie group

Let ta, a = 1, . . . , m, be N × N matrix-valued boson generators 
of a semisimple Lie group,

[ta, tb] = U c
abtc, tr(ta) = 0, (3.1)

where U c
ab = −U c

ba = const are structure constants of the group. 
They satisfy the relations

U c
abU e

cd + cyclic perm.(a,b,d) = 0, U b
ab = 0. (3.2)

Due to the first in (3.1) and (3.2), the following operator

Q = Cata + 1

2
CbCaU c

abPc, (3.3)

does satisfy (2.2). Vise versa, the nilpotency condition (2.2) does 
imply the algebra of the first (3.1) and (3.2). Now, let us choose 
the operator Aμ(x) in the form

Aμ(x) = Aa
μ(x)Pa. (3.4)

It follows then from (2.1)

Aμ(x) = Aa
μ(x)Ta, Ta = [Pa, Q ] = ta + CbU c

baPc, (3.5)

tr(Aμ(x)Tb) = Aa
μ(x) tr(Ta Tb). (3.6)

In turn, due to the first in (3.1) and (3.2), it follows for the second 
in (3.5)

[Ta, Tb] = U c
ab Tc, tr(Ta) = Nn

2
U b

ba = 0. (3.7)

Then, we have

tr(Ta Td) = n tr(tatd) + N tr
(

CbU c
baPcCeU f

edP f

)
=

= Nn

[
N−1 tr(tatd) + 1

4
U b

caU c
bd

]
, (3.8)

where (2.4), (2.5), (2.6) have been used. Thus, we have reproduced 
the well-known Yang–Mills Lagrangian

L = − 1

2Nn
tr(Gμν(x)Gμν(x)) = − 1

2Nn
Ga

μν(x)Gb
μν(x) tr(Ta Tb),

(3.9)
where the Yang–Mills curvature (stress tensor) has the usual form

Gμν(x) = ∂μ Aν(x) − ∂ν Aμ(x) + [Aμ(x), Aν(x)] = Ga
μν(x)Ta,

(3.10)

Ga
μν(x) = ∂μ Aa

ν(x) − ∂ν Aa
μ(x) + Ab

μ(x)Ac
ν(x)U a

bc . (3.11)

Ghost-extended generators, similar to the second in (3.5), have 
been first introduced in string theory [28,29], and then general-
ized and studied systematically in [30,31], being called as “BRST-
invariant constraints”.

4. The quasigroup/groupoid case

Now, let us consider a more general situation of quasigroup/
groupoid, where the structure coefficient of the algebra are matrix-
valued operators rather then constants. In that case we have

[ta, tb] = U c
abtc, U c

ab = −U c
ba, tr(U c

abtc) = 0, (4.1)

(U c
abU e

cd − [td, U e
ab]) + cyclic perm.(a,b,d) = 0, (4.2)

([U c
ab, U f

de] − (c ↔ f )) + cyclic perm.(a,b,d, e) = 0, (4.3)

where we have denoted

Xabcd + cyclic perm.(a,b, c,d) = Shg f e
abcd Xef gh, (4.4)

4!Shg f e
abcd = ∂a∂b∂c∂dChC g C f Ce, ∂a = ∂

∂Ca
. (4.5)

Due to these relations (4.1)–(4.3) the operator (3.3) with the ma-
trix-valued structure operators U c

ab does satisfy the nilpotency 
(2.2). The quasigroup/groupoid is the most general case of gen-
erators, where the operator Q (3.3) linear in ghost momenta does 
satisfy the nilpotency (2.2).

If one defines a counterpart to the BRST-invariant generators, 
the second in (3.5), with operator-valued U c

ab , then the respective 
algebra

[Ta, Tb] = U c
ab Tc + [Q , U c

ab]Pc, (4.6)

ηab = (Nn)−1 tr(Ta Tb) =
= N−1 tr

[(
ta + 1

2
U c

ca

)(
tb + 1

2
U d

db

)
+ 1

4
U c

daU d
cb

]
, (4.7)

does involve the ghost momenta Pa to serve as new generators 
with their own semi-Abelian subalgebra,

[Pa,Pb] = 0, [Pa, Tb] = U c
abPc = (Pa,Pb)Q . (4.8)

Notice that if one commutes the Q with (4.6), one gets no further 
consequences. So, only the doubled set of generators,

TA = {Ta;Pa}, (4.9)

does have a closed algebra. However, the general formulation of 
Section 2 appears capable to operate efficiently even in such a 
complicated situation, as a part of the most general case to be 
considered below.

5. The most general case

Now, let us consider the most general involution (4.1), without 
assuming the conditions (4.2), (4.3). In that case, one should seek 
for a solution to the operator Q in the form of a ghost power 
series expansion of the form

Q = Cata + 1
CbCaU c

abPc + 1
CcCbCaU ed

abcPdPe + · · · . (5.1)

2 12
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We do assume the following irreducibility condition for the gener-
ators ta to be satisfied:

Za �= 0, Zata = 0 ⇒ Za = Z cb	a
bc, (5.2)

where Z cb = −Zbc are arbitrary, and we have denoted

	a
bc = 1

2
(tbδ

a
c − (b ↔ c) − U a

bc), (5.3)

so that there holds identically

	a
bcta = 1

2
([tb, tc] − U a

bcta) = 0. (5.4)

In case the Za , in the first and second in (5.2), have some extra free 
indices, these indices are inherited by the Zab , in the third in (5.2), 
together with their symmetry properties, if any. Now, commute 
the first in (4.1) with td and then sum up the cyclic permutations 
(a, b, d). By using (4.1) again, one gets

Y e
abdte = 0, (5.5)

where Y e
abd just denotes the left-hand side in (4.2). Due to the 

irreducibility (5.2), one gets

Y e
abd = −U f g

abd	
e
g f , (5.6)

which is exactly the relation that does follow from (2.2) to the 
(CCCPP) order. In this way, one is able, in principle, to show, 
order by order, that there formally exist all the structure operators 
in the series expansion (5.1).

In the case of a Lie group, where the generators ta and Ta do 
satisfy the same algebra, there exists a natural counterpart to (5.4)
in terms of Ta , that is

	̃c
ab = Taδ

c
b − (a ↔ b) − U c

ab, 	̃c
ab Tc = 0, (5.7)

which extends naturally the irreducibility concept as to the ghost-
extended generators Ta . Then, we have the following relation to 
hold

	̃c
ab = 	c

ab + (CdU e
daPeδ

c
b − (a ↔ b)). (5.8)

6. Natural canonical equivalence

As to the nilpotency condition (2.2), one can always subject the 
operator Q to an arbitrary canonical transformation [32]

Q → Q ′ = exp{sG}Q exp{−sG}, (6.1)

where s is a boson parameter, and G is a matrix-valued and ghost 
dependent generator,

ε(G) = 0, gh(G) = 0. (6.2)

We have

[Q ′, Q ′] = 0, ε(Q ′) = 1, gh(Q ′) = 1, (6.3)

∂s Q ′ = [G, Q ′], Q ′∣∣
s=0 = Q , ∂s = ∂

∂s
, (6.4)

Q ′ = Cat′
a + 1

2
CbCa U ′ c

ab Pc + . . . , (6.5)

G = G0 + Ca Gb
a Pb + . . . , (6.6)

with all matrix-valued structure coefficients. It follows from (6.3)
that the all the primed structure coefficients of the primed Q ′ sat-
isfy the same equations as their unprimed counterparts do. In turn, 
it follows from (6.4)
∂st′
a = [G0, t′

a] + Gb
at′

b, t′
a

∣∣
s=0 = ta, (6.7)

∂sU ′ c
ab = [G0, U ′ c

ab] + (Gd
a U ′ c

db − (a ↔ b)) − U ′ d
ab Gc

d + Gde
ab U ′ c

ed,

U ′ c
ab

∣∣
s=0 = U c

ab, (6.8)

and so on. Here in (6.8), Gde
ab are structure coefficients as to the 

order CCPP in G (6.6). These equations do determine the trans-
formation law as to all the structure coefficients in (6.5). In par-
ticular, the G0 does determine the canonical transformation in the 
original matrix-valued sector. In turn, the Gb

a do determine the ac-
tual rotations as to the basis of the original generators. In turn, the 
latter two transformations, as induced to the next structure coeffi-
cient U c

ab , are determined by the equation (6.8), and so on in (6.5). 
Our main conjecture claims that the natural arbitrariness (6.1) is 
maximal, if the irreducibility (5.2) holds for primed basis of the 
generators t′

a , as well. In that case, canonical transformations (6.1)
are capable to interpolate between the most general generator and 
Abelian ones.

If one rewrites the (5.4) in the form with enumerated indices,

	
b1
a1a2tb1 = 0, (6.9)

due to the nilpotency (2.2), it becomes rather obvious that there 
exists a chain of recursive relations extending (6.9) as

	
bn ...b1
a1...an+1	

cn−1...c1
b1...bn

= 0, n = 2, . . . , (6.10)

where the n-th 	 (with n uppercases) is constructed of the first 
n +1 structure coefficients in (5.1). That chain of recursive relations 
extends naturally the irreducibility concept as to higher structure 
coefficients. As an example, we demonstrate the case n = 2:

	
b2b1
a1a2a3 = 1

2
(	

b2
a1a2δ

b1
a3 − (b1 ↔ b2)) +

+ cyclic perm.(a1,a2,a3) − Ũ b2b1
a1a2a3 , (6.11)

where we have also used the relation

	
b2
a1a2	

c1
b2a3

+ cyclic perm.(a1,a2,a3) = −Ũ b2b1
a1a2a3	

c1
b1b2

, (6.12)

(U − Ũ )
b2b1
a1a2a3	

c1
b1b2

=
= (U b1

a1a2tb1δ
c1
a3 + ta2 U c1

a1a3) + cyclic perm.(a1,a2,a3). (6.13)

One can resolve for the Ũ operators,

(U − Ũ )
b2b1
a1a2a3 =

=
[

1

2
(δ

b2
a1 ta2δ

b1
a3 − (b1 ↔ b2)) + cyclic perm.(a1,a2,a3)

]
, (6.14)

to get the following explicit solution

	
b2b1
a1a2a3 =

=
[

ta1

1

2
(δ

b2
a2 δ

b1
a3 − (b1 ↔ b2)) + cyclic perm.(a1,a2,a3)

]
−

−
[

1

2
(U b2

a1a2δ
b1
a3 − (b1 ↔ b2)) + cyclic perm.(a1,a2,a3)

]
−

− U b2b1
a1a2a3 . (6.15)

7. Note added in proof

Here we claim that the standard Faddeev–Popov measure can 
also be naturally reformulated in terms of the generators Ta (2.28), 
by using the representation similar to (2.1) as applied to the 
Nakanishi–Lautrup matrix valued fields 	 (Lagrange multipliers 
for gauge fixing functions), as well as to the ghost and antighost 
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Faddeev–Popov matrix valued field B, B̄ . Then, in the case of the 
Lorentz gauge, ∂μ Aμ = 0, the gauge fixing part of the total La-
grangian reads

(Nn)−1 tr(	 ∂μ Aμ + (∂μ B̄)(∂μB + [Aμ, B])), (7.1)

where all fields take their values in the T -algebra,

Aμ = Aa
μTa, 	 = 	a Ta, B = Ba Ta, B̄ = B̄a Ta. (7.2)

The (7.1) is invariant under the standard BRST transformations

δAμ = (∂μB + [Aμ, B])μ, δB = 1

2
[B, B]μ,

δ B̄ = −	μ, δ	 = 0. (7.3)

If the Ta do satisfy a Lie algebra, the BRST invariance holds in a 
straightforward way, with all the coefficients in (7.2) (field com-
ponents) being c-numbers. However, in the quasigroup/groupoid 
case, one should allow for these coefficients to be matrix valued, in 
general. Then, we have from (2.1) and the first in (2.28) and (2.31)

Aμ = Aa
μTa + [Q , Aa

μ]Pa, (7.4)

and similar formulae for all other fields. The form of the second 
term here is quite similar to the one of the second term in (4.6), 
that makes unclosed the algebra of the generators Ta alone. The 
doubled generators TA , (4.9), do satisfy the closed involution

[TA,TB ] = UC
ABTC , (7.5)

with the structure coefficients UC
AB given explicitly in the relations 

(4.6), (4.8).
Any operator X of the form similar to (7.4),

X = X ATA, X A = {Xa(−1)εX ; [Q , Xa]}, (7.6)

with “matrix valued” coefficients X A , belongs to the closed dou-
bled T -algebra. The latter makes all the commutators entering 
(7.1), (7.3) well defined as taking their values within the same 
closed doubled T -algebra. Notice that the (7.6) rewrites in the nat-
ural form

X = [Q , XaPa], (7.7)

maintained under commuting of two operators of the form (7.7), 
due to the ghost number conservation.
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Appendix A. Generating equations for the quantum antibracket 
algebra

Here we include in short the generating equations for the quan-
tum antibracket algebra [24]. Let us introduce an operator-valued
exponential

U = exp{λa fa}, U |λ=0 = 1, (A.1)

where { fa, a = 1, 2, . . .}, is a chain of operators, ε( fa) = εa , 
and λa are parameters, ε(λa) = εa . Introduce the U -transformed 
Q -operator,

Q̃ = U Q U−1, Q̃ 2 = 0. (A.2)
We have

∂a Q̃ = [Ra, Q̃ ], Ra = (∂aU )U−1,

∂a = ∂

∂λa
, Q̃ |λ=0 = Q , (A.3)

∂a Rb − ∂b Ra(−1)εaεb = [Ra, Rb]. (A.4)

The Lie equation (A.3) and the Maurer–Cartan equation (A.4) do 
serve as the generating equations for quantum antibrackets. Here 
we present explicitly only the case of quantum 2-antibracket. It 
follows from (A.3) by λ differentiating, that

−∂a∂b Q̃ (−1)εb + 1

2
[(∂a Rb + ∂b Ra(−1)εaεb )(−1)εb , Q̃ ] =

= 1

2

(
[Ra, [Q̃ , Rb]] − (a ↔ b)(−1)(εa+1)(εb+1)

)
= (Ra, Rb)Q̃ .

(A.5)

It follows from (A.5) at λ = 0,

−(∂a∂b Q̃ )(−1)εb |λ=0 = ( fa, fb)Q , (A.6)

where we have used

(∂a Rb)|λ=0 = 1

2
[ fa, fb]. (A.7)

It follows in a similar way that higher λ derivatives of Q̃ do yield 
all higher quantum antibrackets,

( fa1 , . . . , fan )Q = −Sym([ fa1 , . . . , [ fan , Q ] . . .])(−1)En , (A.8)

where we have denoted

En =
[n/2]∑
k=1

εa2k , (A.9)

Sym(Xa1...an ) = Sbn...b1
a1...an Xb1...bn ,

n!Sbn...b1
a1...an = ∂a1 . . . ∂anλ

bn . . . λb1 . (A.10)

It has also been shown in [24], how these equations enable one to 
derive the modified Jacobi relations for subsequent higher quan-
tum antibrackets.

Notice, in conclusion, that there exists a nice interpretation of 
the quantum antibracket algebra via the so-called differential po-
larization [20]. In particular, being B an arbitrary boson operator, 
one can 3-times commute that B with the nilpotency equation 
(2.2), to get the relation

6(B, (B, B)Q )Q = [(B, B, B)Q , Q ], ε(B) = 0. (A.11)

Then, by choosing B in the form

B = αX + βY + γ Z , (A.12)

with parameters α, β, γ of the same Grassmann parities as the 
ones of the operators X, Y , Z , respectively, are, one applies to 
(A.11) the differential operator

∂α∂β∂γ (−1)(εα+1)(εγ +1)+εβ , (A.13)

to get exactly the relation (2.17).
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