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Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa plant that produces antipsychotic
effects in rodents and humans. It also reverses L-dopa-induced psychotic symptoms and improves motor func-
tion in Parkinson's patients. This latter effect raised the possibility that CBD could have beneficial effects on
motor related striatal disorders. To investigate this possibility we evaluated if CBD would prevent catalepsy in-
duced by drugs with distinct pharmacological mechanisms. The catalepsy test is largely used to investigate im-
pairments of motor function caused by interference on striatal function. Male Swiss mice received acute
pretreatment with CBD (5, 15, 30 or 60 mg/kg, ip) 30 min prior to the D2 receptor antagonist haloperidol
(0.6 mg/kg), the non-selective nitric oxide synthase (NOS) inhibitor L-nitro-N-arginine (L-NOARG, 80 mg/kg)
or the CB1 receptor agonist WIN55,212-2 (5 mg/kg). The mice were tested 1, 2 or 4 h after haloperidol,
L-NOARG orWIN55,212-2 injection. These drugs significantly increased catalepsy time and this effect was atten-
uated dose-dependently by CBD. CBD, by itself, did not induce catalepsy. In a second set of experiments the
mechanism of CBD effects was investigated. Thirty minutes before CBD (30 mg/kg) the animals received the
5-HT1A receptor antagonist WAY100635 (0.1 mg/kg). The anticataleptic effect of CBD was prevented by
WAY100635. These findings indicate that CBD can attenuate catalepsy caused by different mechanisms (D2

blockade, NOS inhibition and CB1 agonism) via 5-HT1A receptor activation, suggesting that it could be useful in
the treatment of striatal disorders.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

While Δ9-tetrahydrocannabinol (Δ9-THC) is the main active
compound from Cannabis sativa plant, cannabidiol (CBD) is another
cannabinoid generally found in relatively high concentrations in this
plant that was initially proposed as devoid of psychopharmacological
activity (Mechoulam, 1970). Δ9-THC produces a combination of four
typical behavioral changes (the tetrad) that include antinociception,
hypolocomotion, hypothermia and catalepsy (Compton et al., 1992).
These effects are blocked by cannabinoid CB1 receptor antagonism
(McMahon and Koek, 2007), indicating that they are mediated by
these receptors. CBD, however, does not share this typical cannabinoid
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behavioral profile. On the contrary, it attenuates the psychotomimetic
effects of high doses of Δ9-THC (Zuardi et al., 1982), suggesting an anti-
psychotic activity.

Clinical trials and preclinical studies have confirmed that CBD can in-
duce antipsychotic-like effects (for review see Campos et al., 2012;
Zuardi et al., 2006). In humans, for example, CBD reduced psychotic
symptoms induced by L-dopa in Parkinson's disease patients (Zuardi
et al., 2009). Results from this study indicated that CBD could also im-
prove motor function. This latter effect raised the possibility that CBD
could have beneficial effects on motor related striatal disorders. Thus,
the aim of the present study was to further investigate this possibility
in mice submitted to the catalepsy test. The induction of catalepsy, de-
fined as a failure to correct an externally imposed posture, is widely
used to investigate impairments of motor function in rodents caused
by interference on striatal function (Hauber, 1998; Sanberg et al.,
1988). Thus, we investigated if CBD could prevent catalepsy induced
by drugs with distinct pharmacological mechanisms that include
dopamine receptor blockade, nitric oxide synthase (NOS) inhibition
and CB1 receptor agonism. Since several pieces of evidence indicate
that some CBD behavioral effects depend on facilitation of 5-HT1A
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Fig. 1. Effects of CBD (5, 15, 30 and 60 mg/kg) or vehicle (VEH) on catalepsy induced
by haloperidol (HAL, 0.6 mg/kg; n = 5–10/group). Data expressed as mean ± SEM
of catalepsy time. * P b 0.05 from VEH + VEH group and # P b 0.05 from VEH + HAL,
Bonferroni test.

Fig. 2. Effects of CBD (5, 15, 30 and 60 mg/kg) or vehicle (VEH) on catalepsy induced
by L-NOARG (80 mg/kg; n = 5–7/group). Data expressed as mean ± SEM of catalepsy
time. * P b 0.05 from VEH + VEH and # P b 0.05 from VEH + L-NOARG group,
Bonferroni test.
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receptor-mediated neurotransmission (Gomes et al., 2011; Rock et al.,
2012; Russo et al., 2005), we also tested whether the possible
anticataleptic effect of CBD would be mediated by these receptors.

2. Material and methods

2.1. Animals

The experiments were performed using male Swiss mice weighting
25–35 g. The animals were housed in groups of 6 mice/cage under 12 h
light cycle (lights on at 7 am)with free access to food andwater. Proce-
dures were conducted in conformity with the Brazilian Society of
Neuroscience and Behavior guidelines for the care and use of laboratory
animals, which are in compliance with international laws and policies
and were approved by the local Ethical Committee (protocol number:
056/2012). Each animal was used twice with a week period between
the tests and a multiple-treatment counterbalanced design was used.

2.2. Drugs

The following drugs were used: cannabidiol (CBD; THC Pharm, Ger-
many), WIN55,212-2 (a CB1 receptor agonist, Tocris, USA), haloperidol
(a dopamine receptor antagonist, Haldol®, Janssen-Cilag Farmacêutica
Ltda., Brazil), L-nitro-N-arginine (L-NOARG; a non-selective NOS inhib-
itor, Sigma-Aldrich, USA), andWAY100635 maleate (a 5-HT1A receptor
antagonist; Sigma-Aldrich, USA). CBD andWIN55,212-2were diluted in
2% Tween 80 in sterile saline (vehicle), while haloperidol, L-NOARG and
WAY100635 were diluted in sterile saline. The drugs were injected in-
traperitoneally (ip) in a 10 mL/kg volume.

2.3. Catalepsy test

Catalepsy was evaluated by placing the animal with both forelegs
over a horizontal glass bar (diameter = 0.5 cm) elevated 4.5 cm from
the floor. The time (s) duringwhich themousemaintained this position
was recorded up to 300 s (Del Bel et al., 2002; Nucci-da-Silva et al.,
1999). Catalepsy was considered finished when at least one forepaw
touched the floor or when the mouse climbed upon the bar.

2.4. Experimental design

Catalepsy was induced by ip administration of haloperidol
(0.6 mg/kg). Thirty minutes before haloperidol administration the ani-
mals received CBD (5, 15, 30 and 60 mg/kg; experiment 1). In another
set of experiments, catalepsy was induced by L-NOARG (80 mg/kg; ex-
periment 2) orWIN55,212-2 (5 mg/kg; experiment 3) and the animals
were pretreated, 30 min before, with CBD (5, 15, 30 and 60 mg/kg). The
mice were tested 1, 2 and 4 h after haloperidol, L-NOARG or
WIN55,212-2 injection.

After that, to investigate the possible mechanism of action of CBD,
mice were divided into groups receiving a first ip injection of the
5-HT1A receptor antagonistWAY100635 (0.1 mg/kg) or saline followed,
30 min later, by an injection of CBD (30 mg/kg) or vehicle. Thirty
minutes later, the animals received haloperidol, L-NOARG or WIN55,
212-2 injection and the time of catalepsy was measured 2 h after
(experiment 4). The latter interval was chosen based on results
from experiments 1 to 3, reflecting the time CBD was able to attenu-
ate catalepsy induced by haloperidol, L-NOARG or WIN55,212-2. The
intervals between drug injections and testing were based on CBD
pharmacokinetics (Deiana et al., 2012) and previous studies that have
investigated the behavioral effects of this compound (Casarotto et al.,
2010; Zanelati et al., 2010). The doses of the drugs employed were
also based on previous results from the literature (Del Bel et al., 2002;
Moreira and Guimaraes, 2005; Pava et al., 2012; Zanelati et al., 2010).
2.5. Statistical analysis

Experiments 1, 2 and 3 were analyzed by two-way ANOVA, with
treatment as the main independent factor, and time as a repeated mea-
surement. An one-way ANOVA was used to analyze experiment 4.
Post-hoc analysis were performed using the Bonferroni test. P b 0.05
was considered significant.

3. Results

3.1. Experiment 1: CBD effects on haloperidol-induced catalepsy

There were significant effects of time (F2,82 = 16.95, P b 0.001),
treatment (F6,82 = 11.44, P b 0.001) and time X treatment (F12,82 =
1.97, P b 0.05). Haloperidol induced catalepsy throughout the experi-
ment (Bonferroni post-hoc, P b 0.05 from VEH + VEH group; Fig. 1).
CBD (30 and 60 mg/kg) attenuated the cataleptic effect of haloperidol
2 h after injection (Bonferroni test, P b 0.001 from VEH + HAL group),
but not 1 and 4 h (Bonferroni test, P > 0.05 from VEH + HAL group).
Moreover, as it was expected, CBD by itself did not induce catalepsy
(Bonferroni test, P > 0.05 from VEH + VEH group; Fig. 1).

3.2. Experiment 2: CBD effects on L-NOARG-induced catalepsy

There was a significant effect of treatment (F6,68 = 6.43, P b 0.001),
but no time (F2,68 = 1.21, P > 0.05) and time X treatment effects
(F12,68 = 0.71, P > 0.05). L-NOARG induced catalepsy throughout the
experiment (Bonferroni test, P b 0.001 from VEH + VEH group; Fig. 2).
CBD (30 and 60 mg/kg) attenuated the cataleptic effect of L-NOARG 1,
2 and 4 h after injection (Bonferroni test, P b 0.01 from VEH +
L-NOARG group), while CBD, at the dose of 15 mg/kg, attenuated the
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Fig. 3. Effects of CBD (5, 15, 30 and 60 mg/kg) or vehicle (VEH) on catalepsy induced
by WIN55,212-2 (WIN, 5 mg/kg; n = 5–7/group). Data expressed as mean ± SEM of
catalepsy time. * P b 0.05 from VEH + VEH and # P b 0.05 from VEH + WIN group,
Bonferroni test.
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cataleptic effect of L-NOARG 1 and 2 h after injection (Bonferroni test,
P > 0.05 from VEH + L-NOARG group, Fig. 2).
3.3. Experiment 3: CBD effects on WIN55,212-2-induced catalepsy

There were significant effects of time (F2,68 = 16.24, P b 0.001),
treatment (F6,68 = 10.01, P b 0.001) and time X treatment (F12,68 =
5.82, P b 0.001). WIN55,212-2 induced catalepsy 1 and 2 h after injec-
tion (Bonferroni test, P b 0.001 from VEH + VEH group; Fig. 3), an ef-
fect attenuated by pretreatment with CBD (15, 30 and 60 mg/kg;
Bonferroni test, P b 0.01 from VEH + WIN55,212-2 group; Fig. 3).
3.4. Experiment 4: effects of pretreatment with WAY100635, a 5-HT1A
receptor antagonist, on the anticataleptic effects of CBD

Confirming results from experiments 1 to 3, CBD (30 mg/kg) atten-
uated the catalepsy induced by haloperidol (F5,55 = 17.80, P b 0.001;
Bonferroni test, P b 0.01 from VEH + VEH + HAL group), L-NOARG
(F5,38 = 5.90, P b 0.01; Bonferroni test, P b 0.05 from VEH + VEH +
L-NOARG group) and WIN55,212-2 (F5,50 = 11.69, P b 0.001;
Bonferroni test, P b 0.001 from VEH + VEH + WIN55,212-2 group).
Moreover, pretreatment with WAY100635 was able to antagonize
CBD effects on catalepsy induced by those three drugs (Bonferroni
test, P > 0.05). WAY100635 by itself did not induce catalepsy
(Bonferroni test, P > 0.05). The ability of the 5-HT1A receptor antago-
nist WAY100635 to block CBD effects on drug-induced catalepsy is
shown in Fig. 4.
Fig. 4. Effects of pretreatment with saline (VEH) or WAY100635 (WAY, 0.1 mg/kg) followed
haloperidol (A, HAL, 0.6 mg/kg; n = 6–12/group), L-NOARG (B, 80 mg/kg; n = 5–8/group)
after these drugs. Data expressed as mean ± SEM of catalepsy time. * P b 0.05 from WA
(B) VEH + VEH + L-NOARG or (C) VEH + VEH + WIN; Bonferroni test.
4. Discussion

The present study shows that CBD attenuates the catalepsy induced
by drugs with three distinct pharmacological mechanisms: D2 receptor
antagonist haloperidol, non-selective NOS inhibition (L-NOARG) and
the CB1 receptor agonism (WIN55,212-2). By itself, CBD did not induce
catalepsy. This latter result agrees with the findings of Zuardi et al.
showing that CBD, even at doses as high as 480 mg/kg, does not induce
catalepsy in rats (Zuardi et al., 1991). In addition, a double-blind con-
trolled clinical trial with 42 acute schizophrenic and schizophreniform
psychosis patients comparing the effects of CBD with those of
amisulpride, an atypical antipsychotic, showed that both treatments
were equally effective in reducing acute psychotic symptoms after
two and four weeks of treatment but CBD caused a much lower inci-
dence of extrapyramidal symptoms, weight gain and increases in pro-
lactin (Leweke et al., 2012). CBD also reduced psychotic symptoms
induced by L-dopa in patients with Parkinson's disease without
impairing motor function (Zuardi et al., 2009).

Since CBD attenuated catalepsy induced by drugs with different
pharmacological mechanisms, a possible stimulatory effect of the
drug would be suggested. However, there are several studies indicat-
ing that CBD does not change the locomotor activity (Casarotto et al.,
2010; Hayakawa et al., 2008; Moreira and Guimaraes, 2005; Zanelati
et al., 2010). Also, although it is not possible to discard the involve-
ment of pharmacokinetic interactions as a possible explanation for
the present results, this seems unlikely. CBD can actually inhibit
CYP450 enzymes, what would potentiate, rather than inhibit, drug ef-
fects (Klein et al., 2011).

CBD can produce its effects through several pharmacological mech-
anisms (Izzo et al., 2009) such as facilitation of endocannabinoid signal-
ing through their ability to inhibit the cellular reuptake and hydrolysis
of endocannabinoid anandamide (Bisogno et al., 2001) and enhance-
ment of adenosine signaling through inhibition of its uptake (Carrier
et al., 2006). In 2005, Russo and colleagues reported that CBD can also
displace the 5-HT1A receptor agonist [3H]8-OH-DPAT from cloned
human 5-HT1A receptors expressed in Chinese hamster ovary cultured
cells and act as an agonist at these receptors (Russo et al., 2005). In ad-
dition, 5-HT1A receptor antagonists were able to prevent several behav-
ioral effects of CBD, including antidepressive (Zanelati et al., 2010),
anti-nausea (Rock et al., 2012) and anxiolytic-like (Campos and
Guimaraes, 2008; Gomes et al., 2011). The present results indicate
that its anticataleptic effects also depend on 5-HT1A receptors, although
the exactmechanismbywhich CBD facilitates this neurotransmission is
still unclear (Rock et al., 2012).

5-HT1A-mediated neurotransmission had already been involved in
catalepsy induced by D2 receptor antagonists. For example, 5-HT1A
by a second injection of vehicle (VEH) or CBD (30 mg/kg) on the catalepsy induced by
or WIN55,212-2 (C, WIN, 5 mg/kg; n = 6–10/group). The catalepsy was measured 2 h
Y + VEH + VEH and WAY + CBD + VEH; # P b 0.05 from (A) VEH + VEH + HAL,
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receptor agonists attenuate the catalepsy induced by haloperidol and
risperidone (Hicks, 1990; Invernizzi et al., 1988; Neal-Beliveau et al.,
1993; Prinssen et al., 2002). Also, the anticataleptic effect of 8-OH-
DPAT is antagonized by the selective 5-HT1A receptor antagonist
WAY100635 (Bartoszyk et al., 1996). Moreover, WAY100635 en-
hances haloperidol-induced catalepsy (Prinssen et al., 2002).

Several studies have shown that NOS inhibitors induce catalepsy
(Del Bel et al., 1998, 2002; Marras et al., 1995), an effect centrally medi-
ated once it is also observed after intraventricular or intrastriatal admin-
istration of these drugs (Del Bel et al., 2004; Echeverry et al., 2007). The
mechanisms of this effect are not known, but they suggest that nitric
oxide (NO) plays an important modulatory role in the basal ganglia.
NOS positive cells are found in the striatum (Vincent and Kimura,
1992) and antagonism of NO formation decreases dopamine release in
this structure (Sandor et al., 1995). Similar to haloperidol-induced cata-
lepsy, 5-HT1A receptor antagonism facilitates the cataleptogenic effect
of L-NOARG (Nucci-da-Silva et al., 1999). Our results corroborate this
finding, indicating that 5-HT1A-mediated neurotransmission is also in-
volved in catalepsy produced by NOS inhibition.

Concerning the CBD effects on WIN55,212-2-induced catalepsy, a
number of studies suggest that CBD can influence the pharmacological
activity of CB1 receptor agonists (Thomas et al., 2007; Zuardi et al.,
1981, 1982). For example, CBD attenuates the psychotomimetic and
anxiogenic effects of high doses of Δ9-THC in humans (Karniol et al.,
1974; Zuardi et al., 1982) even if it potentiates some positive effects of
Δ9-THC, such as antinociceptive (Varvel et al., 2006). Few studies, how-
ever, have investigated the effects of CBD onΔ9-THC-induced catalepsy,
and the results are contradictory. The cataleptic effects of Δ9-THC were
reversed CBD in two studies (Formukong et al., 1988; Karniol and
Carlini, 1973) and potentiated in another one (Fernandes et al., 1974),
while still other studies found that much higher doses of CBD failed to
have any effect (Hayakawa et al., 2008; Jones and Pertwee, 1972;
Varvel et al., 2006). Recently, it was observed that an extract of cannabis
(containing Δ9-THC, CBD and other phytocannabinoids) reduced the
catalepsy induced by haloperidol in mice (Abdel-Salam et al., 2012).
Since Δ9-THC can induce catalepsy by itself and, in addition, potentiate
the motor impairment caused by haloperidol (Marchese et al., 2003), it
is possible that the anti-cataleptic effect of this cannabis extract is due to
the presence of CBD.

The catalepsy induced by the CB1 receptor agonist WIN55,212-2 is
consistent with the abundant expression of CB1 receptors in motor-
related brain structures such as the basal ganglia (Herkenham et al.,
1990). Similar to the present results with WIN55,212-2, other studies
show that the behavioral changes triggered by CB1 receptor agonists
such as Δ9-THC, HU-210 and CP55,940 were maximal from 1 to 2 h
after a single intraperitoneal injection and were not longer detected
after 4 h (Martin-Calderon et al., 1998; Mauler et al., 2002; McMahon
and Koek, 2007).

It has been suggested that the catalepsy induced by CB1 receptor
agonist is mediated by a decrease in 5-HT neurotransmission in the
nucleus accumbens due to the action of glutamate-containing neu-
rons (Sano et al., 2008). Therefore, the activation of 5-HT1A receptors
in this structure could explain the anti-cataleptic effect of CBD against
CB1 receptor agonists. Corroborating this possibility, this effect was
also prevented by the 5-HT1A receptor antagonist WAY100635. Fur-
thermore, similar to CBD, the 5-HT1A/7 receptor agonist 8-OH-DPAT
and the 5-HT1A receptor partial agonist buspirone inhibit the
Δ9-THC-induced catalepsy, an effect blocked by a 5-HT1A receptor an-
tagonist (Egashira et al., 2006).

The mechanisms responsible for the 5-HT1A agonist-induced
anticataleptic activity are not yet clear. 5-HT1A autoreceptors or
heteroreceptors can influence several neurotransmitters that contrib-
ute to the activity of the extrapyramidal system. For example, activation
of 5-HT1A autoreceptors in the dorsal raphe attenuates haloperidol-
induced catalepsy (Invernizzi et al., 1988). Indeed, Kapur and
Remington (1996) proposed that serotonergic projections from the
dorsal raphe inhibit dopaminergic nigrostriatal neuronal function in
the midbrain and striatum. Agreeing with this proposition, in the mid-
brain the firing of dopaminergic cells projecting from the substantia
nigra is inhibited by serotonin (Kapur and Remington, 1996). Thus,
activation of the 5-HT1A receptors, an inhibitory G-protein linked recep-
tor, could disinhibit dopaminergic transmission in the nigrostriatal
pathway by reducing serotonergic transmission through raphe
autoreceptor activation. Interestingly, intracerebroventricular adminis-
tration of CBD enhanced extracellular levels of dopamine in the nucleus
accumbens (Murillo-Rodríguez et al., 2006), although there is no study
evaluating its effects on dopamine levels in the dorsal striatum.

In addition to interfere with catalepsy, studies using animal models
of Parkinson's disease CBD could also provide neuroprotection against
the progressive degeneration of nigrostriatal dopaminergic neurons
(Garcia-Arencibia et al., 2007; Lastres-Becker et al., 2005). Taken to-
gether, these results indicate that CBD could be useful in the symptom-
atic treatment of motor impairments observed in Parkinson's patients.
Clinical data regarding this possibility, however, is limited and the re-
sults are contradictory. In the aforementioned work by Zuardi et al.
(2009) CBD induced an apparent improvement of motor function in
these patients (Zuardi et al., 2009). Also, a preliminary open pilot
study showed that treatment with CBD for 6 weeks improved motor
symptoms in all 5 patients with dystonic movement disorders. How-
ever, in 2 patients with coexisting Parkinsonian features, CBD exacer-
bated the hypokinesia and resting tremor (Consroe et al., 1986).
Further clinical studies, with larger samples and more doses of CBD
are clearly needed to evaluate possible therapeutic properties of CBD
in Parkinson's disease.

In summary, we have shown that CBD attenuates catalepsy in-
duced by drugs with different mechanisms through facilitation of
5-HT1A receptor-mediated neurotransmission, suggesting that it
could be useful in the treatment of striatal disorders.
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