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Abstract

We explain the construction of fields of formal infinite series in several variables, generalizing the
classical notion of formal Laurent series in one variable. Our discussion addresses the field operations
for these series (addition, multiplication, and division), the composition, and includes an implicit
function theorem.
c⃝ 2013 Elsevier GmbH.
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1. Introduction

The purpose of this article is twofold. In the first part (Sections 2–4), we explain how to
construct fields of formal Laurent series in several variables. This part has an expository
flavour. The construction we present is not new; similar constructions can already be found
in the literature. However, the justification of their validity is usually kept brief or more
abstract than necessary. We have found it instructive to formulate the arguments in a
somewhat more concrete and expanded way, and we include these proofs here in the hope
that this may help to demystify and popularize the use of formal Laurent series in several
variables. The results in the second part (Sections 5–6) seem to be new. We discuss there
the circumstances under which we can reasonably define the composition of multivariate
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formal Laurent series, and we present a version of the implicit function theorem applicable
to multivariate formal Laurent series.

Recall the situation of a single variable. The set K[[x]] of formal power series f (x) =
∞

n=0 an xn with coefficients in some field K forms an integral domain together with
the usual addition and multiplication. Such a series f (x) admits a multiplicative inverse
g(x) ∈ K[[x]] if and only if a0 ≠ 0 (see, e.g., [14,10]). If f (x) is any nonzero element of
K[[x]], then not all its coefficients are zero, and if e is the smallest index such that ae ≠ 0,
then we have f (x) = xeh(x) for some h(x) ∈ K[[x]] which admits a multiplicative inverse.
The object x−eh(x)−1 qualifies as a multiplicative inverse of f (x). In the case of a single
variable, we may therefore define K((x)) as the set of all objects xeh(x) where e is some
integer and h(x) is some element of K[[x]]. Then K((x)) together with the natural addition
and multiplication forms a field. This is the field of formal Laurent series in the case of one
variable.

The case of several variables is more subtle. The set K[[x, y]] of formal power series
f (x, y) =


∞

n,k=0 an,k xn yk in two variables x, y with coefficients in K also forms
an integral domain, and it remains true that an element f (x, y) ∈ K[[x, y]] admits a
multiplicative inverse if and only if a0,0 ≠ 0. But in general, it is no longer possible
to write an arbitrary power series f (x, y) in the form f (x, y) = xe1 ye2 h(x, y) where
h(x, y) ∈ K[[x, y]] admits a multiplicative inverse in K[[x, y]]. As an example, consider
the series f (x, y) = x + y = x1 y0

+ x0 y1
∈ K[[x, y]]. If we want to write f (x, y) =

xe1 ye2 h(x, y) for some h(x, y) ∈ K[[x, y]], we have h(x, y) = x1−e1 y−e2 + x−e1 y1−e2 . In
order for h(x, y) to have a nonzero constant term, we can only choose (e1, e2) = (1, 0) or
(e1, e2) = (0, 1), but for these two choices, h(x, y) is 1 + x−1 y or xy−1

+ 1, respectively,
and none of them belongs to K[[x, y]].

There are at least three possibilities to resolve this situation. The first and most direct
way is to consider fields of iterated Laurent series [17, Chapter 2], for instance the field
K((x))((y)) of univariate Laurent series in y whose coefficients are univariate Laurent
series in x . Clearly this field contains K[[x, y]], and the multiplicative inverse of x + y in
K((x))((y)) is easily found via the geometric series to be

1
x + y

=
1/x

1 − (−y/x)
=

∞
n=0

(−1)n x−n−1 yn .

Of course, viewing x + y as an element of K((y))((x)) leads to a different expansion.
The second possibility is more abstract. This construction goes back to Malcev [11]

and Neumann [13] (see [15,17] for a more recent discussion). Start with an abelian group

G (e.g., the set of all power products x i1
1 · · · x

i p
p with exponents i1, . . . , i p ∈ Z and the

usual multiplication) and impose on the elements of G some order 4 which respects
multiplication (see Section 3 below for definitions and basic facts). Define K((G)) as the
set of all formal sums

a =


g∈G

agg

with ag ∈ K for all g ∈ G and the condition that their supports supp (a) := { g ∈ G | ag ≠

0 } contain no infinite strictly 4-decreasing sequence. If addition and multiplication of such
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series are defined in the natural way, it can be shown that K((G)) is a field (cf. Theorem 5.7
in [13] or Corollary 3.1–11 in [17]).

The third possibility is more geometric and goes back to MacDonald [12]. He considers

formal infinite sums of terms of the form ai1,...,i p x i1
1 · · · x

i p
p where the exponent vectors

(i1, . . . , i p) are constrained to some fixed cone C ⊆ Rp. It turns out that for every
cone C not containing a line, these series form a ring (Theorem 10 below; see Section 2
below for definitions and basic facts concerning cones). MacDonald shows using a
multivariate generalization of the Newton–Puiseux method that for every polynomial
f (x1, . . . , x p, y) ∈ K[x1, . . . , x p, y] one can find a cone such that the corresponding
ring contains a series g(x1, . . . , x p) (possibly with fractional exponents) such that
f (x1, . . . , x p, g(x1, . . . , x p)) = 0. The rings of MacDonald are not fields, but Aroca,
Cano and Jung [2,3] observe that a field can be obtained by taking the union of all the
rings for some suitable collection of shifted cones (similar to Theorem 15 below). Again
allowing fractional exponents, Aroca et al. show that the fields constructed in this way are
even algebraically closed. Their elements can thus be considered as the natural multivariate
generalizations of Puiseux series.

The construction we give below is, in a sense, a mixture of the approach by Malcev
and Neumann on the one hand, and MacDonald–Aroca–Cano–Jung on the other hand.
Our goal was to keep the geometric intuition inherent to the latter while at the same
time avoiding any technical considerations related to Newton polygons. Our construction
is more specific than Malcev–Neumann’s in that we do not consider arbitrary groups as
carriers of the series, and it is more specific than MacDonald–Aroca–Cano–Jung’s in that
we do not consider rational exponents. Our series are thus formal infinite sums of terms of

the form ai1,...,i p x i1
1 · · · x

i p
p where (i1, . . . , i p) ranges over (some suitable subset of) Zp. A

need to reason about such series arises for instance in lattice path counting (see, e.g., [6]
and references given there), in Ehrhart’s theory of counting integer points in polytopes
(see, e.g., [5] and references given there), or in MacMahon’s theory of integer partitions
(see, e.g., [1] and references given there). We want to promote them as natural multivariate
generalization of the notion of formal Laurent series.

2. Cones

In general, a cone C ⊆ Rp is a set with the property that whenever u ∈ C and c ≥ 0,
then cu ∈ C . The cones we consider here have the following special properties.

Definition 1. A cone C ⊆ Rp is called

1. finitely generated if there exist v1, . . . , vn ∈ Rp such that

C = { z1v1 + z2v2 + · · · + znvn | z1, z2, . . . , zn ≥ 0 }.

In this case {v1, . . . , vn} is called a generating set for C .
2. rational if it is finitely generated and has a generating set

{v1, . . . , vn} ⊆ Zp.

3. line-free if for every v ∈ C \ {0} we have −v ∉ C .
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Since we will be only considering rational finitely generated cones in this article, we
drop these attributes from now on and only say “cone”. With this convention, cones are
obviously closed, they obviously all contain 0, and they are obviously unbounded or equal
to {0}. It is also easy to see that all cones are convex (i.e., for all u, v ∈ C and for all
c ∈ [0, 1] we have cu + (1 − c)v ∈ C as well), and that u, v ∈ C implies u + v ∈ C .
Finally, when C, D are cones, then so is C + D = { u + v | u ∈ C, v ∈ D }. The following
facts are less obvious, but also well-known.

Proposition 2. Let K ⊆ Rp be a closed and convex set.

1. K is unbounded if and only if there exist u, v ∈ Rp with v ≠ 0 such that u + cv ∈ K
for all c ≥ 0 (i.e., K contains a ray).

2. Let w ∈ Rp and R = { cw | c ≥ 0 }. Then for all u, v ∈ K we have u + R ⊆ K ⇐⇒

v + R ⊆ K .

Proof. See statements 1 and 2 in Section 2.5 of Grünbaum [9]. �

In order to give a meaning to an operation (e.g., multiplication) for formal infinite series,
we will ensure that every coefficient of the result (e.g., the product) depends only on finitely
many coefficients of the operands (e.g., the factors). For some of the operations defined
below, it turns out that this property can be shown using the following two lemmas.

Lemma 3. Let C ⊆ Rp be a cone and A ⊆ Rp be a closed and convex set with
C ∩ A = {0}. Then for every a ∈ Rp, the set C ∩ (a + A) is bounded.

Proof. Fix a ∈ Rp and set K = C ∩ (a + A) ⊆ Rp. Assume that K is unbounded. Since
C and A are closed and convex, K is also closed and convex, and Proposition 2(1) implies
the existence of u, v ∈ Rp with v ≠ 0 and u + cv ∈ K for all c ≥ 0. We show that
v ∈ C ∩ A = {0} in order to arrive at a contradiction.

Indeed, with c = 0 it first follows that u ∈ K ⊆ C . Since also 0 ∈ C , it follows from
Proposition 2(2) that cv ∈ C for all c ≥ 0. In particular v ∈ C .

Similarly, Proposition 2(2) applied to the convex set a+ A and the points u ∈ K ⊆ a+ A
and a ∈ a + A imply a + cv ∈ a + A for all c ≥ 0. Therefore a + v ∈ a + A, and finally
v ∈ A. �

Lemma 4. Let C ⊆ Rp be a line-free cone and S ⊆ C ∩ Zp. Then there exists a finite
subset {s1, . . . , sn} of S such that S ⊆

n
i=1(si + C).

Proof. If C is the cone generated by the unit vectors (i.e., C ∩ Zp
= Np), then this is the

classical Dickson Lemma [8,4].
The general case is reduced to this situation as follows. Let {v1, . . . , vk} ⊆ Zp be

a set of generators of C . Then each s ∈ S can be written as s = s1v1 + · · · + skvk
for some nonnegative s1, . . . , sk ∈ Q. Setting ni := ⌊si⌋ (i = 1, . . . , k), we have
s = n1v1 + · · · + nkvk + c for some c ∈ Zp which is a linear combination of the vi
with coefficients in [0, 1].

Since {z1v1 + · · · + zkvk : z1, . . . , zk ∈ [0, 1]} is a bounded set, its intersection
with Zp is finite, say {c1, . . . , cℓ}. For a fixed vector c, let Nc ⊆ Nk be the set of
all vectors (n1, . . . , nk) ∈ Nk such that n1v1 + · · · + nkvk + c ∈ S. Then by the
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original Dickson Lemma, for each of these sets Nc there is a finite subset Bc ⊆ Nc
such that for all (n1, . . . , nk) ∈ Nc there exists (b1, . . . , bk) ∈ Bc with (n1, . . . , nk) ∈

(b1, . . . , bk)+ Nk , viz. ni − bi ≥ 0 for i = 1, . . . , k. Then, since C is a cone, we also have
n1v1 + · · · + nkvk + c ∈ b1v1 + · · · + bkvk + c + C .

It finally follows that the finite set
ℓ

i=1{b1v1 + · · · + bkvk + ci : (b1, . . . , bk) ∈ Bci }

has the desired property. �

3. Orders

Definition 5. A total order 4 on Zp is called additive if for all i, j, k ∈ Zp we have

i 4 j H⇒ i + k 4 j + k.

An additive order 4 is called compatible with a cone C ⊆ Rp if 0 4 k for all k ∈ C ∩ Zp.

We take the freedom to write i < j instead of j 4 i, and i j instead of i 4 j ∧ i ≠ j, and
similar shorthand notations.

The additivity of an order 4 implies that when v, w ∈ Zp are such that v, w < 0, then
also av + bw < 0 for every nonnegative a, b. Note that this is not only true for integers
a, b but also for any rational numbers a, b for which av + bw ∈ Zp. The reason is that for
an additive order we have v < 0 ⇐⇒ dv < 0 for every positive integer d, which allows
us to clear denominators.

Example 6. 1. Let n = (n1, . . . , n p) ∈ Rp be some vector whose components are linearly
independent over Q. For i, j ∈ Zn , define

i 4n j ⇐⇒ i · n ≤ j · n,

where · refers to the standard scalar product on Rp. Then 4n is an additive order.
Geometrically, i 4n j can be interpreted as follows. The affine hyperplane H = i+n⊥

divides Rp into two open half spaces, one towards the direction to which n points and
one towards the opposite direction. We have i 4n j if and only if j belongs to the half
space in the direction of n.

The requirement that the coordinates of n be linearly independent over Q ensures that
4n is indeed a total order, for if i, j ∈ Zp are such that i 4n j and j 4n i, then n · i = n · j,
so n · (i − j) = 0, and hence, since the coordinates of i and j are integers, i = j.

If C is a line-free cone and n ∈ C , then 4n is compatible with C . Moreover, it
follows from Lemma 3 that for every i ∈ Zp there exist only finitely many j ∈ C ∩ Zp

such that j 4n i. This need not be the case for every additive order, as shown in the
following example.

2. For i, j ∈ Zp, the lexicographic order is defined by letting i 4lex j if and only if i = j
or the leftmost nonzero coordinate of the vector i − j is negative. This is an additive
order.

If C is a cone which contains no vector (i1, . . . , i p) where any of the coordinates
i1, . . . , i p−1 is negative, then 4lex is compatible with C . With this order, it may happen
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that for a fixed i ∈ Zn there are infinitely many j ∈ C ∩ Zp with j 4lex i. For instance, if
C ⊆ R2 contains (1, 0) and (0, 1), then (u, 0) 4lex (0, 1) for every u ∈ N.

However, it is still true that 4lex is a well-founded order on C ∩ Zn . We show in
Lemma 8 that this is true for every additive order.

The following two lemmas contain the key properties regarding cones and additive
orders which we will use below. The first of them is straightforward, and the second is
a reformulation of Lemma 4.

Lemma 7. Let C, D ⊆ Rp be cones and let 4 be an additive order on Zp. Let {v1, . . . , vk}

be a set of generators for C.

1. If C is compatible with 4, then C is line-free.
2. C is compatible with 4 if and only if vi < 0 for all i .
3. If C, D are compatible with 4, then C + D is also compatible with 4.

Proof. 1. If C = {0}, then C is trivially line-free. If C ≠ {0}, take some v ∈ C \ {0}. Then
v < 0, because C is compatible with 4. Then −v 4 0, because 4 is an additive order.
Since v ≠ 0, also −v ≠ 0, and hence −v ∉ C .

2. The direction “⇒” is clear because vi ∈ C for all i . The direction “⇐” follows from the
observation made after Definition 5 that v, w < 0 and a, b ≥ 0 implies av + bw < 0.

3. Let {w1, . . . , wm} be a generating set for D. Since C + D is generated by
v1, . . . , vk, w1, . . . , wm , the claim follows from part 2. �

Lemma 8. Let 4 be an additive order and C be a cone. If 4 is compatible with C, then 4
is a well-founded order on C∩Zp, i.e., every strictly decreasing sequence a1 a2 a3 · · ·

of elements in C ∩ Zp terminates, or equivalently, every subset of C ∩ Zp contains a
4-minimal element.

Proof. Let S ⊆ C ∩ Zp. By Lemma 4, there exists a finite subset {s1, . . . , sn} of S such
that S ⊆

n
i=1(si + C). From the assumption that C is compatible with 4 it follows that

when v, w ∈ Zp are such that v ∈ w + C , then w 4 v. Therefore, the 4-minimum of the
finite set {s1, . . . , sn} is also the minimum of S whose existence was to be shown. �

4. Construction

Let K be a field and x1, . . . , x p be indeterminates. We consider formal infinite series of
the form

f (x) := f (x1, . . . , x p) =


k

akxk

where the sum runs over all k = (k1, . . . , kp) ∈ Zp, the ak are elements of K, and xk is a

short-hand notation for xk1
1 xk2

2 · · · x
kp
p .

These objects form a vector space over K together with the natural addition and scalar
multiplication, for if

f (x) =


k

akxk and g(x) =


k

bkxk
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then the coefficient of xk in u f (x)+vg(x) is simply u ak+v bk, which is clearly an element
of K for any fixed u, v ∈ K.

Multiplication is more delicate. In the natural definition

f (x)g(x) :=


k


i

aibk−i


xk,

the inner sum ranges over infinitely many elements aibk−i of K, which is not meaningful in
general. To make this summation finite, we restrict the attention to series f (x) =


k akxk

whose support supp f (x) := { k ∈ Zp
| ak ≠ 0 } is contained in a fixed line-free cone.

Definition 9. Let C ⊆ Rp be a line-free cone. Then we define the set

KC [[x]] := { f (x) | supp f (x) ⊆ C }.

Using Lemma 3, it can be shown that every coefficient in the product of two elements of
KC [[x]] is determined by a sum with only finitely many nonzero terms. The support of the
product is again contained in C , as is the support of the sum of two elements of KC [[x]].
Therefore, we have the following theorem.

Theorem 10. KC [[x]] together with the natural addition and multiplication forms a ring.

Proof. To see that multiplication is well defined, we need to show that for every k ∈ Zp

there exist only finitely many i ∈ Zp such that i ∈ C and k − i ∈ C . Since C is line-free,
we have C ∩ −C = {0}. We can therefore apply Lemma 3 to C, A = −C and a = k, and
obtain that C ∩(k−C) is bounded. A bounded subset of Rp can only contain finitely many
points with integer coordinates, so C ∩ (k − C) ∩ Zp is finite, and this is what was to be
shown.

To see that KC [[x]] is closed under multiplication, consider some k ∈ Zp. In order for
the coefficient of some term xk in the product of two elements of KC [[x]] to be nonzero,
there must be at least one i ∈ C such that k − i ∈ C as well. Since C is a cone and cones
are closed under addition, k ∈ C .

Closure under addition is obvious, and it is also obvious that the neutral elements 0 and
1 = x0 belong to KC [[x]]. �

When C is the cone consisting of all vectors with nonnegative components, KC [[x]] is
the usual ring K[[x]] of formal power series in x1, . . . , x p. This ring is an integral domain,
and a series f (x) ∈ K[[x]] admits a multiplicative inverse if and only if its constant term is
different from zero. Both properties generalize to rings KC [[x]] for arbitrary line-free cones
C . The proof ideas are the same as for the usual formal power series ring K[[x]].

Theorem 11. If C ⊆ Rp is a line-free cone, then KC [[x]] is an integral domain.

Proof. Let f (x) =


k akxk and g(x) =


k bkxk be two nonzero elements of KC [[x]].
This means both supp f (x) and supp g(x) are nonempty. Let h(x) = f (x)g(x). We show
that h(x) is not zero, i.e., that supp h(x) is not empty.

Fix some additive order 4 on Zp which is compatible with C and let m := min4

(supp f (x) + supp g(x)). If u ∈ supp f (x) and v ∈ supp g(x) are such that u + v =
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m, then we necessarily have u = min4 supp f (x) and v = min4 supp g(x), because
min4 supp f (x) u or min4 supp g(x) v would imply

m 4 min
4

supp f (x) + min
4

supp g(x) u + v.

Therefore, the coefficient of xm in h(x) is
i

aibm−i =


i∈supp f (x)
j∈supp g(x)

i+j=m

aibj = aubv ≠ 0,

because au ≠ 0 and bv ≠ 0. �

Theorem 12. Let C ⊆ Rp be a line-free cone and f (x) =


k akxk
∈ KC [[x]]. Then there

exists g(x) ∈ KC [[x]] with f (x)g(x) = 1 if and only if a0 ≠ 0.

Proof. Assume that a0 = 0. We show that no multiplicative inverse of f (x) exists. Indeed,
if g(x) =


k bkxk is any element of KC [[x]] then the coefficient of x0 in the product

f (x)g(x) is a0b0 = 0, while for a multiplicative inverse we would need a0b0 = 1.
Assume now a0 ≠ 0. We show that a multiplicative inverse of f (x) exists. Fix an

additive order 4 compatible with C . Let g(x) =


k bkxk be a series with undetermined
coefficients bk. Set b0 = 1/a0, which is possible because a0 ≠ 0. Then the constant term
of f (x)g(x) is 1, regardless of the values of the other bk. We now show by noetherian
induction on k that there is a unique way to choose the coefficients bi for 0 i 4 k such
that the coefficient of xi in f (x)g(x) − 1 is equal to 0 for all i 4 k.

Assume as induction hypothesis that this is true for all i with i k. Then for the
coefficient of xk in f (x)g(x) we have

i

aibk−i =


04i4k

aibk−i = a0bk +


0 i4k

aibk−i.

Since a0 ≠ 0 and all the bk−i on the right hand side are uniquely determined by induction
hypothesis, we can (and have to) take bk = −a−1

0


0 i4k aibk−i. With this (and only
this) choice, the coefficient of xk in f (x)g(x) will be zero, as desired. �

In the univariate case, if the constant term of some nonzero series f (x) ∈ K[[x]] is
zero, we can write f (x) = xeh(x) for some e ∈ N and h(x) ∈ K[[x]] with h(0) ≠ 0.
Then h(x) has a multiplicative inverse and we find x−eh(x)−1 as the multiplicative inverse
of f (x) if we allow terms with negative exponents. Defining formal Laurent series via
K((x)) :=


e∈Z xeK[[x]] therefore already leads to a field.

In the multivariate case, it is not always possible to write a given f (x) ∈ KC [[x]] in the
form f (x) = xeh(x) for some h(x) ∈ KC [[x]], as already illustrated in the introduction.
But in cases where this is not possible, we can still write f (x) in the desired form if
we allow h(x) to belong to an enlarged ring KC ′ [[x]] for a suitably chosen line-free cone
C ′ containing the original cone C . Then h(x) has a multiplicative inverse in this ring by
Theorem 12, and we can regard x−eh(x)−1 as the multiplicative inverse of f (x).

Example 13. Consider the power series f (x, y) = x+y ∈ K[[x, y]] from the introduction.
(C is the cone generated by the two unit vectors (1, 0) and (0, 1) here.) This series can
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also be viewed as an element of KC ′ [[x, y]], where C ′ is the cone generated by (1, 0) and
(−1, 1). Then we have f (x, y) = x1 y0h(x, y) with h(x, y) = 1 + x−1 y1

∈ KC ′ [[x, y]]. In
this ring, h(x, y) has a multiplicative inverse, and therefore we can regard x−1 y0h(x, y)−1

as the multiplicative inverse of f (x, y).

If a collection of rings is such that for any two rings R1, R2 from the collection, the
collection contains some other ring R3 with R1 ⊆ R3 and R2 ⊆ R3, and if for any two
rings R1, R2 from the collection, the respective addition and multiplication of these rings
coincide on R1 ∩ R2, then the union over all the rings from the collection forms again a
ring in a natural way.

We can therefore make the following definition.

Definition 14. Let 4 be an additive order on Zp. Then we define the sets

K4[[x]] :=


C∈C

KC [[x]] and K4((x)) :=


e∈Zp

xeK4[[x]],

where C is the set of all cones C ⊆ Rp which are compatible with 4.

Theorem 15. If 4 is an additive order on Zp, then K4[[x]] is a ring and K4((x)) is a field.

Proof. To see that K4[[x]] is a ring, consider two rings KC1 [[x]], KC2 [[x]] from the
collection, i.e., consider two cones C1, C2 that are compatible with 4. By Lemma 7, the
cone C3 := C1 + C2 is also compatible with 4, so KC3 [[x]] also appears in the union.
Furthermore, it is clear that addition and multiplication of the rings KC1 [[x]] and KC2 [[x]]

agree on KC1 [[x]] ∩ KC2 [[x]]. This shows that K4[[x]] is well-defined as a ring.
To see that K4((x)) is a field, consider two nonzero elements f (x), g(x) ∈ K4((x)).

We show that their sum, their product, and the multiplicative inverse of f (x) also belong
to K4((x)). Let A, B ⊆ Rp be cones compatible with 4 and let a, b ∈ Zp be such that
f (x) = xaa(x) and g(x) = xbb(x) for some a(x) ∈ KA[[x]] and b(x) ∈ KB[[x]]. Then
f (x)g(x) belongs to xa+bKA+B[[x]] and f (x)+ g(x) belongs to xmin4(a,b)KC [[x]] where C
is the cone generated by a generating set of A, a generating set of B, and the single vector
max4(a, b)−min4(a, b) < 0. Note that A+ B and C are compatible with 4 by Lemma 7.
It follows that K4((x)) is closed under addition and multiplication.

As for the multiplicative inverse, let f (x) ≠ 0 and e := min4 supp f (x). This minimum
exists by Lemma 8 and because supp f (x) is nonempty for nonzero f (x). Let {s1, . . . , sn}

⊆ supp f (x) ⊆ A be a finite set such that supp f (x) ⊆
n

i=1(si+A). Such a finite set exists
by Lemma 4. Let C be the cone generated by a generating set of A, and s1 − e, . . . , sn − e.
By the choice of e, we have si − e < 0 for all i , so by Lemma 7, the cone C is compatible
with 4. Now we can write f (x) = xeh(x) for some h(x) ∈ KC [[x]] with nonzero constant
term. By Theorem 12 there exists a multiplicative inverse h(x)−1

∈ KC [[x]] ⊆ K4[[x]].
Hence f (x)−1

= x−eh(x)−1 belongs to K4((x)), as claimed. �

Example 16. Consider the univariate polynomial f (x) = 1 + x . The only two additive
orders on Z are the natural order and its reverse.

With respect to the natural order ≤, the smallest exponent of f (x) is 0, so f (x) has a
multiplicative inverse in K≤[[x]] = K[[x]]. Its coefficients can be determined following the
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proof of Theorem 12, the result being

f (x)−1
= 1 − x + x2

− x3
+ x4

− x5
+ · · · .

Let now ≤
−1 denote the reversed order, i.e., i ≤

−1 j ⇐⇒ j ≤ i . Then the smallest expo-
nent of f (x) with respect to this order is 1. Write f (x) = x(1 + x−1). The smallest
exponent of 1 + x−1 with respect to ≤

−1 is 0, so this series does have a multiplicative
inverse in K≤−1 [[x]] = K[[x−1

]]. Its first terms are 1−x−1
+x−2

−x−3
+· · ·. Consequently,

the multiplicative inverse of f (x) in K≤−1((x)) reads

f (x)−1
= x−1

− x−2
+ x−3

− x−4
+ · · · .

More generally, the various possible series expansions of a multivariate rational function
r(x) = u(x)/v(x) ∈ K(x) can be obtained as follows. An exponent vector e ∈ supp v(x) ⊆

Zp qualifies as a minimal element if there exists an affine hyperplane H ⊆ Rp which
contains e and which is furthermore such that all other elements of supp v(x) belong to the
same of the two open half spaces defined by H . Geometrically, these points e are the corner
points in the convex hull of supp v(x). For each such corner point e, the cone C generated
by the elements of supp v(x) − e is line-free, and there exists a series expansion of r(x) in
x−eKC [[x]].

The coefficients in these series expansions all satisfy a multivariate linear recurrence
equation with constant coefficients, which can be read off from the denominator
polynomial. In the univariate case, also the converse is true: every sequence satisfying a
linear recurrence with constant coefficients is the coefficient sequence of a series expansion
of a rational function. The latter implication is no longer valid in the case of several
variables. As worked out by Bousquet-Mélou and Petkovšek [7], a multivariate power
series whose coefficient sequence satisfies a linear recurrence equation with constant
coefficients need not be rational, not even algebraic, not even differentially algebraic.

5. Composition

Our next goal is to understand the composition of multivariate Laurent series. In order to
formulate the results, it is convenient to adopt the following notation. If f (x) =


k akxk

is any series, then for any fixed k ∈ Zp we write [xk
] f (x) := ak for the coefficient of

xk in f (x). Furthermore, if 4 is an additive order and f (x) a nonzero series, we call
lexp4 f (x) := min4 supp f (x) ∈ Zp the leading exponent of f (x), and lt4 f (x) :=

xlexp4 f (x) the leading term. We may omit the subscript 4 when the order is clear from
the context.

For two univariate formal power series f (x) =


∞

k=0 ak xk and g(x), it is natural to de-
fine the composition f (g(x)) as the power series


∞

k=0 ak g(x)k . The latter expression
is meaningful provided that g(0) = 0 because in this case, g(x) = xh(x) for some
power series h(x), and g(x)k

= xkh(x)k has zero coefficients for all terms of degree
less than k. Therefore, for every n ∈ N the coefficient of xn in


∞

k=0 ak g(x)k is in fact
the coefficient of xn in the finite sum

n
k=0 ak g(x)k . Neumann [13, Theorem 4.7] and

Xin [17, Theorem 3-1.7] prove generalized versions of this criterion for compositions
f (g) where f (x) ∈ K[[x]] is a univariate power series in the usual sense and g is a
Malcev–Neumann series.
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We are interested here more generally in compositions f (g1(x), . . . , gm(x)) where f (y)

and the gi (x) are formal Laurent series in several variables as defined above. In order
to formally define them, fix an additive order 4 on Zp, let U be any set and consider a
function c: U → K4((x)) with the following two properties.

1. For all k ∈ Zp, the set {u ∈ U | k ∈ supp c(u)} is finite.
2. There exists a line-free cone C ⊆ Rp such that supp c(u) ⊆ C for all u ∈ U .

We can then define h(x) :=


u∈U c(u) as the unique element of KC [[x]] whose coefficient
of xk is equal to


u∈U [xk

]c(u) for all k ∈ Zp. The first requirement ensures that this sum
is finite for every k ∈ Zp, and the second one ensures that the support of h(x) is contained
in C .

Composition of Laurent series can be viewed as a special case of the construction
just described: let ≤ be an additive order on Zq and 4 an additive order on Zp, let
f (y) =


k akyk

∈ K≤((y)) and g1(x), . . . , gq(x) ∈ K4((x)), let U := supp f (y) ⊆ Zq

and define

c: U → K4((x)), c(k) := akg1(x)k1 · · · gq(x)kq .

Then the composition f (g1(x), . . . , gq(x)) ∈ K4((x)) is defined as the sum


u∈U c(u),
provided that this sum exists in the sense defined before.

The main result of this section is the following sufficient condition for the existence of
the composition.

Theorem 17. Let C ⊆ Rq be a line-free cone and f (y) ∈ KC [[y]]. Let 4 be an additive
order on Zp and g1(x), . . . , gq(x) ∈ K4((x))\{0}. Let M ∈ Zp×q be the matrix whose i-th
column consists of the leading exponent lexp(gi (x)) (i = 1, . . . , q). Let C ′

⊆ Rp be a cone
containing MC := {Mx | x ∈ C} ⊆ Rp as well as supp


gi (x)/lt(gi (x))


for i = 1, . . . , q.

Suppose that C ∩ ker M = {0} and that C ′ is line-free. Then f (g1(x), . . . , gq(x)) is well-
defined and belongs to the ring KC ′ [[x]].

Proof. We show (1) that for every fixed k ∈ Zp there are only finitely many (u1, . . . , uq) ∈

Zq with k ∈ supp

g1(x)u1 · · · gq(x)uq


, and (2) that supp


g1(x)u1 · · · gq(x)uq


⊆ C ′ for

all (u1, . . . , uq) ∈ supp f (y).
For the second requirement, first observe that the gi (x)/lt(gi (x)) are elements of KC ′ [[x]]

with nonzero constant term. Therefore, by Theorems 10 and 12, also
 g1(x)

lt(g1(x))

u1
· · · gq (x)

lt(gq (x))

uq is an element of KC ′ [[x]] for every choice (u1, . . . , uq) ∈ Zp. Second, because

of MC ⊆ C ′, the exponent vector of the term lt(g1(x))u1 · · · lt(gq(x))uq belongs to C ′

for every (u1, . . . , uq) ∈ supp f (y) ⊆ C , so the term itself belongs to KC ′ [[x]]. Using
once more that KC ′ [[x]] is a ring, it follows that supp (g1(x)u1 · · · gq(x)uq ) ⊆ C ′ for every
(u1, . . . , uq) ∈ supp f (y).

For the first requirement, let k ∈ Zp. Then by Lemma 3 with k, C ′ and −C ′ playing
the roles of a, C and A, there are only finitely many n ∈ Zp such that k ∈ n + C ′. For
some fixed n ∈ Zp, consider the set {u ∈ C ∩ Zq

| Mu = n}. If this set is empty, it is
trivially finite. If not, fix an element w from the set. Then every other element u of the set
can be written as u = w + v for some v ∈ ker M : if u, u′ are two elements of the set,
then Mu = Mu′

= n, so u − u′
∈ ker M . Therefore we can write {u ∈ C | Mu = n} =
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C ∩ (w + ker M). By Lemma 3 with w, C and ker M playing the roles of a, C and A, it
follows that the set contains only finitely many integer points.

Altogether, we have shown that for all k ∈ Zp there are only finitely many u ∈ C ∩ Zq

such that k ∈ Mu + C ′. The claim follows because

supp

g1(x)u1 · · · gq(x)uq


⊆ Mu + C ′

by definition of M and C ′. �

Example 18. 1. The classical condition for the composition of two power series in a single
variable is contained as a special case in Theorem 17. In this case, C and C ′ are the
positive halfline and M is a 1 × 1-matrix whose single entry is positive if and only if
g(0) = 0 if and only if C ∩ ker M = {0}.

2. Consider a power series f (x) ∈ K[[x−1
]] with negative exponents (i.e., C is the negative

halfline) and let g(x) ∈ K((x))\{0} be a usual formal Laurent series. Then M is a 1×1-
matrix whose single entry is the smallest nonzero exponent appearing in g(x). If this is
negative, then MC is the positive halfline, and since also lt(g(x))−1g(x) ∈ K[[x]], we
can take for C ′ the positive halfline. Therefore f (g(x)) is well-defined. For example,
for

f (x) = 1 − 2x−1
+ 3x−2

− 4x−3
+ 5x−4

− 6x−5
+ · · · ∈ Q[[x−1

]]

and

g(x) = x−2
+ x−1

+ 1 + x + x2
+ x3

+ · · · ∈ Q((x))

we have

f (g(x)) = 1 − 2x2
+ 2x3

+ 3x4
− 6x5

− x6
+ 12x7

+ · · · ∈ Q((x)).

3. As an example with several variables, let C ⊆ R2 be the cone generated by


−1
1


and

0
1


, and let f (x, y) ∈ KC [[x, y]]. Let 4 be the lexicographic order with x 4 y, and let

g1(x, y) = x + y, g2(x, y) = 1/(x + y) = x−1
− x−2 y + x−3 y2

+ · · · ∈ K4((x, y)).
Then lt(g1(x, y)) = x = x1 y0 and lt(g2(x, y)) = x−1

= x−1 y0, so

M =


1 −1
0 0


.

The kernel of M is the vector space generated by


1
1


, therefore C ∩ ker M = {0}.

MC is the cone generated by M


−1
1


=


−2
0


and M


0
1


=


−1
0


, and the

supports of

g1(x, y)/lt(g1(x, y)) = 1 + x−1 y2,

g2(x, y)/lt(g2(x, y)) = 1 − x−1 y + x−2 y2
+ · · ·

belong to the cone generated by


−1
2


and


−1
1


. We can therefore take for C ′ the cone

generated by


−1
2


and


−1
0


. Note that this is indeed a line-free cone.

In conclusion, the composition f (g1(x, y), g2(x, y)) is well-defined.
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In Theorem 17, no restrictions are imposed on the series f (y) ∈ KC [[y]] into which
the gi (x) are plugged: if the theorem allows the composition of some fixed set of
gi (x) ∈ K4((x)) into some fixed element f (y) of KC [[y]], then it also allows the
composition of these gi (x) into any other element of KC [[y]]. We can therefore consider
a map Φ: KC [[y]] → K4((x)) which to every f (y) ∈ KC [[y]] assigns the composition
f (g1(x), . . . , gq(x)) ∈ K4((x)). We show next that this map preserves the ring structure,
a fact that is not too surprising but also not entirely trivial.

Theorem 19. Let C ⊆ Rq be a line-free cone, 4 an additive order on Zp, and g1(x), . . . ,

gq(x) ∈ K4((x)) \ {0}. Let M ∈ Zp×q and C ′
⊆ Rp be defined as in Theorem 17, and

assume, also as in Theorem 17, that C ∩ ker M = {0} and that C ′ is line-free. Then the
map

Φ: KC [[y]] → KC ′ [[x]], f (y) → f (g1(x), . . . , gq(x))

is a ring homomorphism.

Proof. It is clear that Φ(1) = 1, and it is also easy to verify that Φ(a(y) + b(y)) =

Φ(a(y)) + Φ(b(y)) for all a(y), b(y) ∈ KC [[y]]. We show the case of multiplication in
some more detail.

Let a(y) =


n anyn, b(y) =


n bnyn
∈ KC [[y]]. Then Φ(a(y)),Φ(b(y)), and Φ(a(y)

b(y)) all belong to KC ′ [[x]]. We show that for all n ∈ Zp
∩ C ′ we have [xn

]Φ(a(y)b(y)) =

[xn
]Φ(a(y))Φ(b(y)).

As shown in the proof of Theorem 10, for every k ∈ Zp
∩ C ′, the set

Ik := { i ∈ Zp
| i ∈ C ′ and k − i ∈ C ′

} ⊆ Zp
∩ C ′

is finite. Furthermore, as shown in the proof of Theorem 17, for every i ∈ Zp, the set

Ui := { (u1, . . . , uq) | i ∈ supp (g1(x)u1 · · · gq(x)uq ) } ⊆ Zq

is finite.
Now fix an arbitrary n ∈ Zp

∩ C ′ and let U :=


i∈In
Ui ⊆ Zq . Then U is finite and

we have Un ⊆ U because 0 ∈ In. By the definition of multiplication and composition, and
because [xn

]g1(x)k1 · · · gq(x)kq = 0 whenever (k1, . . . , kq) ∉ U , we can write

[xn
]Φ(a(y)b(y)) = [xn

]


k


i

ak−ibi


gk(x) =


k∈U


i∈Ik

ak−ibi


[xn

]gk(x),

where gk(x) is a shorthand notation for g1(x)k1 · · · gq(x)kq . Furthermore, for i, j ∈ Zp
∩C ′

with i + j = n, we can write

[xi
]Φ(a(y)) = [xi

]


k

akgk(x) =


k∈Ui

ak[xi
]gk(x) =


k∈U

ak[xi
]gk(x)

and

[xj
]Φ(b(y)) = [xj

]


k

bkgk(x) =


k∈Uj

bk[xj
]gk(x) =


k∈U

bk[xj
]gk(x).
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Consequently,

[xn
]Φ(a(y))Φ(b(y)) =


j∈In


[xn−j

]Φ(a(y))


[xj
]Φ(b(y))


=


j∈In


k∈U

ak[xn−j
]gk(x)


k∈U

bk[xj
]gk(x)


=


j∈In


k∈U


i∈Ik

ak−i [xn−j
]gk−i(x) bi [xj

]gi(x)

=


k∈U


i∈Ik

ak−ibi

j∈In

[xn−j
] gk−i(x) [xj

]gi(x)


=


k∈U


i∈Ik

ak−ibi [xn
]gk(x) = [xn

]Φ(a(y)b(y)),

where in the fifth step we have used gk−i(x)gi(x) = gk(x) and the definition of multi-
plication. All the performed operations are legitimate because all the sums involved are
finite. �

One of the consequences of Theorem 19 is an alternative way to determine the
coefficients of a multiplicative inverse of a series h(x) ∈ KC [[x]] with [x0

]h(x) = 1.
For the univariate series f (y) =


k≥0 yk

∈ K[[y]] we know (1 − y) f (y) = 1. Applying
Theorem 19 to g(x) = 1 − h(x) gives Φ(1 − y)Φ( f (y)) = 1, so

h(x)−1
=


k≥0


1 − h(x)

k
.

Therefore, in order to determine the coefficient of some term xe in h(x)−1 we can simply
choose a term order 4 compatible with C and sum up all the powers (1 − h(x))k for which
klexp(h(x)) 4 e. The coefficient of xe in h(x)−1 is then equal to the coefficient of xe in
this sum.

6. Equations

Finally, we consider the question under which circumstances an equation f (x, y) = 0
can be solved for y in some field of multivariate Laurent series. The results below are
variants of the implicit function theorem answering this question. For better readability,
we have split the derivation into two theorems, the first serving as a lemma used in the
proof of the second. The proof of Theorem 20 follows closely one of the many proofs of
the classical implicit function theorem [16]. In Theorem 21 we then relax the hypothesis
by making use of the fact that K4((x)) is a field.

Theorem 20. Let C ⊆ Rp be a line-free cone, and let

f (x, y) =

∞
k=0

ak(x)yk
∈ KC [[x]][[y]]

be such that [x0
]a0(x) = 0 and a1(x) = 1. Then there exists exactly one g(x) ∈ KC [[x]]

with [x0
]g(x) = 0 and f (x, g(x)) = 0.
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Proof. First observe that the composition f (x, g(x)) is legitimate for every g(x) ∈ KC [[x]]

whose constant term is zero. For g(x) = 0 this is obvious, and for g(x) ≠ 0 it follows from
Theorem 17 as follows. Regard f (x, y) as an element of KC×H [[x, y]], where H ⊆ R
denotes the positive halfline. Note that C × H ⊆ Rp+1 is a line-free cone. Taking
g1(x) = x1, . . . , gp(x) = x p, and gp+1(x) = g(x), we have M = (I, e) ∈ Zp×(p+1)

where I is the identity matrix of size p and e = lexp(g(x)). Since H is generated (as
cone) by 1, ker M is generated (as vector space) by (e, −1), and e belongs to C , we have
ker M ∩ (C × H) = {0}, as required. Because of Theorem 15, there exists a cone C ′

⊆ Rp

containing C and supp (g(x)/lt(g(x))), and since e ∈ C implies M(C × H) = C , this cone
C ′ also contains MC , as required.

Turning to the claim of the theorem, fix some additive order 4 on Zp which is compat-
ible with C ′. Consider an ansatz g(x) =


k bkxk

∈ KC [[x]] with b0 = 0 and otherwise
undetermined coefficients bk. We show by noetherian induction that there is precisely one
way of choosing the coefficients bk such that [xn

] f (x, g(x)) = 0 for all n < 0.
Let n < 0 and suppose as induction hypothesis that the claim is true for every k ∈ Zp

with 0 4 k n. The coefficient of xn in f (x, g(x)) is

bn + [xn
]a0(x) +

∞
k=2

[xn
]ak(x)g(x)k .

The terms [xn
]ak(x)g(x)k only depend on coefficients bk with k n, because

lexp(ak(x)) < 0 and k ≥ 2 and lexp(g(x)) 0 together imply

lexp(ak(x)) + k + (k − 1)lexp(g(x)) n

for every k < n, and the expression on the left hand side denotes the smallest possible
exponent vector for which the corresponding coefficient may depend on bk. By assump-
tion, the coefficients bk for k n are uniquely determined, and hence in order to have
[xn

] f (x, g(x)) = 0, there is one and only one choice for bn, as claimed. �

Theorem 21. Let 4 be an additive order on Zp, let C ⊆ Rp be a cone compatible with 4,
and let

f (x, y) =

∞
n=0

an(x)yn
∈ KC [[x]][[y]]

be such that a1(x) ≠ 0, lexp(a1(x)) lexp(a0(x)), and lexp(a1(x)) 4 lexp(an(x)) for all
n ∈ N with an(x) ≠ 0. Then there exists exactly one g(x) ∈ K4[[x]] with [x0

]g(x) = 0 and
f (x, g(x)) = 0.

Proof. Because of Theorem 11, we have f (x, g(x)) = 0 if and only if u(x) f (x, g(x)) = 0
for every u(x) ∈ K4((x)) \ {0}. It is therefore sufficient to prove the theorem for

f̃ (x, y) :=

∞
k=0

ãk(x)yk
:= a1(x)−1 f (x, y) ∈ K4((x))[[y]]

in place of f (x, y). We show that f̃ (x, y) satisfies the requirements of Theorem 20. To do
so, we need to show that [x0

]ã0(x) = 0, ã1(x) = 1, and that there is some line-free cone
C̃ ⊆ Rp such that supp ãk(x) ⊆ C̃ for all k ≥ 0.
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Since ãk(x) = a1(x)−1ak(x) for all k ∈ N by definition, it is immediate that ã1(x) = 1,
and that ãk(x) = 0 for every k ∈ N with ak(x) = 0. Furthermore, lexp(a1(x)) lexp(a0(x))

implies lexp(ã0(x)) 0, which in turn implies [x0
]a0(x) = 0. For k ≥ 2 with ak(x) ≠ 0, we

have by assumption that lexp(ãk(x)) = lexp(ak(x))−lexp(a1(x)) < 0. Lemma 4 applied to
S := { lexp(ak(x)) | k ≥ 2 with ak(x) ≠ 0 } yields a finite subset {s1, . . . , sn} of S such that
S ⊆

n
i=1(si +C). Let C̃ be the cone generated by C , some 4-compatible cone containing

supp (a1(x)−1lt(a1(x))), and s1 − lexp(a1(x)), . . . , sn − lexp(a1(x)). Then C̃ is finitely
generated, compatible with 4 (hence also line-free; cf. Lemma 7), and contains supp ãk(x)

for all k ≥ 2. Therefore, by Theorem 20, there exists exactly one g(x) ∈ KC̃ [[x]] with
f̃ (x, g(x)) = 0. Since Theorem 20 still applies if we replace C̃ by any larger cone which is
compatible with 4, it follows that there is exactly one g(x) ∈ K4[[x]] with f̃ (x, g(x)) = 0,
as was to be shown. �

The main restriction in the above theorems is that we only allow positive powers of y
in f (x, y). We may equivalently allow only negative powers of y, but we have not been
able to come up with a version of the implicit function theorem that is applicable to series
f (x, y) ∈ KC [[x, y]] where C ⊆ Rp+1 is such that its projection to the last coordinate is
the full real line. Note that there is no such restriction, not even implicitly, in Theorem 17: it
may well be possible that f (x, g(x)) can be formed even when f (x, y) contains infinitely
many positive and negative powers of y. On the other hand, the following examples show
that for such f (x, y) there may be more than one solution g(x) with f (x, g(x)) = 0, or no
solution at all. This indicates that a naive generalization of the implicit function theorem to
such series will be false.

Example 22. • Consider the series

f (x, y) =

∞
n=1

(−y)n
+

∞
n=1

x2n y−n .

This series belongs to KC [[x, y]] where C ⊆ R2 is the cone generated by


0
1


and

2
−1


. Because of [x0 y0

] f (x, y) = 0 and [x0 y1
] f (x, y) = −1 ≠ 0, we might expect

that some suitable version of the implicit function theorem guarantees the existence of
a unique series g(x) ∈ K[[x]] with f (x, g(x)) = 0. However, it turns out that there are
two different solutions:

g1(x) = x2
+ x


1 + x2 = x + x2

+
1
2

x3
−

1
8

x5
+ · · · ∈ K[[x]]

and g2(x) = x2
− x


1 + x2 = −x + x2

−
1
2

x3
+

1
8

x5
+ · · · ∈ K[[x]],

where
√

1 + x2 =


∞

n=0


1/2
n


(−1)n x2n .

• Now consider the series

f (x, y) =

∞
n=1

(−y)n
+ 2

∞
n=1

x2n y−n,

which belongs to the same ring KC [[x, y]] as before.
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Suppose that there is a nonzero g(x) with f (x, g(x)) = 0. If xe is the leading term
of g(x), then in the notation of Theorem 17, we have M = (1 e) ∈ Z1×2, and MC is
the cone generated by e and 2 − e in R. In order for this cone to be line-free, we must
either have e ≥ 0 and 2 − e ≥ 0 or e ≤ 0 and 2 − e ≤ 0. The only candidates for e ∈ Z
are therefore e = 0 or e = 1 or e = 2.

But e = 0 would imply


0
1


∈ C ∩ ker M , so this case is excluded. Likewise, e = 2

would imply


2
−1


∈ C ∩ker M , so this case is excluded as well and the only remaining

possibility for a solution g(x) is that its leading term is x1 if we want to use Theorem 17
to secure the existence of f (x, g(x)).

Make an ansatz g(x) = a1x + · · · ∈ K[[x]] for the leading coefficient a1 of g(x).
Then g(x)n

= an
1 xn

+ · · · and g(x)−n
= a−n

1 x−n
+ · · · for all n ∈ N. Therefore,

equating coefficients of x1 in

f (x, g(x)) =

∞
n=1

(−g(x))n
+ 2

∞
n=1

x2ng(x)−n !
= 0

forces −a1 + 2a−1
1 = 0, viz. a2

1 = 2. Depending on the ground field K, this equation
may or may not have a solution. For example, if K = Q, no such a1 exists, and hence
no g(x) ∈ Q[[x]] with f (x, g(x)) = 0 exists.
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