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a b s t r a c t

Molodtsov’s soft set theory was originally proposed as a general mathematical tool for
dealing with uncertainty. Research on (fuzzy) soft set based decision making has received
much attention in recent years. This paper aims to give deeper insights into decisionmaking
involving interval-valued fuzzy soft sets, a hybrid model combining soft sets with interval-
valued fuzzy sets. The concept called reduct fuzzy soft sets of interval-valued fuzzy soft
sets is introduced. Using reduct fuzzy soft sets and level soft sets, flexible schemes for
decision making based on (weighted) interval-valued fuzzy soft sets are proposed, and
some illustrative examples are employed to show that the proposals presented here are
not only more reasonable but more efficient in practical applications.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Complex problems involving vagueness (gradations in the notion of membership) and uncertainty (lack of information)
are pervasive in many areas of modern technology. These practical problems arise in such diverse areas as economics,
engineering, environmental science, social science, andmedical science among others.While awide variety ofmathematical
disciplines like probability theory, fuzzy set theory [1], rough set theory [2] and intervalmathematics [3] arewell known and
often serve as useful mathematical approaches inmodelling, each of them has its advantages as well as inherent limitations.
One major weakness shared by these theories is possibly the inadequacy of the parameterization tool in them [4].
In 1999, Molodtsov [4] initiated soft set theory as a new mathematical tool for dealing with uncertainty which seems

to be free from the inherent difficulties affecting the existing methods. He also demonstrated that the theory of soft sets
has potential applications in various fields like the smoothness of functions, game theory, operations research, Riemann
integration, Perron integration, probability theory, and measurement theory [5,4]. Later, Maji et al. [6] have further used
soft sets to solve some decision making problems. Chen et al. [7] presented a new definition of soft set parameterization
reduction to improve soft set based decision making in [6]. Kong et al. [8] introduced the definition of normal parameter
reduction of soft sets and presented a heuristic algorithm to make normal parameter reduction.
The studyof hybridmodels combining soft setswith othermathematical structures is emerging as an active research topic

of soft set theory (see [9–19]). Maji et al. [17] initiated fuzzy soft sets, a more generalized notion combining both fuzzy sets
and soft sets. Roy and Maji [20] presented a novel method concerning object recognition from an imprecise multi-observer
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data so as to cope with decision making based on fuzzy soft sets. Then Kong et al. [21] revised the Roy–Maji method by
considering ‘‘fuzzy choice values’’. Feng et al. [22] further discussed the application of fuzzy soft sets to decision making in
an imprecise environment. They pointed out that the idea of choice values related to crisp soft sets based decision making
in [6] is not fit to solve decision making problems involving fuzzy soft sets. Using a new concept called level soft sets, an
adjustable approach to (weighted) fuzzy soft set based decision making was proposed in [22].
In many fuzzy decision making applications the related membership functions are extremely individual (dependent on

experts’ evaluation of alternatives) and thus cannot be lightly confirmed. It is more reasonable to give an interval-valued
data to describe degree of membership; in other words, we can make use of interval-valued fuzzy sets which assign to each
element an interval that approximates the ‘‘real’’ (but unknown) membership degree. In respond to this, Yang et al. [18]
defined a hybrid model called interval-valued fuzzy soft sets and investigated some of their basic properties. They also
presented an algorithm to solve decision making problems based on interval-valued fuzzy soft sets.
In this study, we follow the line of exploration in [22] and intend to give deeper insights into interval-valued fuzzy soft

set based decisionmaking discussed in [18]. The remainder of this paper is organized as follows: To facilitate our discussion,
we first recall the standard (fuzzy) soft sets in Section 2. In Section 3, we briefly introduce Yang’s interval-valued fuzzy
soft sets and also initiate a new notion called reduct fuzzy soft sets. Section 4 is then devoted to a deep analysis on the
application of interval-valued fuzzy soft set to fuzzy decision making. A counterexample is used to show that Yang et al.’s
algorithm have some inherent limitations which arise from the improper use of (interval) fuzzy choice values. In Section 5,
we revisit level soft sets and its application to fuzzy soft set based decision making. Based on reduct fuzzy soft sets and
level soft sets, flexible schemes for decision making based on interval-valued fuzzy soft sets are proposed in Section 6. In
Section 7, weighted interval-valued fuzzy soft sets is defined and applied to decision making problems in which all the
decision criteria may not be of equal importance. Finally, we conclude the paper with a summary and outlook for further
research in Section 8.

2. Preliminaries

Let U be an initial universe of objects and EU (simply denoted by E) the universe of parameters related to the objects in
U . The pair (U, E)will be called a soft universe. LetP(U) denote the power set of U and A ⊆ E. According to [9], the concept
of soft sets is defined as follows.

Definition 2.1 ([9]). A pair (F , A) is called a soft set over U , where F is a mapping given by F : A→ P(U).

By definition, a soft set (F , A) over the universe U can be regarded as a parameterized family of subsets of the universe U ,
which gives an approximate (soft) description of the objects in U . As pointed out by Molodtsov [4], for any parameter ε ∈ A,
the subset F(ε) ⊆ U may be considered as the set of ε-approximate elements in the soft set (F , A). It is worth noting that
F(ε)may be arbitrary: some of them may be empty, and some may have nonempty intersection [4].
Combining fuzzy sets and soft sets, Maji et al. [17] initiated the following hybrid model called fuzzy soft sets, which can

be seen as an extension of both fuzzy sets and crisp soft sets.

Definition 2.2 ([20]). Let (U, E) be a soft universe and A ⊆ E. Let F (U) be the set of all fuzzy subsets in U . A pair (̃F , A) is
called a fuzzy soft set over U , where F̃ is a mapping given by F̃ : A→ F (U).

In this definition, fuzzy subsets are used as substitutes for the crisp subsets. Hence every soft set may be considered as
a fuzzy soft set. Also it is obvious that a fuzzy set could be naturally viewed as a fuzzy soft set whose parameter set is a
singleton. Generally speaking, F̃(ε) is a fuzzy subset in U , ∀ε ∈ A. Following the standard notations, F̃(ε) can typically be
written as F̃(ε) = {(x, F̃(ε)(x)) : x ∈ U}.

Definition 2.3 ([20]). Let (U, E) be a soft universe and A, B ⊆ E. Let (̃F , A) and (̃G, B) be two fuzzy soft sets over U . Then
(̃F , A) is a fuzzy soft subset of (̃G, B), denoted (̃F , A) ⊆̃ (̃G, B), if A ⊆ B and F̃(a) is a fuzzy subset of G̃(a) for all a ∈ A.

3. Interval-valued fuzzy soft sets

Consider the set LI = {[a, b] : 0 ≤ a ≤ b ≤ 1} and the order relation≤LI given by:

[a1, b1] ≤LI [a2, b2] ⇔ a1 ≤ a2, b1 ≤ b2, ∀[a1, b1], [a2, b2] ∈ L
I .

ThenL I
= (LI ,≤LI ) is a complete lattice [23].

An interval-valued fuzzy set on a universe U is a mapping µ : U → LI . Let µ(x) = [µ∗(x), µ∗(x)], ∀x ∈ U . Then
µ∗(x), µ∗(x) are called the lower and upper degrees of membership of x in µ, respectively. The standard interpretation is
that the interval µ(x) = [µ∗(x), µ∗(x)] is used to approximate the ‘‘real’’ but unknown degree of membership of x in µ.
Interval-valued fuzzy sets are a special case of L-fuzzy sets in the sense of Goguen [24] and a special case of type 2 fuzzy

sets introduced by Zadeh [25]. The union, intersection and complement of interval-valued fuzzy sets can be obtained by
canonically extending fuzzy set-theoretic operations to intervals (see [18]). The set of all interval-valued fuzzy sets on U is
denoted by I (U).
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Table 1
Interval-valued fuzzy soft set I = (̃F , A).

U e1 e2 e3 e4 e5 e6

h1 [0.3, 0.5] [0.6, 0.7] [0.6, 0.7] [0.6, 0.7] [0.3, 0.5] [0.5, 0.8]
h2 [0.6, 0.8] [0.1, 0.3] [0.8, 1.0] [0.1, 0.3] [0.7, 0.9] [0.8, 1.0]
h3 [0.5, 0.6] [0.5, 0.6] [0.2, 0.4] [0.2, 0.4] [0.5, 0.7] [0.2, 0.5]
h4 [0.2, 0.3] [0.2, 0.4] [0.0, 0.1] [0.0, 0.1] [0.2, 0.3] [0.1, 0.3]
h5 [0.8, 0.9] [0.5, 0.7] [0.1, 0.3] [0.1, 0.3] [0.8, 0.9] [0.2, 0.5]
h6 [0.8, 1.0] [0.8, 1.0] [0.5, 0.6] [0.7, 0.8] [0.2, 0.5] [0.5, 0.6]

Definition 3.1 ([18]). Let (U, E) be a soft universe and A ⊆ E. A pair I = (̃F , A) is called an interval-valued fuzzy soft set
(IVFS) over U , where F̃ is a mapping given by F̃ : A→ I (U).

An interval-valued fuzzy soft set is a parameterized family of interval-valued fuzzy subsets ofU . ∀ε ∈ A, F̃(ε) is called the
interval fuzzy value set of the parameter ε. It is easy to see that fuzzy soft sets are a special case of IVFSs since interval-valued
fuzzy sets are extensions of classical fuzzy sets.
We shall consider the following house purchase problem (see [18]) to illustrate an application of IVFSs to multi-criteria

decision making.

Example 3.2 (A House Purchase Problem). Suppose that there are six houses under consideration, namely the universe
U = {h1, h2, h3, h4, h5, h6}, and the parameter set A = {e1, e2, e3, e4, e5, e6}, where ei stand for ‘‘beautiful’’, ‘‘modern’’,
‘‘large’’, ‘‘cheap’’, ‘‘in good repair’’ and ‘‘in green surroundings’’ respectively. Suppose Mr. X wants to buy a house which
satisfies the criteria in A to the utmost extent.
All the available information on these houses can be characterized by an interval-valued fuzzy soft set I = (̃F , A). The

tabular representation of (̃F , A) is shown in Table 1. In Table 1, we can see that the precise evaluation for an alternative to
satisfy a criterion is unknown while the lower and upper approximations of such an evaluation are given. For example, we
cannot present the precise degree of how beautiful house h1 is, however, house h1 is at least beautiful on the degree of 0.3
and it is at most beautiful on the degree of 0.5.

As mentioned above, an IVFS can be viewed as a parameterized family of interval-valued fuzzy subsets of U . For each
parameter, the corresponding interval fuzzy value set is an interval-valued fuzzy set; hence if a fuzzy set can be derived
from each of these interval-valued fuzzy sets, then a fuzzy soft set can be induced by the IVFS in a natural way. The notion
introduced below is an implementation of this idea.

Definition 3.3. Let (U, E) be a soft universe and A ⊆ E. Let (̃F , A) be an IVFS over U such that for all a ∈ A, F̃(a) is an
interval-valued fuzzy set with F̃(a)(x) = [̃F(a)∗(x), F̃(a)∗(x)],∀x ∈ U . Then the fuzzy soft set (̃F−, A) over U given by

F̃−(a) = {(x, F̃(a)∗(x)) : x ∈ U}, ∀a ∈ A,

is called the pessimistic reduct fuzzy soft set (PRFS) of (̃F , A).

The semantic meaning of PRFSs can be construed as a pessimistic estimation of uncertain membership values,
representing a prudent/pessimistic attitude. This is due to the observation that for all parameters a PRFS assigns to each
object the ‘‘worst’’ value from the interval which approximates the ‘‘real’’ degree of membership. Such a pessimistic attitude
works well in the cases where one needs to be very cautious, such as medical or space applications.
To fulfill various needs of decisionmaking arising in different scenarios, wemay consider other kinds of reduct fuzzy soft

sets of IVFSs as follows.

Definition 3.4. The optimistic reduct fuzzy soft set (ORFS) of an interval-valued fuzzy soft set (̃F , A) is defined as a fuzzy soft
set (̃F+, A) over U such that

F̃+(a) = {(x, F̃(a)∗(x)) : x ∈ U}, ∀a ∈ A.

Note that ORFSs can naturally be interpreted as an optimistic estimation of uncertain membership values since an ORFS
always assigns to each object the ‘‘best’’ degree of membership. This notion will be useful in situations where the decision
maker adopts an optimistic attitude and hopes to relax the criteria in decision making.

Definition 3.5. The neutral reduct fuzzy soft set (NRFS) of an interval-valued fuzzy soft set (̃F , A) is defined as a fuzzy soft
set (̃FN , A) over U such that

F̃N(a) = {(x, (̃F(a)∗(x)+ F̃(a)∗(x))/2) : x ∈ U}, ∀a ∈ A.

The semantic explanation of NRFSs could be a neutral estimation of uncertain membership values, representing an
attitude which is neither pessimistic nor optimistic. The following notion is a generalization of PRFSs, ORFSs and NRFSs.
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Table 2
Pessimistic reduct fuzzy soft set of I = (̃F , A).

U e1 e2 e3 e4 e5 e6

h1 0.3 0.6 0.6 0.6 0.3 0.5
h2 0.6 0.1 0.8 0.1 0.7 0.8
h3 0.5 0.5 0.2 0.2 0.5 0.2
h4 0.2 0.2 0.0 0.0 0.2 0.1
h5 0.8 0.5 0.1 0.1 0.8 0.2
h6 0.8 0.8 0.5 0.7 0.2 0.5

Definition 3.6. Let α, β ∈ [0, 1] and α+ β = 1. The vectorW = (α, β) is called an opinion weighting vector. The fuzzy soft
set (̃FW , A) over U such that

F̃W (a) = {(x, αF̃(a)∗(x)+ β F̃(a)∗(x)) : x ∈ U}, ∀a ∈ A,

is called the weighted reduct fuzzy soft set (WRFS) of the interval-valued fuzzy soft set (̃F , A) with respect to the opinion
weighting vectorW .

WRFSs can be used inmore complex decision applications, such as themulti-criteria fuzzy group decisionmaking (where
the weights α, β are the percentage numbers of pessimistic and optimistic decision makers in the expert group), to express
the amalgamation of both pessimistic and optimistic attitudes adopted by different decision makers.
The relationships of these different reduct fuzzy soft sets can formally be presented as follows.

Proposition 3.7. Let (̃F , A) be an IVFS over U and let (̃FW , A) be a weighted reduct fuzzy soft set with the opinion weighting
vector W = (α, β). Then we have the following:

(1) (̃FW , A) = (̃F−, A) if α = 1 and β = 0.
(2) (̃FW , A) = (̃F+, A) if α = 0 and β = 1.
(3) (̃FW , A) = (̃FN , A) if α = β = 1/2.
(4) (̃F−, A) ⊆̃ (̃FW , A) ⊆̃ (̃F+, A).

Note that ⊆̃ denotes the fuzzy soft subset relation between two fuzzy soft sets given by Definition 2.3. The proof of this
result can easily be obtained by related definitions, and so omitted here. To illustrate the notions presented above, let us
reconsider the IVFS in Example 3.2.

Example 3.8 (Reduct Fuzzy Soft Sets of IVFSs). Compute the PRFS (̃F−, A), ORFS (̃F+, A) andNRFS (̃FN , A) of the interval-valued
fuzzy soft set I = (̃F , A) shown in Table 1.
For the criterion e1 ∈ A, the corresponding interval fuzzy value set is an interval-valued fuzzy set that can be written as

follows:

F̃(e1) =
(

h1 h2 h3 h4 h5 h6
[0.3, 0.5] [0.6, 0.8] [0.5, 0.6] [0.2, 0.3] [0.8, 0.9] [0.8, 1.0]

)
.

By Definitions 3.3–3.5, we have the following fuzzy sets:

F̃−(e1) =
(
h1 h2 h3 h4 h5 h6
0.3 0.6 0.5 0.2 0.8 0.8

)
,

F̃+(e1) =
(
h1 h2 h3 h4 h5 h6
0.5 0.8 0.6 0.3 0.9 1.0

)
,

F̃N(e1) =
(
h1 h2 h3 h4 h5 h6
0.4 0.7 0.55 0.25 0.85 0.9

)
.

Similarly we can compute other fuzzy sets with respect to other parameters in A. The PRFS (̃F−, A), ORFS (̃F+, A) and
NRFS (̃FN , A) of the IVFS I = (̃F , A) are shown in Tables 2, 3 and 4 respectively.

4. Decision making based on IVFSs

Since fuzzy sets were introduced by Zadeh in 1965, fuzzy set theory has been applied in dealing with fuzzy decision
making problems [26,27]. With the development of soft set theory, the application of fuzzy soft sets in solving decision
making problems has been discussed by many researchers [22,21,20]. In [18], Yang et al. presented the following algorithm
to solve fuzzy decisionmaking problems based on interval-valued fuzzy soft sets. Here somemodifications on notations and
technical terms of the algorithm have been made to fit the context of our discussion.
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Table 3
Optimistic reduct fuzzy soft set of I = (̃F , A).

U e1 e2 e3 e4 e5 e6

h1 0.5 0.7 0.7 0.7 0.5 0.8
h2 0.8 0.3 1.0 0.3 0.9 1.0
h3 0.6 0.6 0.4 0.4 0.7 0.5
h4 0.3 0.4 0.1 0.1 0.3 0.3
h5 0.9 0.7 0.3 0.3 0.9 0.5
h6 1.0 1.0 0.6 0.8 0.5 0.6

Table 4
Neutral reduct fuzzy soft set of I = (̃F , A).

U e1 e2 e3 e4 e5 e6

h1 0.40 0.65 0.65 0.65 0.40 0.65
h2 0.70 0.20 0.90 0.20 0.80 0.90
h3 0.55 0.55 0.30 0.30 0.60 0.35
h4 0.25 0.30 0.05 0.05 0.25 0.20
h5 0.85 0.60 0.20 0.20 0.85 0.35
h6 0.90 0.90 0.55 0.75 0.35 0.55

Table 5
Interval fuzzy choice values and scores of I = (̃F , A).

U h1 h2 h3 h4 h5 h6

ci c1 = [2.9, 3.9] c2 = [3.1, 4.3] c3 = [2.1, 3.2] c4 = [0.7, 1.5] c5 = [2.5, 3.6] c6 = [3.5, 4.5]
ri r1 = 5.0 r2 = 8.6 r3 = −4.0 r4 = −22.6 r5 = 0.8 r6 = 12.2

4.1. Yang et al.’s algorithm based on interval fuzzy choice values

Algorithm 1 ([18]).
1. Input the set of interval-valued fuzzy soft sets (say (̃F , A) and (̃G, B)).
2. Input the parameter set P consisting of preferred decision criteria.
3. Compute the corresponding resultant interval-valued fuzzy soft set (H̃, P) from (̃F , A) and (̃G, B).
4. ∀hi ∈ U , compute the ‘‘interval fuzzy choice value’’ ci for each house hi such that

ci = [c−i , c
+

i ] =

[∑
p∈P

H̃−(p)(hi),
∑
p∈P

H̃+(p)(hi)

]
,

where (H̃−, P), (H̃+, P) are PRFS and ORFS of (H̃, P) respectively.
5. ∀hi ∈ U , compute the score ri of hi such that

ri =
∑
hj∈U

(
(c−i − c

−

j )+ (c
+

i − c
+

j )
)
.

6. The optimal decision is to choose any one of the objects hk ∈ U such that rk = maxhi∈U {ri}.

The use of Algorithm 1 was illustrated in [18] by a concrete example (see Section 4 of [18] for details). Let us simply
sketch out that example here. In the example, the corresponding resultant interval-valued fuzzy soft set (H̃, P) (obtained in
the third step of Algorithm 1) is just the IVFS I = (̃F , A) shown in Table 1. By Algorithm 1 we compute the interval fuzzy
choice value ci and the score ri for all hi ∈ U . The corresponding results are shown in Table 5, from which we see that h6 is
the best choice according to Algorithm 1, since it has the maximum score r6 = 12.2.

4.2. A counterexample

The following example will show that Algorithm 1 may not be successfully applied to some fuzzy decision making
problems. Suppose that J = (̃G, B) is an interval-valued fuzzy soft set and Table 6 gives its tabular representation with
choice values and scores. From Table 6, we can see the scores of o1 and o2 are the same, namely r1 = r2 = 0, whence by
Algorithm 1 both of them could be selected as the best choice. Nevertheless, in general we should choose o2 as the optimal
alternative because o2 relatively satisfies more decision criteria than o1.

4.3. The inherent drawbacks of fuzzy choice value based method

The main problem for Yang et al.’s algorithm stems from the use of interval fuzzy choice values. As it was pointed out by
Yang et al. [18], Algorithm 1 is based on the comparison of interval fuzzy choice values of different alternatives; hence the
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Table 6
Interval-valued fuzzy soft set J = (̃G, B)with interval fuzzy choice values and scores.

U e1 e2 e3 e4 e5 Choice value (ci) Score (si)

o1 [0.5, 0.7] [0.5, 0.6] [0.4, 0.6] [0.2, 0.3] [0.3, 0.4] c1 = [1.9, 2.6] r1 = 0
o2 [0.1, 0.2] [0.6, 0.8] [0.5, 0.7] [0.3, 0.5] [0.3, 0.5] c2 = [1.8, 2.7] r2 = 0

optimal decision is to select the alternative with the highest interval fuzzy choice value. Yang et al.’s algorithm can be seen
as an interval-valued fuzzy counterpart of the decision making approach in [21] based on ‘‘fuzzy choice values’’ (see the
declaration at the beginning of Section 4 in [18]). Actually it is easy to see that in Algorithm 1 score ri is the total difference
in fuzzy choice values of both PRFS (i.e.,

∑
hj∈U

(c−i − c
−

j )) and ORFS (i.e.,
∑
hj∈U

(c+i − c
+

j )) between the alternative hi and all
other alternatives hj ∈ U . Such a fuzzy choice value based method, however, has some inherent drawbacks as pointed out
by the authors in [22]. Hence Yang et al.’s algorithm inevitably have some inherent limitations. Thorough analysis regarding
the improper use of fuzzy choice values in decision making problems is summarized as follows (see [22] for more details):
Consider the decision making problem based on crisp soft sets in [6]. In this crisp case, choice value of an alternative

precisely represents the number of the criteria satisfied by the alternative. Hence the object, say hk with the maximum
choice value ck should be selected as the optimal alternative. That is, the optimal decision is made due to the fact that

ck = max
hi∈U
{ci} = max

hi∈U
|{aj ∈ A : hi |H aj}|,

where hi |H aj means ‘‘criterion aj is satisfied by alternative hi’’.
The above idea initiated in [6] was not followed in dealing with fuzzy decision making problems. Roy and Maji [20],

on the other hand, proposed another method to solve fuzzy soft set based decision making problems. In the case of fuzzy
decision making, satisfaction of an alternative with respect to a criterion is gradual and characterized by the membership
degree given by the fuzzy soft set under consideration. Since the so-called ‘‘fuzzy choice value’’ given by Kong et al. [21] is
just the sum ofmembership degrees of an alternative with respect to all attributes, fuzzy choice value cannot be interpreted
as the number of the criteria satisfied by the alternative. It can only be seen as a synthesizedmeasure to estimate each object
via a fusion of all attributes. However, this direct addition of all the membership values with respect to different attributes
is not always reasonable; in fact, this is sometimes just like the addition of height and weight.
To cope with the complexity of decision making involving fuzzy soft sets, it would be more reasonable to compare the

membership values of two objects with respect to a common attribute so as to determine which one relatively satisfies the
criterion better. This is indeed the basic idea underlying the method introduced by Roy and Maji [20].

5. Using level soft sets in fuzzy soft set based decision making

Decision making relies on the evaluation of all available alternatives with respect to certain criteria. Some of these
problems are essentially humanistic and thus subjective in nature (e.g. humanunderstanding and vision systems). In general,
there does not exist a unique/uniform principle for making the optimal decision. To overcome all the above difficulties, we
should use an adjustable framework to solve fuzzy soft set based decision making problems. A proposal of flexible feature
was initiated by the authors in [22], using the following novel concept called level soft sets.

5.1. Level soft sets

Definition 5.1 ([22]). Let (U, E) be a soft universe, A ⊆ E and t ∈ [0, 1]. The t-level soft set of a fuzzy soft set S = (̃F , A)
over U is a soft set L(S; t) = (Ft , A) defined by

Ft(a) = L(̃F(a); t) = {x ∈ U : F̃(a)(x) ≥ t}, ∀a ∈ A.

Level soft sets can be viewed as ‘‘soft generalizations’’ of classical level (cut) sets in fuzzy set theory. In this notion,
t ∈ [0, 1] serves as a given threshold onmembership degrees. For real-life applications, this threshold is chosen by a decision
maker; it represents the personal requirement on the level of membership degrees. It is natural to say that an alternative
satisfies a criterion if it meets the desirable level required by a decision maker.

Example 5.2. Consider the neutral reduct fuzzy soft set SN = (̃FN , A) (see Table 4) of the IVFS I = (̃F , A) in Example 3.2.
Put t = 0.5, let us compute the 0.5-level soft set of the fuzzy soft set (̃FN , A). For the parameter e1, we should consider the
0.5-level set of the fuzzy set F̃N(e1), namely the following crisp subset of U:

L(̃FN(e1), 0.5) = {h2, h3, h5, h6},

which says that prudently speaking h2, h3, h5, h6 are beautiful houses at least at the level of membership degrees t = 0.5.
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Table 7
Level soft set L(SN ; 0.5).

U e1 e2 e3 e4 e5 e6

h1 0 1 1 1 0 1
h2 1 0 1 0 1 1
h3 1 1 0 0 1 0
h4 0 0 0 0 0 0
h5 1 1 0 0 1 0
h6 1 1 1 1 0 1

By taking other parameters into consideration, we obtain the 0.5-level sets of the fuzzy sets F̃(ei) (2 ≤ i ≤ 6) as follows:
L(̃FN(e2), 0.5) = {h1, h3, h5, h6},
L(̃FN(e3), 0.5) = {h1, h2, h6},
L(̃FN(e4), 0.5) = {h1, h6},
L(̃FN(e5), 0.5) = {h2, h3, h5},
L(̃FN(e6), 0.5) = {h1, h2, h6}.
Then the 0.5-level soft set of SN is a crisp soft set L(SN; 0.5) = (F0.5, A) over U , where F0.5 : A→ P(U) is a set-valued

mapping defined by F0.5(ei) = L(̃FN(ei), 0.5) for all ei ∈ A. Table 7 gives the tabular representation of the level soft set
L(SN; 0.5).

In Definition 5.1, the level (or threshold) assigned to each parameter is always a constant value t ∈ [0, 1]. In many
decision making problems, however, different thresholds should be imposed on different decision parameters. To address
this issue, we need the following notion.

Definition 5.3 ([22]). Let (U, E) be a soft universe and A ⊆ E. LetS = (̃F , A) be a fuzzy soft set over U and let λ : A→ [0, 1]
be a fuzzy set in A called a threshold fuzzy set. The level soft set ofS = (̃F , A)with respect to λ is a soft set L(S; λ) = (Fλ, A)
defined by

Fλ(a) = L(̃F(a); λ(a)) = {x ∈ U : F̃(a)(x) ≥ λ(a)}, ∀a ∈ A.

In otherwords, a function instead of a constant number is considered as the threshold onmembership values. Let t̂ denote
the constant fuzzy set in A given by t̂(a) = t for all a ∈ A. Evidently it holds that L(S; t̂) = L(S; t), whence t-level soft sets
can also be viewed as level soft sets with respect to t̂ .

Definition 5.4 ([28]). An aggregation operator is a function F :
⋃
n∈N[0, 1]

n
→ [0, 1] such that:

(1) F(x1, . . . , xn) ≤ F(y1, . . . , yn)whenever xi ≤ yi, ∀i;
(2) F(t) = t, ∀t ∈ [0, 1];
(3) F(0, . . . , 0) = 0, F(1, . . . , 1) = 1.

Each aggregation operator F can be represented by a family of n-ary operators fn : [0, 1]n → [0, 1] given by fn(x1,
. . . , xn) = F(x1, . . . , xn). We can relate aggregation operators to level soft sets in the following way:

Definition 5.5. Let (U, E) be a soft universe with U = {x1, . . . , xn} and A ⊆ E. LetS = (̃F , A) be a fuzzy soft set over U and
letG :

⋃
n∈N[0, 1]

n
→ [0, 1]be an aggregation operator. The level soft set ofSwith respect toG is a soft set L(S;G) = (FG, A)

defined by

FG(a) = {xi ∈ U : F̃(a)(xi) ≥ G(̃F(a)(x1), . . . , F̃(a)(xn))}, ∀a ∈ A.

By considering different aggregation operators we can obtain a wide class of formulations for the level soft set in
Definition 5.5. For instance, if G = mid, namely the arithmetic mean, then this aggregation operator combined with the
fuzzy soft setS = (̃F , A) can induce a fuzzy set m̃idS : A→ [0, 1] given by

m̃idS(a) = mid(̃F(a)(x1), . . . , F̃(a)(xn)) =
1
n

n∑
i=1

F̃(a)(xi), ∀a ∈ A.

Now it follows that L(S;mid) = L(S; m̃idS); this is called themid-level soft set ofS in [22].
Similarly, if G = max, we can define a fuzzy set m̃axS : A→ [0, 1] by
m̃axS(a) = max

1≤i≤n
F̃(a)(xi), ∀a ∈ A.

The level soft set ofSwith respect to m̃axS (or equivalently max) is called the top-level soft set ofS in [22].
Note that bymid-level decision rulewe shall mean considering the aggregation operator ‘‘mid’’ and the mid-level soft set

in decision making; in a similar way, top-level decision rule indicates that the top-level soft set will be used for making the
optimal decision [22].



F. Feng et al. / Computers and Mathematics with Applications 60 (2010) 1756–1767 1763

5.2. An adjustable approach using level soft sets

The following algorithmwas proposed by the authors in [22] for handling fuzzy soft set based decisionmaking problems.

Algorithm 2 ([22]).

1. Input the (resultant) fuzzy soft setS = (̃F , A).
2. Input a threshold fuzzy set λ : A→ [0, 1] (or give a threshold value t ∈ [0, 1]; or choose the mid-level decision rule; or
choose the top-level decision rule) for decision making.

3. Compute the level soft set L(S; λ) of S with respect to the threshold fuzzy set λ (or the t-level soft set L(S; t); or the
mid-level soft set L(S;mid); or the top-level soft set L(S;max)).

4. Present the level soft set L(S; λ) (or L(S; t); or L(S;mid); or L(S;max)) in tabular form and compute the choice value
ci of oi, ∀i.

5. The optimal decision is to select ok if ck = maxi ci.
6. If k has more than one value then any one of ok may be chosen.

Notice that in the last step of the above algorithm, one may go back to the second step and change the threshold (or
decision rule) that he once used so as to adjust the final optimal decision, especially when there are too many ‘‘optimal
choices’’.
The basic idea behind Algorithm 2 is to solve fuzzy soft set based decision making problems by using level soft sets

initiated in [22]. This approach is completely different from the methods in [20,21]. Level soft sets serve as bridges between
fuzzy soft sets and crisp soft sets. By considering level soft sets, actually we need not work directly on fuzzy soft sets in
decision making, but only deal with the crisp soft sets derived from them after choosing certain thresholds. Hence in this
case, the problem concerning reasonableness of ‘‘fuzzy choice values’’ simply does not arise.
In other words, the choice value of an alternative in the level soft set represents the number of the criteria satisfied by

the alternative at certain level of membership degrees. Hence the optimal decision will be made according to

ck = max
hi∈U
{ci} = max

hi∈U
|{aj ∈ A : hi |≈λ aj}|,

where ci is the choice value in the level soft set L(S; λ) and hi |≈λ aj means ‘‘criterion aj is satisfied by alternative hi at the
level given by the threshold fuzzy set λ’’.
Remarks on advantages of Algorithm 2 aswell as some examples to illustrate its application to fuzzy decisionmaking can

be found in [22]. Note also that this method can be easily extended to the case where each of the criteria has an importance
weight (see Section 5 of [22]).

6. Flexible schemes for decision making based on IVFSs

The wide variety of possible relationships among the alternatives in decision making problems motivates our interest in
seeking flexible/adjustable methods that can be used to model these various possibilities. In this section we shall propose
flexible schemes for decision making based on interval-valued fuzzy soft sets. Actually we shall show that by considering
appropriate reduct fuzzy soft sets and level soft sets, IVFS based decisionmaking can be reduced to much simpler treatment
of only crisp soft sets.

Algorithm 3. 1. Input the (resultant) interval-valued fuzzy soft set I = (̃F , A).
2. Input an opinionweighting vectorW = (α, β) and compute theWRFSSW = (̃FW , A) of the IVFS I = (̃F , A)with respect
toW .

3. Input a threshold fuzzy set λ : A→ [0, 1] (or give a threshold value t ∈ [0, 1]; or choose an aggregation operator G).
4. Compute the level soft set L(SW ; λ) of SW with respect to the threshold fuzzy set λ (or the t-level soft set L(SW ; t); or
the level soft set L(SW ;G)).

5. Present the level soft set L(SW ; λ) (or L(SW ; t); or L(SW ;G)) in tabular form and compute the choice value ci of oi, ∀i.
6. The optimal decision is to select ok if ck = maxi ci.
7. If k has more than one value then any one of ok may be chosen.

Remark 6.1. It should be pointed out that the opinion weighting vector is given by the user (decisionmaker). Note also that
the opinion weighting vector could be adjusted by the user (decision maker) interactively to fulfill the real needs better. For
instance, if in the last step there are toomany ‘‘optimal choices’’, then one can go back to Step 2 (or Step 3) tomodify opinion
weighting vector (or threshold/aggregation operator) so as to focus on a smaller set of optimal choices.

In essence, the mentioned algorithm simply represents the following idea: fuzzy decision making problems based on
IVFSs can efficiently be solved by considering appropriate reduct fuzzy soft sets and level soft sets. By using Algorithm 3, in
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Table 8
Typical schemes for interval-valued fuzzy soft set based decision making.

Scheme name Reduct fuzzy soft set Threshold fuzzy set Level soft set

Opt-Mid ORFSS+ = (̃F+, A) m̃idS+ L(S+,mid)
Opt-Top ORFSS+ = (̃F+, A) m̃axS+ L(S+,max)
Neu-Mid NRFSSN = (̃FN , A) m̃idSN L(SN ,mid)
Neu-Top NRFSSN = (̃FN , A) m̃axSN L(SN ,max)
Pes-Mid PRFSS− = (̃F−, A) m̃idS− L(S−,mid)
Pes-Top PRFSS− = (̃F−, A) m̃axS− L(S−,max)

Table 9
Level soft set L(S−,max)with choice values.

U e1 e2 e3 e4 e5 e6 Choice value (ci)

h1 0 0 0 0 0 0 c1 = 0
h2 0 0 1 0 0 1 c2 = 2
h3 0 0 0 0 0 0 c3 = 0
h4 0 0 0 0 0 0 c4 = 0
h5 1 0 0 0 1 0 c5 = 2
h6 1 1 0 1 0 0 c6 = 3

Table 10
Optimistic reduct fuzzy soft set T+ = (̃G+, B) of J = (̃G, B).

U e1 e2 e3 e4 e5

o1 0.7 0.6 0.6 0.3 0.4
o2 0.2 0.8 0.7 0.5 0.5

decision making process we actually do not work directly on interval-valued fuzzy soft sets, but only need to deal with the
related reduct fuzzy soft sets and finally the crisp level soft sets derived from them after choosing certain thresholds. This
makes our algorithm simpler in computational complexity and thus easier for application in real-life problems.
Great flexibility and modelling power of Algorithm 3 lies in the fact that there are a large variety of opinion weighting

vectors (reduct fuzzy soft sets), thresholds as well as aggregation operators that can be used to find the optimal alternatives.
Some special cases are worth noting: Table 8 gives some typical schemes that arise from Algorithm 3 by considering the
ORFS (or NRFS; or PRFS) of an IVFS I = (̃F , A) combined with the aggregation operator G = mid (or G = max). Notice
also that these typical schemes can further be combined to give out more complex hybrid schemes. For instance, one may
consider the hybrid scheme ‘‘Opt-Top AND Pes-Top’’ in which the level soft set L(S+,max) e L(S−,max) will be used for
decision making. Here e denotes the bi-intersection of soft sets defined in [10].
To illustrate the use of Algorithm 3, let us reconsider the application of IVFSs in [18] (see also Example 3.2 in Section 3).

The IVFS under consideration is I = (̃F , A) as in Table 1. Assume that the decision maker is very prudent and he intends
to select the object fulfilling the highest standard in most aspects as his optimal choice. Hence in this case it will be very
reasonable for us to use the ‘‘Pes-Top’’ scheme shown in Table 8 to solve this fuzzy decision making problem. According
to the scheme we choose, at first the pessimistic reduct fuzzy soft set of I should be considered, namely the fuzzy soft set
S− = (̃F−, A) as in Table 2. Next, we shall consider the aggregation operator G = max, which induces a threshold fuzzy set
as follows:

m̃axS− =

(
e1 e2 e3 e4 e5 e6
0.8 0.8 0.8 0.7 0.8 0.8

)
.

Then we can obtain the top-level soft set of S−, namely the crisp soft set L(S−,max) shown in Table 9. From the choice
values also listed in Table 9, we shall select h6 as the best house since it has the maximum choice value c6 = 3. Although
this result coincides with what was obtained by using Algorithm 1 in [18], it is clear that the calculation is greatly simplified
by using Algorithm 3 (see also Table 5 and the discussion in Section 4.1).
Let us nowuseAlgorithm3 tohandle the decisionmakingproblemmentioned in Section 4.2,which cannot be successfully

solved by Algorithm 1. Thus the IVFS under consideration is J = (̃G, B) shown in Table 6. Furthermore we shall assume that
the ‘‘Opt-Top’’ scheme is to be used here. Hence we should first consider the ORFS of J, i.e., T+ = (̃G+, B) as in Table 10. It
is easily seen that the aggregation operator G = max will induce a threshold fuzzy set as below:

m̃axT+ =

(
e1 e2 e3 e4 e5
0.7 0.8 0.7 0.5 0.5

)
.

Then the corresponding top-level soft set L(T+,max) is shown in Table 11. From the choice values listed in Table 11, we can
see that o2 should be selected as the optimal alternative; this is just what we shall get by common-sense reasoning.
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Table 11
Level soft set L(T+,max)with choice values.

U e1 e2 e3 e4 e5 Choice value (ci)

o1 1 0 0 0 0 c1 = 1
o2 0 1 1 1 1 c2 = 4

Table 12
Weighted fuzzy soft setS1 = (̃F1, A, fw).

U e1, w1 = 0.5 e2, w2 = 0.7 e3, w3 = 0.8

x1 0.4 0.7 0.6
x2 0.2 0.8 0.4
x3 0.1 0.5 0.5
x4 0.6 0.4 0.6

Table 13
Weighted fuzzy soft setS2 = (̃F2, A, fw).

U e1, w1 = 0.5 e2, w2 = 0.7 e3, w3 = 0.8

x1 0.4 0.8 0.1
x2 0.6 0.4 0.2
x3 0.5 0.9 0.1
x4 0.3 0.6 0.4

7. WIVFS based decision making

In the preceding section we have investigated the application of interval-valued fuzzy soft sets in decision making
problems. A further representational capability can be added by associatingwith each parameter ej a valuewj ∈ [0, 1] called
its weight. In the case of multi-criteria decision making, these weights can be used to represent the different importance
of the concerned criteria. The following concept could provide a mathematical framework for modelling the IVFS based
decision making problems in which all the decision criteria may not be of equal importance.

Definition 7.1. Let (U, E) be a soft universe and A ⊆ E. A weighted interval-valued fuzzy soft set (WIVFS) over U is a triple
W = (̃F , A, fw) where (̃F , A) is an interval-valued fuzzy soft set over U , and fw : A → [0, 1] is a weight function specifying
the weightwj = fw(ej) for each parameter ej ∈ A.

Recall that in [6] the weighted table of a crisp soft set was defined to have entries dij = wj × hij instead of 0 and 1 only,
where hij are the entries in the tabular representation of the crisp soft set and wj are weights. The weighted choice value c i
of an object oi is calculated as c i =

∑
j dij.

The flexible decision making schemes established in the preceding section can now be easily extended to deal with the
case where each of the criteria has an importance weight. In response to this new frameworkweighted choice values should
be used as substitutes for (ordinary) choice values in the process of decisionmaking. It is easy to see that a revised version of
Algorithm 3 forWIVFS based decisionmaking can be obtained in a natural way. This idea will be illustrated by the following
example:

Example 7.2. Assume that U = {x1, x2, x3, x4} is the universe consisting of four machines. Suppose the parameter set
A = {e1, e2, e3}, i.e., we have three criteria to evaluate the performance of these machines. Suppose a firm wants to buy
one such machine depending on its performance; hence the decision maker of the firm wants to buy a machine which
satisfies the criteria in A to the utmost extent. Furthermore we shall assume that each of these criteria is associated with a
weightwi indicating its importance considered by the decision maker. Here we shall letw1 = 0.5,w2 = 0.7 andw3 = 0.8.
Let there be two specialists {S1, S2} to evaluate the performance of these machines for the firm. It is possible that their

evaluation results to the same criterion are not the same to one another. Their evaluation results can be formulated into
two weighted fuzzy soft sets S1 = (̃F1, A, fw) and S2 = (̃F2, A, fw) with tabular representations shown in Tables 12 and
13, respectively. Combining two independent evaluation results we can obtain a weighted interval-valued fuzzy soft set
W = (̃F , A, fw) shown in Table 14.
Herewe assume that the decisionmakerwill use the ‘‘Neu-Mid’’ scheme in Table 8 to determine the bestmachine. Hence

we should first consider the NRFS ofW , i.e., a weighted fuzzy soft setWN = (̃FN , A, fw) shown in Table 15. The aggregation
operator G = mid will induce a threshold fuzzy set as below:

m̃idWN =

(
e1 e2 e3

0.3875 0.6375 0.3625

)
.

Then the corresponding mid-level soft set L(WN ,mid) is shown in Table 16. Then the firm will buy machine x4 since it has
the highest weighted choice value.
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Table 14
Weighted interval-valued fuzzy soft setW = (̃F , A, fw).

U e1, w1 = 0.5 e2, w2 = 0.7 e3, w3 = 0.8

x1 [0.4, 0.4] [0.7, 0.8] [0.1, 0.6]
x2 [0.2, 0.6] [0.4, 0.8] [0.2, 0.4]
x3 [0.1, 0.5] [0.5, 0.9] [0.1, 0.5]
x4 [0.3, 0.6] [0.4, 0.6] [0.4, 0.6]

Table 15
Neutral reduct fuzzy soft setWN = (̃FN , A, fw) ofW = (̃F , A, fw).

U e1, w1 = 0.5 e2, w2 = 0.7 e3, w3 = 0.8

x1 0.40 0.75 0.35
x2 0.40 0.60 0.30
x3 0.30 0.70 0.30
x4 0.45 0.50 0.50

Table 16
Level soft set L(WN ,mid)with weighted choice values.

U e1, w1 = 0.5 e2, w2 = 0.7 e3, w3 = 0.8 Weighted choice value (c i)

x1 1 1 0 c1 = 1.2
x2 1 0 0 c2 = 0.5
x3 0 1 0 c3 = 0.7
x4 1 0 1 c4 = 1.3

8. Conclusion

This paper can be viewed as a continuation of the study of Feng et al. [22]. Here we have further discussed the application
of interval-valued fuzzy soft sets to solve decisionmaking problems.We contributed to this research direction by proposing
flexible schemes for decision making based on (weighted) interval-valued fuzzy soft sets. In fact, we have shown that by
considering appropriate reduct fuzzy soft sets and level soft sets, IVFS based decision making can be reduced to the much
simpler treatment of crisp soft sets; at the same time a wide variety of reduct fuzzy soft sets and level soft sets (available
in the decision process) could result in great flexibility and modelling power as well. Hence our algorithm is simpler in
computational complexity and thus easier to be applied in real-life applications.
To extend this work, one may possibly use (weighted) interval-valued fuzzy soft sets to address multi-criteria group

decisionmaking problems. Moreover, it is interesting to further investigate level soft set approach to decisionmaking based
on other extensions of fuzzy soft set theory.
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