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ABSTRACT

Smallest and largest possible extensIOns of tnangular norms on bounded lattices are discussed. As such
ordmal and honzontal sum like constructions for t-norms on bounded lattices are mvestlgated. Necessary
and sufficient conditions for the lattice guaranteemg that the extensIOn IS agam a t-norm are revealed.

1 INTRODUCTION

Many-valued logics are usually based on a bounded lattice (L.~. O. 1) of truth
values [17,18,25,31,36,37], not necessarily being a chain (a first attempt in this
direction is described in [17, Section 15.2], compare [4,12] and also the para­
consistent logic in [8]). In such a case, the conjunction is interpreted by some
triangular norm on L. The structure of t-norms (fulfilling the intermediate value
property) is known in some special cases only (closed real intervals, especially the
unit interval, finite chains), see [3,21]. In this paper we are interested in the problem
of extending a t-norm acting on a (complete) sublattice of L to a t-norm acting
on L, discussing the largest and smallest possible extensions. Although in many of
the before mentioned cases the lattices involved tend to be distributive we will not
make any additional assumptions on the lattice structure except for its boundedness.

Let (L. ~. 0.1) be a bounded lattice. An operation T: L 2 --+ L which turns L into
an ordered abelian semigroup with neutral element 1 will be called a triangular
norm or, briefly, a t-norm on L [10]. In fact, (T. L) is a commutative integral
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I-monoid [20] (compare also Examples 1.1-1.4 ofcommutative semigroups in [16])
if and only if T : L 2 ---+ L is a triangular norm on L additionally fulfilling T (x, y v
z) = T(x, y) v T(x, z) for all x, y, Z E L.

Note that the structure of the lattice L heavily influences which and how many
t-norms on L can be defined. However, on each bounded lattice L with ILl> 2 there
are at least two t-norms, the minimum A and the drastic product TnL defined by

L {XAYTn (x, y) = .. °
if 1 E [x, y),

otherwise,

which are also the greatest and smallest t-norms on the lattice L (if ILl = 2 then
A and TnL coincide with the standard boolean conjunction).

Now consider a bounded sublattice (S,~, a, b) of L and at-norm T S : S2 ---+ S
on S. We are investigating the strongest and weakest possible extension of T S

leading to at-norm T on the lattice L.
Inspired by ideas of Clifford [7] (in the context of ordinal sums of abstract

semigroups) and [14,24,29,34,35] (ordinal sums of t-norms on the unit interval),
define the binary operation Tis: L 2 ---+ L by

(1.1) T L . , _{TS(X,y)
r sCt ,))-

xAy

if (x, y) E S2,

otherwise.

More recently, similar constructions (towers of irreducihle hoops [1,6]) have been
applied to characterize BL-chains [18]. Evidently, Tis is an extension of T S•

Moreover, if Tis is a t-norm then it clearly is the strongest t-norm extending T S•

In the following sections we shall investigate under which conditions, starting
from an arbitrary t-norm T S on some sublattice S, the extension Tis always is a

t-norm on L. We will show that the arbitrariness of the choice of T S on S, for
Tis to be always a t-norm on L, leads to some restrictions on the structure of the
sublattice S. As a consequence also to restrictions on the structure of L, in case
that not only any choice of T S but also any choice of S shall be admissible. Based
on these results we further discuss the strongest extension of families of arbitrary
t-norms on some corresponding families of arbitrary sublattices and a few further
properties of triangular norms. Finally, we turn to the determination of the smallest
possible extension Wis of at-norm T S on a bounded and complete sublattice S.

2 SAND L WITH COMMON BOTTOM AND TOP ELEMENTS

Fix a bounded lattice (L, ~,o, 1) and consider a bounded sublattice (S, ~,a, b) of
L and at-norm T S : S2 ---+ Son S. Obviously, Tis as defined by (1.1) is commutative
and has neutral element 1. Since S is also a sublattice of ([a, b], ~,a, b) with
[a, b] = [x ELI a ~ x ~ b), we have
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i.e., we may first extend TO to [a. b] via (1.1) and repeat the same procedure to
extend TJ~,b] to L. Because of

T [a,b] TL IrS = rS [a,b]2.

a necessary condition for Tis to be a t-norm is that TJ~,b] is a t-norm. Therefore,
without loss of generality we may restrict ourselves first to sublattices of L having
the same bottom and top element as L.

Proposition 2.1. Let (L. ~. O. 1) he a hounded lattice and (8. ~. O. 1) a suhlattice
of L. Thefollowing are equivalent:

(i) For all (x. y) E (8 \ [1)) x (L \ 8) we have x /\ y E [0. x) andfor all (x. y) E
(L \ 8)2 it holds that x /\ y E 8 :::} x /\ Y = 0,

(ii) For each t-norm T S : 82 ---+ 8 on 8, the operation Tis is a t-norm on L.

Proof. To show necessity assume that condition (i) is fulfilled. It is immediate to
see that Tis defined by (1.1) is commutative and has neutral element 1. Since for
each t-norm T we additionally have T(x. y) ~ x /\ y, for the monotonicity of Tis

it suffices to check if Tis Cr. y) ~ Tis Cr*. y) for x ~ x* in case x ¢: 8, x* E 8, and
yE8\[I).

If x* -=I- 1, then, because of condition (i), x* /\ x = x E [0. x*) c 8, contradicting
the assumption x ¢: 8. Therefore, x* = 1, and we can conclude Tis (x. y) = x /\ Y E

[0. y), TisCr*. y) = TS(x*. y) = y, and, obviously, TisCr. y) ~ y = TisCr*. y).
For proving the associativity, i.e., T(x. T(y. z)) = T(T(x. y). z), it is obvious that

it holds whenever either all x. y. Z E 8 or all x. y. Z E L \ 8 as well as if 0 E [x. y. z)
or 1 E [x. y. z). Therefore, let us first assume that x. y ¢: 8 and z E 8 \ [0. 1). Then,
x /\ z E [0. z), Y /\ Z E [0. z), and if x /\ y E 8 then x /\ y = 0 such that in all cases it
follows

T(x. T(y. z)) = x /\ Y /\ Z = T(T(x. y). z).

Similar arguments can be applied in case x. z ¢: 8 and y E 8 \ [0. 1) resp. y. z ¢: 8

and x E 8\ [0.1).
In case that only one element involved is element of the sublattice, let us first

assume that x¢:8 and y. z E 8 \ [0. 1), then x /\ y E [0. y), x /\ Z E [0. z), Y /\ Z E
8 \ [1), and x /\ T(y. z) E [0. T(y. z)). Then the following can be argued: Ifx /\ y /\
Z = 0 then associativity is trivially fulfilled. Otherwise, if x /\ y /\ Z = Y /\ Z > 0,
such that T(x. y) = y and therefore T(T(x. y). z) = T(y. z) and T(x. T(y. z)) =

x /\ T(y. z) = T(y. z) since T(y. z) ~ y = x /\ Y ~ x. Analogous arguments can be
applied for proving the case z ¢: 8 and x. y E 8 \ [0. 1). Finally, it remains to show
associativity for y ¢: 8 and x. Z E 8 \ [0. 1). If x /\ y /\ Z = 0, then again it is trivially
fulfilled. Otherwise, necessarily x /\ y = x and y /\ Z = z, such that

T(x. T(y. z)) = T(x. Y /\ z) = T(x. z) = T(x /\ y. z) = T(T(x. y). z).
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Conversely, assume that Tj:s is t-norm for each t-norm T S on 8 and fix some
(x, y) E (8 \ [1)) x (L \ 8) such that x /\ y ~ [0, x).

If x /\ y E 8 consider the t-norm T S on 8 given by

if (u, U) E ([0, x] n 8)2 \ [(x, x)),

otherwise,

and we obtain Tj:s(Tj:sCr, x), y) = x /\ Y -=I- 0 = Tj:sCr, Tj:sCr. y)).
If x /\ y ~ 8 then

Moreover, fix some (x, y) E (L \ 8)2 such that x /\ y = Z E 8 \ [0). Then

Tj:DS(Tj:DScr,y), z) = Tj:Ds(Z, z)

= 0 < Z = Tj:Dscr,z) = Tj:Ds(x, Tj:Ds(y, z)).

Since in all cases the associativity is violated, this proves that (ii) implies (i). D

Note that condition (i) equivalently expresses that for all x E 8 \ [1) and for all
y E L \ 8 either x /\ y = 0 or x ~ y is fulfilled and for all x E 8 \ [0, 1) and all
y, Z E L \ 8, such that x ~ y and x ~ z, also y /\ Z E L \ 8.

3 EXTENSION OF T-NORMS ON AN ARBITRARY INTERVAL

First consider a fixed subinterval [a, b] of a bounded lattice (L,~, 0, 1) and an
arbitrary t-norm T[a,b] on [a, b]. We want to check under which conditions on the
interval [a, b] (and on the lattice L) the operation Tj:[a,b] constructed by (1.1) will
be a t-norm on L (see also Theorem 4.8 in [33]). Recall that the open interval
]a, b[ is defined by [a, b] \ [a, b). Moreover, if ]a, b[= 0, then T[a,b] = /\ and also
Tj:[a,b] = /\ clearly being a t-norm on L, so without loss ofgenerality we can restrict
in the sequel to subintervals [a, b] with ]a, b[ -=I- 0 only.

Proposition 3.1. Let (L, ~' 0, 1) he a houndedlatticeand [a, b] a suhintervalof

L with ]a, b[ -=I- 0, Thefollowingare equivalent:

(i) [xELI:JyE]a,b[:x~yorx~y)=[O,a]U[a,b]U[b,l].

(ii) For each t-norm T[a,b]:[a,b]2 ---+ [a,b] on [a,b], the operation Tj:[a,b] is a

t-norm on L.

Proof. Note that condition (i) expresses that whenever some lattice element x, not
necessarily from [a, b], is comparable to an interior element of the subinterval, then
it must be comparable to both boundaries of the subinterval, i.e., to a as well as to b.

Now assume that condition (i) is fulfilled. For the monotonicity of Tj:[a,b] it
suffices to check the case x ~ [a, b], [y, z) S; [a, b] and x ~ y. If x < a then
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Ifx and a are incomparable, then x ~ [0, a] U [a, b] U [b, 1], i.e., x is incomparable
to allll E [a, b[, such that y = band

T L (,. -)-"A-<--T[a,b](" -)-TL (,'-)r[a,b] "'" -.' "" " - ."" - r[a,b].""·

Similarly, the associativity of Ti[a,b] can be checked case by case. We illustrate the
case of x E L being incomparable to a and y, z E [a, b]. We prove the associativity
for this case by a series of properties:

Since x is incomparable to a, it is incomparable to allll E [a, b[ and therefore it
follows that, necessarily x A u ~ [a, b] for all U E [a, b].

Further, for all U E [a, b [ it holds that x A U = x A a: If U = a, this is obviously true,
therefore assume that U E ]a, b[. In order to guarantee that x A U ~ [a, b] it follows
from x A U ~ U < b that necessarily x A U ~ a and further x A U ~ a A x ~ U A x due
to the monotonicity and the idempotency of A.

Based on these properties we can now conclude for the associativity of some
x E L being incomparable to a and some y, Z E [a, b] with y A Z E [a, b[:

T (x, T (y, z)) = x A T( y, z) = x A a = x A a A Z

= T(x A a, z) = T(x A y, z) = T(T(x, y), z).

If y = z = b, then T(x, T(y, z)) = T(x, b) = x A b = T(x A b, b) = T(T(x, y), z)
which concludes the case. The remaining cases for showing the associativity of T
can be checked analogously, thus showing that (i) implies (ii). Clearly, Ti[a,b] is
commutative and has 1 as a neutral element.

Conversely, let x E L be incomparable to b and comparable to some 1I E]a, b[,
i.e., x ~ 1I, which implies b A x E ]a, b[. Then

1I = Tn[a,b](b, 1I) = TiD[a,b](b, x All)

= TiD[a,b](b, TiD[a,b](x, 1I)) = TiD[a,b](TiD[a,b](b, x), 1I)

= TiD[a,b](b A x, 1I) = Tn[a,b](b A x, 1I) = a

contradicting 1I E ]a, b[ and showing that the incomparability of x to b implies
the incomparability to all elements of ]a, b[. In complete analogy we can show
that the incomparability of x to a implies the incomparability to all elements of
]a, b[ by proving a contradiction to T (T(1I, 1I), x) = T(1I, T(1I, x)) in case that x is
comparable to some 1I E]a,b[, i.e., in case x ~ 1I and choosing T[a,b] = Tn[a,b],

thus completing the proof that (ii) implies (i). D

Corollary 3.2. Let (L,~, 0, 1) he a hounded lattice, (8,~, a, b) a hounded

suhlatticeof Land T S: 82 -+ 8 a t-nOl'1II on 8. Assu1lle thatfol' each (x, y) E

(8 \ [b)) x ([a, b] \ 8) we have x AyE [a, x), thatfol' each (x, y) E ([a, b] \ 8)2
itfollowsthatx AyE 8 i1llpliesx A y = a, and that, in case ]a, b[ -=I- 0, condition(i)
in Pmposition3.1 holds. Then Tis is a t-nOl'1II on L.
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Note that the conditions in Proposition 3.1 heavily depend on the interval [a, b]
and on the lattice L. Now we look for conditions on L only guaranteeing that for
each subinterval each t-norm can be extended to a t-norm on L.

Recall that a bounded poset (X, ~,o, 1) is called a horizontal sum ofthe bounded
posets ((X" ~,' 0, 1) hEI if X = U,EI X, with X, n X} = [0, 1) whenever i -=I- j, and
x ~ y if and only ifthere is an i E I such that [x, y) s; X, and x ~, y (compare, e.g.,
horizontal sums of effect algebras [32]). A non-trivial example of a bounded lattice
which is a horizontal sum of chains is given by

L = [( -1, -1), (1, 1), (-x, 1 - x), (x, x-I) I x E ]0, 1[)

equipped with the product order on 1R2 •

Proposition 3.3 ([33]). Let (L, ~, 0, 1) he a hounded lattice. The following are
equivalent:

(i) L is a horizontal sum of chains.
(ii) For all x, y E L: [x A y, x V y) S; [0, x, y, 1).

(iii) For each suhinterval [a, b] of L and each t-norm T[a.b]: [a, b]2 ---+ [a, b]
on [a, b], the operation Tj:[a.b] is a t-norm on L.

--I T-NORMS ON HORIZONTAL SUMS OF CHAINS

Until now we have considered one subinterval of the bounded lattice (L, ~,o, 1)

only. However, Proposition 3.3 can be generalized to a system of pairwise disjoint
intervals.

Definition 4.1. Let (L, ~,o, 1) be a bounded lattice and I some index set. Further,
let (]al,bl[),EI be a family of pairwise disjoint subintervals of Land (T[a,.b']hEI
a family of t-norms on the corresponding intervals [a" b, ]. Then the A-extension
T: L2 ---+ L, denoted T = (([a" b,], T,) hEI, is given by

(4.1 ) {
T[a,.b,](x, y)

T(x, y)= .
. x A Y

if (x, y) E [a" b, ]2,

otherwise.

Corollary 4.2 ([33]). Let (L,~, 0,1) he a hounded lattice. The following are
equivalent:

(i) L is a horizontal sum of chains.
(ii) For each famn)· ofpairvl'ise disjoint suhintervals (]a

"
b, [),EI of Landfor each

famn)· of t-norms (T[a,.b,] ),EI on the corresponding intervals [a" b,] the A-ex­
tension (([a" b,], T,)hEI defined hy (4.1) is a t-norm on L.

As an immediate consequence of Corollary 4.2 we obtain the ordinal sum
construction [14,24,29,34,35] for t-norms on the unit interval (see also [22] for
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a full investigation of the relationship with the concept of Clifford [7]) and on any
chain.

Moreover, applying consecutively Proposition 2.1 and Corollary 4.2 we obtain
the following general result:

Proposition 4.3. Let (L. ~. O. 1) he a hounded lattice which is a horizontal sum
of some famn)· (Lk )kEK of chains, and let (8,. ~. a,. b,lzE! he a famn)· of hounded
suhlattices such that the sets 8,\ defined hy 8,\ = ]a,. b, [n Lk are pairwise disjoint.

Iffor each i E I and for each (x. y) E (8, \ [b,) ) x ([a,. b,] \ 8, ) we have x AyE
[a,. x), then for each family (T s, )'E! of t-norms on the corresponding suhlattices 8,
theflllzction T L : L 2 ---+ L given hy

{
TS' (x. y)

T(x. y)= .
. x A Y

is a t-norm on L.

(f (x. y) E 8,2,

otherwise,

Proof. If for all i E I and all k E K, 8,\ = 0, it follows that 8, = [0. 1) for all
i E I and therefore T = A. Otherwise, assume that for some i E I and for some
k E K, 8,\ -=I- 0. It remains to show that for all (x. y) E ([a,. b,] \ 8,)2 it follows that
x AyE 8, implies x A y = a, .

In case a, -=I- 0 or b, -=I- 1, for any (x. y) E (8,\ \ 8,)2 it follows that x AyE [x. y)

such that x A y ~ 8,. In case a, = 0 and b, = 1 it might be that x E 8tk \ 8, C

[a,. b,] \ 8, and y E 8tz \ 8, C [a,. b,] \ 8, with k -=1-1, however, then x A y = 0 =

a, E 8, follows immediately. Because of Proposition 2.1 we can further conclude
that TII[a,.b,]nLkI2 is a t-norm on the bounded sublattice (subinterval) ([a,. b,] n
Lk. ~. a,. b,) of L. Notice that in case a, = 0 and b, = 1, [a,. b,] n Lk = Lk and
otherwise [a,. b,] n Lk = [a,. b,]. D

The special structure ofhorizontal sums allows us to represent each t-norm as the
A-extension of its restrictions to the summands:

Proposition 4.4. Let (L. ~. O. 1) he a hounded lattice which is a horizontal sum
of some famn)· (Lk )kEK of hounded lattices. Then a hinary operation T: L 2 ---+ L is
a t-norm on L (f and only (f T = ((Lk. TI Lk 2) )kEK.

Proposition 4.4 allows us to give a representation of certain types of t-norms on
horizontal sums of chains, thus generalizing the representation theorem [19,24,29,
30] of continuous t-norms on the unit interval and of t-norms on finite chains [26]
fulfilling the intermediate value property by means of additive generators. Recall
that at-norm T: L 2 ---+ L on L fulfills the intermediate value pmperty if it satisfies
that for all x. y. Z E L with x ~ y and for each 1I E [T(x. z). T(y. z)], there is a
U E [x. y] such that T(u. z) = 1I.

Corollary 4.5. Let (L. ~. O. 1) he a hounded lattice which is a horizontal sum
of hounded chains (Ck)kEK, where each chain Ck is eitherfinite or isomOllJhic to
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a non-trivial compact suhinterval of the real line. If T: L.! ---+ L is a t-norm on L
fulfilling the intermediate value property, then there exist a famn), (S,. ~. a,. b,hEI

of suhchains of L satisfying the hJ1]othesis of Proposition 4.3 and a famn), of
continuous, strictly decreasing real-valuedflll/ctions (t, : S, ---+ [0. CXJ] hEI satisfying
t, (b,) = 0 such that for each (x. y) E L 2

(f (x. y) E S,2,

othervl'ise.

Proof. From Proposition 4.4 we know T = ((Ck • Tl ck2) )kEK. If Ck is finite then
the t-norm Tl ck2 fulfills the intermediate value property, and the existence of the
subchains S, of Ck and the functions t, : S, ---+ [0. CXJ] with the desired properties
follows from [26,27]. If Ck is isomorphic to a non-trivial compact subinterval of
the real line, then (Ck. Tl ck2) is isomorphic to an I-semigroup [13], and the result
follows from [29] (compare also [21,30]). D

Due to the well-known structure oft-norms on the real unit interval and on finite
chains fulfilling the intermediate value property (in the latter case such t-norms
are uniquely determined by their non-trivial idempotent elements), we are able to
construct all such t-norms on bounded lattices which are horizontal sums of non­
trivial compact subintervals of the real line and finite chains [21,26,29].

As an immediate consequence, the number oft-norms on a finite lattice L which
is a horizontal sum of chains which fulfill the intermediate value property is given
by 21LH (compare the result of[26] for divisible t-norms on finite chains). Observe
that the minimum A always satisfies the hypothesis ofCorollary 4.5 (the index set I
being empty in this case) whereas, e.g., for L = [0. ~. ~. 1) the drastic product TnL

does not fulfill the intermediate value property.
Further note that in Corollary 4.5 the hypothesis that the infinite chains involved

there be isomorphic to non-trivial compact subintervals of the real line cannot
be relaxed, in general. Take the chain (L.~) with L =]O.IeU[(O.O).(LI))
and ~ being the lexicographic order. Then the function T: L2 ---+ L given by
T (Cq. Y1). (X2. Y2)) = (XO'1. X2Y2) is a t-norm which fulfills the intermediate value
property and is not representable as a A-extension of some t-norm possessing an ad­
ditive generator since the semigroup (L \ [(0. 0)). TilL\{IO.OI}12) is Archimedean and
cancellative, but has anomalous pairs (e.g., (0.5.0.6) and (0.5. 0.5)), compare [2,28]
and see [15] for the corresponding notions and related results. Moreover, take the
chain (L. ~) with L = [-1) U [0.1] and ~ the standard order on the real line. Then
the function T : L 2 ---+ L defined by

{
X+Y-I

T(x. Y)= .
. -1

if x + Y ~ 1,

otherwise,

is an Archimedean t-norm fulfilling the intermediate value property but with no
additive generator.
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5 FURTHER PROPERTIES

A lattice (L, 0, L ~) equipped with some t-norm T: L 2 ---+ L is called divisible
[20] if for all x, y E L with y ~ x there exists some z E L such that y = T(x, z)

(compare also the natural ordering of groupoids in [15]). Note that the divisibility
of at-norm T is, in general, a weaker property than its intermediate value property
as the following example shows.

Example 5.1. Consider the bounded lattice (L,~, 0,1) with L = [0, La, b, c, d, e)
as displayed and define T: L 2 ---+ L by

T 0 a b c d e 1
1

0 0 0 0 0 0 0 0

a 0 0 0 0 0 0 a e c

b 0 0 0 0 0 a b
d b

c 0 0 0 a a b c

d 0 0 0 0 d aa a

e 0 0 a b a d e
0

0 a b c d e

Then T is a t-norm on L which is divisible but does not fulfill the intermediate value
property (it suffices to choose for x = b, y = e and z = c).

However, for chains the intermediate value property and divisibility coincide.
Moreover, the intermediate value property of at-norm T on a lattice L which is a
horizontal sum is equivalent to the intermediate value property of T restricted to
the summands of L. Thus the requirement of the intermediate value property for T
in Corollary 4.5 can be relaxed to divisibility.

Further note that in many-valued logics, the algebraic background is mostly a
residuated lattice (L, 0, L ~,*, ---+), where *: L 2 ---+ L is a t-norm on L. The t-norm
* modelling the conjunction operator and the operator ---+ : L 2 ---+ L modelling the
implication operator form adjoint operators linked to each other by the adjunction
relation

x * y ~ z if and only if x ~ y ---+ z

for all x, y, Z E L. Note that a such residuated lattice is divisible if and only if

(5.1) x*(x---+y)=x/\y

for all x, y E L [20]. Observe that (5.1) is preserved by ordinal sums. However,
this is not more true for horizontal sums of chains. To see this, consider any finite
bounded lattice (L, 0, L ~). Choosing *= /\, then (L, 0, L ~,/\, ---+) is residuated
if and only if it is distributive, i.e., it does not contain as a sublattice a non-trivial
5-point horizontal sum [5,23]. Thus the only non-trivial horizontal sum of chains
which yields a residuated lattice (L, 0, L ~, /\, ---+) is the four-point diamond lattice
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which is also the product of two chains with two elements. Note that for this
lattice all t-norms T fulfill the intermediate value property and therefore divisibility,
but (5.1) is only fulfilled for *= A.

6 WEAKEST POSSIBLE EXTENSION

It was mentioned already in the beginning that the A-extension of some t-norm T S

on some bounded sublattice S as given by (1.1) is the strongest possible extension of
T S• We have shown that guaranteeing that the A-extension is a t-norm independent
of the choice of the t-norm T S (and the sublattice S) demands rather restrictive
conditions on the underlying lattice. Quite different is the situation when looking
for the weakest possible extension of T S on some single sublattice S.

Definition 6.1. Let (L. ~. 0.1) be a bounded lattice, (S.~. a. b) a complete and
bounded sublattice, and T S a t-norm on the corresponding sublattice S. Then define
TSU{O,Ij: (S U [0. 1))2 ---+ (S U [0. 1)) by

(6.1 )
{

XAY

TSU{O,Ij(x. y):= 0

T(x. y)

iflE[x.y),

if 0 E [x. y),

if(x.y) ES2.

Further define W;s: L2 ---+ L by

(6.2)
iflE[x.y),

otherwise,

with x* = sup[z I z ~ x. Z E S U [0. 1)).

Lemma 6.2. Let (L. ~. O. 1) he a hounded lattice and assume some complete,
hounded suhlattice (S.~. a. b). Let TS he a t-norm on the corresponding suhlat­
tice S, Then T SU{O,I}:(SU [0.1))2 ---+ (SU [0.1)) defined hy (6.1) is a t-norm on
S U [0. 1), Moreovel; it is the unique t-norm extension of T Sfrom S to S U [0. 1),

Proof. In case [0.1) S; S, then TSU{O,Ij = T S• Moreover, clearly this ""extension"
is unique. For all other cases, it is immediate that TSU{O,Ij = TJ:;{O,I}, i.e., TSU{O,Ij

coincides with the strongest possible extension provided by means of (1.1) such
that indeed TSU{O,Ij is a t-norm. For any extension T' of T S to the sublattice S U

[0.1) which is also a t-norm it holds that T'(x. y) = TS(x. y) for any (x. y) E S2.
Moreover, T'(x. 0) = T'(O. x) = 0 = TSU{O,Ij(x. 0) = TSU{O,Ij(O. x) for any XES U
[0.1), and T'(x. 1) = T'(1. x) = x = TSU{O,Ij(x. 1) = T SU{O,I} (1. x) for any XES U
[0.1), showing that TSU{O,Ij is the unique and as such the weakest and strongest
possible t-norm extension of T S on S U [0. 1). D

Proposition 6.3. Let (L. ~. O. 1) he a hounded lattice and assume some complete,
hounded suhlattice (S.~. a. b). Let TS he a t-norm on the corresponding suhlat­
tice S, Then W;s: L2 ---+ L defined hy (6.2) is a t-norm on L.
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Proof. First note that in case some x is smaller or incomparable to all elements
of S, then x* = O. If x is greater than some element in S, then x* E S since S is a
complete sublattice. Moreover, if XES, then x* = XES. Since in any case x* ~ x
it is guaranteed that Wis is well defined.

Moreover, for any x. y E L \ [0.1) it holds that WisCr. y) E S U [0.1) and
therefore WisCr. y)* = wiscr. y). It is immediate to see that Wis has neutral
element 1 and that it is symmetric.

Let us next focus on its monotonicity. Therefore, assume some x, x', Y E L such
that x ~ x' and let us show T(x. y) ~ T(x'. y). Since x ~ x', also x* ~ (x')*.
Whenever 1 E [x. y), monotonicity is trivially fulfilled. Therefore, assume that
x' = 1 but x -=I- 1 and y -=I- 1, then

W L (. , - T SU{O.ll (.* '*) .......* ,* ...... , - W L (1 'r S x.)) - x .) "" x /\) ",,) - r S .)).

And, finally, for all other x. x'. Y E L it holds that

It remains to prove associativity, i.e., WisCr. Wis(Y. z)) = Wis (Wis Cr. y). z)
for all x. y. Z E L. Whenever all x. y. Z E S, 1 E [x. y. Z), or 0 E [x*. y*. z*),
this holds immediately. However, for all remaining cases, we have WisCr. y) =

T SU{O.ll(x*. y*) = T SU{O.ll(x*. y*)*, such that

Wis (Wis Cr. y). z) = TSU{o.l} (TSU{O.l l (x*. y*). z*)

= T SU{O.l l (x*. T SU{O.l l (y*. z*)) = Wis(x. Wis(Y. z))

proving associativity and thus that Wis is indeed a t-norm on L. D

Proposition 6.4. Let (L. ~. O. 1) he a hounded lattice and assume some complete,
hounded sublattice (S.~. a. b). Let T S he a t-norm on the corresponding suhlat­
tice S. Then Wis: L 2 --+ L defined hy (6.2) is the smallestpossible t-norm extension

of T S on L.

Proof. Assume that T' is a t-norm extension of T S on L. For all (x. y) E (S U
[0.1))2, T'(x. y) = WisCr.y). Next, consider that either x¢: SU [0.1) or y ¢: SU
[0.1), then x* ~ x and y* ~ y, and further

T'(x. y) ~ T'(x*. y*) = T SU {O.l l (x*. y*) = Wiscr. y)

such that Wis is indeed the smallest possible t-norm extension of T S on L. D

So far we have considered one complete sublattice S of the bounded lattice
(L. ~. O. 1) only. Next, we aim at a generalization in case of families of complete
sublattices and corresponding t-norms.
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Definition 6.5. Let (L, ~,O, 1) be a bounded lattice and I some index set. Further,
let (S" ~, a" b,hEI be a family of complete and bounded sublattices of L such that
the family (]a" b, [hEI consists of pairwise disjoint subintervals of L. Finally, let
(Ts, hEI be a family of t-norms on the corresponding sublattices S,. Then define
W L :L2 ---+ L by

T
S
'

(6.3)
if 1 E [x, y),

otherwise,

with x,* = sup[z I z ~ x, Z E S, U [0, I}} and define W: L2 ---+ L by

(6.4) W(x, y) := sup Wis, (x, y).
'EI

Note that, by definition, W is a symmetric and monotone operation on L which
has neutral element 1. However, further restrictions on the family of sublattices
have to be applied in order to guarantee that W is indeed an extension of arbitrary
t-norms T S' on the sublattices S,.

Proposition 6.6. Let (L, ~,O, 1) he a hounded lattice and I some index set.
Furt/leI; let (S" ~, a" b,hEI he a famn)· of complete suhlattices of L such that the
family (]a" b, [)'EI consists ofpainl'ise disjoint suhintervals of L. Further assume
thatfor all i, j E I with i -=I- j it holds that

(i) (fx E S; then x,* ¢: s, \ [a" b,), i.e., x,* E [0, a" b,),
(ii) (f XES; \ [b;) and x,* = a" then (a;)7 ?? a" and

(iii) (f XES; \ [b;) and x,* = b" then (a;)7 = b,.

Then for all t-norms T S' on S, and for all t-norms TSJ on S; with i -=I- j it holds
that Wis, (x, y) ~ TSJ (x, y) for all (x, y) E S; and W~sJ (x, y) ~ TS' (x, y) for all

(x, y) E S,2, i.e.,

WL
s Is 2 ~ TSJ and W L

s Is 2 ~ T S'.
T' J T J ,

Moreovel; W given hy (6.4) is a monotone and sylllllietric extension of each TS',
i.e., Wl s2 = T S' for all i E I, which has neutral element 1.,

Proof. Without loss of generality fix some t-norms TS', TSJ on S, resp. S; with
i, j E I, i -=I- j, and let (x, y) E S;. Then x,*, y,* E [0, a, ' b,}. If x,* = °or y,* = 0, it

follows immediately that Wis, (x, y) = °~ TSJ (x, y). If x,* = b, or y,* = b" then
(a;)7 = b, such that

Wis, (x, y) ~ b, ~ a; ~ TSJ (x, y).

Finally, for x,* = y,* = a" necessarily (a;)7 ?? a" such that we can conclude
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Therefore, for all j E I and for all (x, y) E Sf,

sup w~s, (x, y) ~ TSj (x, y)
'EI,lf=;

and moreover, since W~Sj I Sj 2 = TSj, W(x, y) = sUP'EI W~s, (x, y) = TSj (x, y)

showing that W is indeed an extension of TSj . D

Further note that the supremum of arbitrary t-norms on a lattice L need not be a
t-norm in general, compare also [11]. However, for particular and important classes
oflattices the operation W as defined by (6.4) is associative, i.e., is at-norm.

Example 6.7. Let (L" ~, 0" 1,), i E [1, .. ., 11), 11 EN, be arbitrary complete and
bounded lattices and consider their product lattice L = n;'=1 L,. Then for each i E
[1, ... 11), S, = [(01, ... , x" . .. ,011 ) I x, E L,) is a complete and bounded sublattice
of L. Moreover, for each t-norm T, on L" the function T S' : S; ---+ S, defined by

T S
' (x, y) = (01, ... , T, (x" y,), ... , 011 )

denotes a t-norm on S,. Therefore, W: L 2 ---+ L as defined by (6.4) can be computed
as

W(x,y)= sup W~s,(x,y)=(Td.q'Yl), ... ,T,,(Xll'Yll))
,=1, ,11

and is a t-norm on L for arbitrary t-norms T, on L,.

Example 6.8. Let (L, ~, 0, 1) be a bounded lattice. Further, let (]a" b, [hEI be
a family of pairwise disjoint, non-empty subintervals of L with (/, :::) a linearly
ordered index set such that

• ([[a" b, [I i E I]) U [[1)) forms a partition of Land
• whenever i -< j then x ~ y for all x E [a" b,] and for all y E [a;, b;],

i.e., L is a so-called ordinal sum of partially ordered sets ([a" b, [, ~), i E I, and
([1), ~), see e.g. [9]. Let .T be a finite subset of I, i.e., .T = [il,. . ., ill) S; I for
some 11 EN, such that il < i2 < ... < ill and as a consequence alj < a'2 < ... < a'l/'

Additionally define a'l/+l := 1,

Finally, let (T[a'j,b'j])'jEJbe a family oft-norms on the corresponding intervals
[a'j'b,). Then, ([a'j'b,). ~),jEJ forms a family of complete and bounded sublat­
tices of L for which the requirements of Proposition 6.6 hold such that W defined
by (6.4) can be computed as

iflE[x,y),

if(x,y) E [a'j,b'j]2,

ifa'j ~x/\y< a'j+l andb'j ~xvy< 1,

if x < alj or y < alj'
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Moreover, W is associative, i.e., a t-norm on L.

Remark 6.9. Note that for .T = I, it holds that alj = 0 and, for all iJ E .T, b
'J

= a
'J

+1

and therefore x /\ Y /\ b, = x /\ y whenever x /\ Y E [a , . b, ] and b, ~ x V Y. As a. J' . } } } .

consequence, for .T = I, the weakest extension Wand the strongest extension T as
defined by (4.1) oft-norms (T[a, ,b,] hE! on corresponding intervals [a , . b, ] coincide.

In case .T ~ I, always W -=I- T such that the present example provides another
way of obtaining t-norms on chains, in particular on [0. 1], which extend t-norms
(T[a"b,] ),E! on corresponding intervals [a , . b,], Note further that for L = [0.1],
the weakest extension W is right-continuous whenever all (T[a"b,] ),E! are right­
continuous.

In case of chains the previous result can even be strengthened.

Proposition 6.10. Let (L. ~. O. 1) he a chain. Furt/leI; let (]a, . b, [),E! he afamily
of pairwise disjoint, non-empty suhintervals of Land (T[a"b,] hE! a family of
t-norms on the corresponding suhintervals with (/. :::) a linear()' ordered index set.
Then W defined hy (6.4) is associative, i.e., a t-norm on L.

Proof. From Proposition 6.6 we can conclude that W is a monotone and symmetric
extension of each T[a"b,] which has neutral element 1. Next choose arbitrary
x. y. Z E L. In case 1 E [x. y. z) the associativity of W holds trivially, therefore
assume that 1 ~ [x. y. z). In case x /\ y /\ Z E [a, . b, ] for some i E I we can conclude
that

W(W(x. y). z) = T[a"b,] (T[a"b,] (x /\ b, . y /\ b, ). z /\ b, )

= T[a"b,](x /\b , . T[a"b,](y /\b , . Z /\b , ))

= W(x. W(y. z)).

If III = x /\ Y /\ Z E L \ U,E! [a, . b, ], then for all i E I such that b, < III it holds that

W~[a"b,] (W~[a"b,] (x. y). z) = W~[a"b,] (x. W~[a"b,] (y. z)) = b, .

If a, > Ill, then WL[1 b ](WL[1 b ](x. V). z) = WL[1 b ](x. WL[1 b ](Y. z)) = O. As a
T(Z'l T(z' 1 ~ T(Z'l T(z' 1 ~

consequence W(W(x. y). z) = W(x. W(y. z)) = sup[b, I b, < Ill). D

Proposition 6.10 can further be extended to horizontal sums of chains.

Corollary 6.11. Let (L. ~. O. 1) he a hounded lattice which is a horizontal sum
of some famn)· (Lk )kEK of chains. Furthel; let (]a, . b, [),E! he a famn)· of pairwise
disjoint, non-empty suhintervals of Land (T[a"b,] hE! a famn)· of t-norms on the
corresponding intervals [a, . b, ]. Then, for any k E K, W IL~ is a t-norm on Lk and
of the form as descrihed in Proposition 6.10. In case x E Lk \ [1) and y E L[ \ [1)
with k -=I- t, W(x. y) = 0, and in case 1 E [x. y), W(x. y) = x /\ y, such that W is
aIso a t-norm on L.
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