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SUMMARY

The basic-helix-loop-helix-leucine-zipper domains
of the c-Myc oncoprotein and its obligate partner
Max are intrinsically disordered (ID) monomers that
undergo coupled folding and binding upon heterodi-
merization. We have identified the binding sites and
determined the structural means by which two unre-
lated small molecules, 10058-F4 and 10074-G5,
bind c-Myc and stabilize the ID monomer over the
highly ordered c-Myc-Max heterodimer. In solution,
the molecules bind to distinct regions of c-Myc and
thus limit its ability to interact with Max and assume
a more rigid and defined conformation. The identifi-
cation of multiple, specific binding sites on an ID
domain suggests that small molecules may provide
a general means for manipulating the structure and
function of ID proteins, such as c-Myc.

INTRODUCTION

Natively unstructured or intrinsically disorderd (ID) proteins are

widespread and prevalent in eukaryotes. These proteins may

be unstructured throughout their entire length or contain sub-

stantial ID segments (Oldfield et al., 2005; Uversky, 2002; Wright

and Dyson, 1999). Of the proteins possessing such ID se-

quences, those involved in cell signaling and gene regulation

are overrepresented; moreover, approximately 60% of human

cancer-associated proteins are predicted to have unstructured

regions of R50 consecutive residues (Iakoucheva et al., 2002).

Disordered regions are frequently involved in protein-protein or

protein-nucleic acid interactions, and these interactions are of-

ten accompanied by a folding transition of the disordered region;

that is, they undergo coupled folding and binding (Dyson and

Wright, 2002). The extended nature of disordered regions, and

the consequent solvent-exposed surface area, allows them to

form large interfaces efficiently (Gunasekaran et al., 2003). Ener-

getically, the coupling of folding to binding results in very specific

but comparatively weak interactions: only the correct partner

that provides the needed complementary surface generates

sufficient enthalpic gain to compensate for the loss of entropy

upon folding (Dyson and Wright, 2005).
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The oncogenic transcription factor c-Myc regulates many im-

portant cellular processes, and overexpression of c-Myc occurs

in many human cancers (Dang, 1999; Ponzielli et al., 2005). c-Myc

heterodimerizes with a partner protein, Max, via the association

of basic-helix-loop-helix-leucine-zipper (bHLHZip) domains

found in both proteins (Blackwood and Eisenman, 1991). As a

result of this interaction, which is required for all known biological

effects of c-Myc, specific DNA binding and target gene regulation

is achieved (Dang, 1999; Ponzielli et al., 2005). While the c-Myc

bHLHZip domain is predominantly a helical in its dimeric form,

the monomeric form is disordered (Nair and Burley, 2003). Sev-

eral groups have identified compounds that can disrupt c-Myc

and Max interaction (c-Myc inhibitors) (Berg et al., 2002; Kiessling

et al., 2006; Xu et al., 2006; Yin et al., 2003). However, the specific

protein sites to which they bind and the precise means by which

heterodimerization is abrogated have not been defined.

Previously, we demonstrated that one of these compounds

binds exclusively to the ID monomeric c-Myc bHLHZip domain

and not at all to the bHLHZip domain of Max (Wang et al.,

2007). Such an interaction implies a mechanism in which specific

binding is coupled to unfolding of the target protein, a mode of

action different from that of other described inhibitors of pro-

tein-protein interactions (Arkin and Wells, 2004). Understanding

the basis for ID binding by small molecules could lead to a more

general approach to the chemical modulation of protein interac-

tions characterized by coupled folding and binding (Dyson and

Wright, 2002). In addition, it could significantly enhance the de-

velopment of binding molecules, as well as the ability to predict

binding sites on ID proteins. Their overrepresentation in multiple

diseases and as hubs in eukaryotic signaling and regulation

networks makes ID proteins of increasing interest as targets;

however, we are just beginning to understand how small mole-

cules may interact with these proteins (Uversky et al., 2008).

RESULTS AND DISCUSSION

All previously described c-Myc inhibitors were found by screen-

ing for disruption of the c-Myc-Max interaction without knowl-

edge of where on the sequence the molecules bound. For

protein-protein interactions in which a separated partner retains

its structure (even if the other partner does not), small-molecule

binding sites may be predicted by examining the exposed inter-

action surface (Arkin and Wells, 2004). In contrast, the entire ID
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Figure 1. Scheme of c-Myc bHLHZip Mutations and Truncations Employed to Determine the Inhibitors’ Binding Sites

Mutants that altered c-Myc affinity for 10058-F4 (diamonds) or 10074-G5 (triangles) are indicated; the other mutations did not have substantial effects on

binding.
sequence of the c-Myc HLHZip domain (both residues that

contact Max in the dimer and those that do not) has the potential

to act as a binding site. In addition, the conformation of c-Myc in

its heterodimeric form does not provide any insight as to potential

compound binding sites in the ID monomer. To begin to under-

stand the basis for this atypical inhibition, we first located binding

sites for two compounds on the c-Myc bHLHZip sequence.

These molecules, 10058-F4 and 10074-G5 (Yin et al., 2003),

which exhibit intrinsic fluorescence, were exploited in a fluores-

cence polarization assay to monitor direct binding to purified

recombinant c-Myc bHLHZip domain (c-Myc353–437). Initial

experiments indicated that 10058-F4 and 10074-G5 bound

c-Myc353–437 with 5.3 ± 0.7 mM and 2.8 ± 0.7 mM affinities, respec-

tively, and with 1:1 stoichiometry. The compounds bound to

c-Myc simultaneously and independently, indicating that each

binding site within the bHLHZip sequence was unique and

distinct (Figure S1).

We next generated a series of c-Myc bHLHZip point mutants

and truncations in order to map the inhibitors’ binding sites (Fig-

ure 1). Binding of 10058-F4 was impaired by the mutation of

residues at the interface between helix 2 and the leucine zipper

(L404P, Q407K, and V406A–E409V) and by deletion of the leucine

zipper region (c-Myc353–405). In contrast, binding of 10074-G5
1150 Chemistry & Biology 15, 1149–1155, November 24, 2008 ª200
was actually enhanced by mutations between the basic region

and helix 1 (R367G and E369K–L370P) and eliminated in trunca-

tions c-Myc370–409 and c-Myc400–439. Next, two peptides were

synthesized, c-Myc402–412 and c-Myc363–381, each encompass-

ing only a single deduced binding site. These peptides bound

10058-F4 and 10074-G5, with KD = 13 ± 1 mM and KD = 4.4 ±

0.8 mM, respectively—values close to those observed for full-

length c-Myc353–437 (Figure S1). Since c-Myc353–437 and the pep-

tides derived from it lack stable structure, the binding observed

was dictated solely by a short segment of the primary sequence.

The dependence only on primary sequence implies that a ratio-

nal, sequence-based approach to the search for binding sites in

other ID proteins may be possible.

Upon binding either 10058-F4 or 10074-G5, the circular

dichroism (CD) spectra of the full-length c-Myc bHLHZip domain

displayed only minor changes (Figure 2A). These results indicate

that this domain retained its predominantly disordered structure

even after complex formation, and suggest that any alterations in

protein conformation were probably localized to short regions

around the binding sites. To make any such localized structural

rearrangements more apparent, the peptides c-Myc363–381

and c-Myc402–412 were examined. The CD spectrum of each

short peptide was markedly altered by the binding of its cognate
8 Elsevier Ltd All rights reserved
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compound, as indicated by the disappearance of a minimum at

207 nm, typical of random coil features (Figures 2A and 2B). The

highly localized nature of these binding sites, and hence the lo-

calization of any conformational restrictions coupled to binding,

could grant an entropic advantage to small, c-Myc binding mol-

ecules: the affinity of 10058-F4 for c-Myc is only�1.6 kcal mol�1

lower than that of Max, despite a greater than 10-fold difference

in interaction surface areas (10058-F4 area: 275 Å2; c-Myc-Max

interface: 3206 Å2 [Nair and Burley, 2003]).

To characterize structural features of the individual complexes,

the peptides encompassing the two binding sites (c-Myc402–412,

c-Myc363–381) were studied by 1H and 13C NMR in the absence

and presence of inhibitor. The spectra of c-Myc402–412 displayed

Figure 2. Small Molecules Induce Confor-

mational Changes in Target Peptides

(A) CD spectra of 20 mM c-Myc402–412 in the ab-

sence (white circles) and presence (black circles)

of an equimolar amount of 10058-F4.

(B) CD spectra of 20 mM c-Myc363–381 in the ab-

sence (white circles) and presence (black circles)

of 10074-G5. Insets show the spectra of 10 mM

c-Myc353–437 in the absence and presence of an

equimolar amount of each inhibitor.

(C) Overlaid models of c-Myc402–412 in the free

(blue) and bound (red) states. The models repre-

sent a likely average conformation of the dynamic

ensemble constituting each state.

(D) Free and bound models of c-Myc363–381.

(E) Docking between 10058-F4 and c-Myc402–412.

(F) Docking between 10074-G5 and c-Myc363–381.

(G) Sequence distribution of side chain NOESY

cross peaks observed in the c-Myc402–412-

10058-F4 complex.

(H) Analogous plot for the c-Myc363–381-10074-G5

complex. Ambiguously assigned cross peaks and

ones between adjacent residues are omitted.

Neither free peptide displayed any NOESY

cross-peaks between nonadjacent residues.

differences in 1H and 13C chemical shifts

for four backbone and several side chain

signals upon addition of 10058-F4 (Fig-

ures S4 and S5). The splitting observed

for Tyr402 b peaks indicated that complex

formation induced these protons to be-

come diastereotopic. The 1H aromatic

signals of Tyr402 shifted upfield upon com-

plex formation in both c-Myc402–412 and

full-length c-Myc353–437, yet this ring, and

the 10058-F4 aromatic moiety, were ro-

tationally unconstrained. Strong quench-

ing (80%) and a blue shift (302–296 nm)

in the emission maximum of the Tyr402

fluorescence in the 10058-F4 complex

with either c-Myc402–412 or c-Myc353–437

indicated proximity between the aromatic

moieties of the peptide and inhibitor and

a change in the surroundings of the

tyrosine (Lee and Ross, 1998). Partial

backbone assignments for 1H spectra of

c-Myc353–437 allowed identification of corresponding changes

to those observed in c-Myc402–412 upon complex formation. A

change in shift and shape of the aromatic signals of 10058-F4

was also observed in this case, possibly due to its increased

segregation from the solution environment. The similar behaviors

of the minimal c-Myc402–412 peptide and the larger c-Myc353–437

bHLHZip domain confirmed that the binding interaction with

10058-F4 caused only local perturbations around residues

402–412, and that flanking residues remained largely unaffected.

The NOESY spectrum of the c-Myc402–412-10058-F4 complex

displayed 16 intermolecular and 7 interresidue cross peaks

(none of which are present in the NOESY spectrum of the free

peptide), involving residues located at the N terminus of the
Chemistry & Biology 15, 1149–1155, November 24, 2008 ª2008 Elsevier Ltd All rights reserved 1151
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peptide. These cross peaks indicated the formation of a hydro-

phobic cluster comprised of side chains from Tyr402, Ile403,

Leu404, Val406, Ala408, and the aromatic ring of the inhibitor and

its ethyl moiety (Figure S6). The weak intensity and low number

of cross peaks are due to the intermediate relaxation time range

of the small peptide. The paucity of NOESY signals from the C

terminus suggests higher mobility in solution than the N-terminal

residues.

NMR analysis of complex formation between 10074-G5 and

c-Myc363–381 showed changes in the chemical shift of 10 Ha,

11 Ca signals, and the terminal side chain resonance of two

Arg residues (Figures S7 and S8). The larger number of back-

bone chemical shift differences in the 10074-G5 complex indi-

cated that more residues underwent a conformational change

in this complex. A convergence to �7.4 ppm of the 1H shifts of

the inhibitors’ heteroaromatic moiety, observed at �7.9 and

�6.2 ppm in the free compound, showed an altered chemical

environment for this ring. The NOESY spectrum of the complex

showed 25 interresidue cross peaks, which were absent in the

free peptide, including a pattern of signals between residues

three positions away indicating an a-helical conformation within

Leu370–Leu377. No NOESY cross peaks between nonadjacent

residues were observed in the free peptide. The signal overlap

between the aromatic signals of phenylalanine residues and

inhibitor prevented the unambiguous assignment of intermolec-

ular cross peaks (Figure S9).

Secondary structure trends of c-Myc402–412 and c-Myc363–381

in their free and bound states were assessed by means of 1Ha

and 13Ca chemical shift indexing (Wishart et al., 1992): peaks af-

fected by complex formation moved further from random coil

values in the same direction of the field as observed for their shift

in the unbound state (Figures S5 and S8). Such observations

suggest a correspondence between the average conformation

of the highly dynamic free peptide and the more rigid bound

state, possibly related to the presence of local conformational

constraints in the free peptide (Barre and Eliezer, 2006; Rose

et al., 2006). Due to the limited NOESY information, it was not

possible to effectively employ distance constraints to generate

NMR structures; instead, models of the peptides in their free

and bound states were obtained using chemical shift-based di-

hedral constraints (Berjanskii et al., 2006). A docking simulation

was then performed between the bound structures and respec-

tive inhibitors, with the resulting models intended to represent

one reasonable conformation out of the likely dynamic ensemble

constituting each complex (Figures 2C–2F). In neither complex

did the peptide conformation correspond to that found in the

c-Myc-Max crystal structure, thus clearly demonstrating that

the product of a coupled folding and binding reaction may not

be useful in predicting potential small-molecule binding sites or

their conformations. Furthermore, the conformations of the pep-

tides in the bound form appear incompatible with formation of

the HLHZip interface and provide a rationale for dimer inhibition.

The comparison of the free and bound models indicated the for-

mation of a pocket upon complex formation in both peptides. In

the c-Myc402–412-10058-F4 docking, the inhibitor was located at

the center of a C-shaped cavity, in an orientation that allowed for

hydrophobic interactions to take place between its aromatic ring

and ethyl tail and the peptides N-terminal hydrophobic side

chains. The carbonyl oxygen of 10058-F4 was within hydro-
1152 Chemistry & Biology 15, 1149–1155, November 24, 2008 ª200
gen-bonding range with Ser406 and Gln407 side chains. Although

generated independently, this model matched the NOESY indi-

cation of hydrophobic interactions (Figure 2G). The docking be-

tween c-Myc363–381 and 10074-G5 displayed the inhibitor en-

closed in a cavity generated by a kink at the N terminus of

a helical segment spanning from Leu370 to Arg378, its biphenyl

moiety close to the aromatic ring of Phe375, and the electron-

rich heteroaromatic and nitro moieties interacting with the posi-

tively charged Arg366–367. This model also agreed with the inde-

pendent NOESY results, which indicate the induction of a helical

segment upon complex formation (Figure 2H).

The inhibitory effects of 10058-F4 and 10074-G5 on c-Myc

bHLHZip functionality were then tested in vitro. Alone,

c-Myc353–437 displayed a CD signal typical of disordered protein

regions (Tompa, 2002). Heterodimers were formed between the

c-Myc bHLHZip and Max(p21), a Max isoform with low homo-

dimer affinity, but strong heterodimer affinity (KD
dimer = 0.43 ±

0.02 mM). The heterodimer complex displayed a characteristic

a-helical CD curve expected from the complete folding of the

HLHZip domain. Addition of the inhibitors confirmed their ability

to disrupt heterodimer formation and induce unfolding of the

complex. The addition of 10058-F4 to the heterodimer led to

complete disordering of c-Myc and Max. The competition

constant (the ratio of c-Myc-inhibitor KD to c-Myc-Max KD, as

measured by competition) between 10058-F4 and Max(p21)

was 12.4 ± 0.4—very close to the ratio (12.3) between the inde-

pendently determined c-Myc binding affinities. The addition of

10074-G5 also strongly disrupted the complex, although not to

the same extent as 10058-F4. The higher-than-predicted com-

petition constant between 10074-G5 and Max(p21) (37 ± 2 ver-

sus an independent KD ratio of 6.7) and an increased helical con-

tent at the titration endpoint indicate lower efficacy of this

inhibitor in disrupting c-Myc-Max complexes (Figures 3B and

3C). This observation may be explained by the position of

10074-G5’s interaction site, which lies at the extreme edge of

the c-Myc dimerization interface. Some residual associations

between the leucine zipper regions, located at the opposite

end of the domain, may still be possible in the presence of

10074-G5.

The finding of two independent binding sites, each comprised

of about 10 residues within an 84 amino acid-long bHLHZip do-

main, may indicate that sites capable of specific small-molecule

binding are widespread in ID proteins. The ability of small mole-

cules to bind with high specificity to nontraditional, flexible bind-

ing sites within the context of a family of conserved proteins led us

to examine potential determinants of specificity in the c-Myc

sequence. The bHLHZip domains of Max and Mad member

proteins, the binding of which was not disrupted by 10058-F4

or 10074-G5 (based on the original screening [Yin et al., 2003])

were therefore compared with c-Myc. An unusually high level of

residues conserved among Max and Mad proteins, but not

conserved in c-Myc, was found in the two binding segments.

Out of 22 such nonconserved residues scattered throughout

the c-Myc353–437 sequence, five occurred within the 10058-F4

binding segment (Leu404–Ala408) and another four occurred

within the 10074-G5 binding site (Asn369, Leu370, Phe375, and

Ala376) (Figure S10). Furthermore, these regions contain two of

the three clusters of four hydrophobic residues found in the

c-Myc bHLHZip, and these regions are more hydrophobic than
8 Elsevier Ltd All rights reserved
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the corresponding sequences of other bHLHZip proteins. Analy-

sis of the c-Myc bHLHZip sequence with the disorder-predicting

algorithm PONDR (Obradovic et al., 2005) indicates two regions

with abrupt changes in disorder probability that overlap the

experimentally determined binding sites (Figure 3D). In searching

for potential binding sites of small molecules on ID proteins, in

which such sites may be located anywhere along the sequence,

identification of regions of predicted low disorder that also

contain nonconserved residues may indicate sequences that

are capable both of binding and of specificity. High hydrophobic

content and low disorder probability are sequence properties

also observed for ID protein regions involved in recognition of

protein partners (molecular recognition elements) (Uversky

et al., 2005). ID proteins are able to adopt alternate conformations

in complex with different protein partners (Tompa et al., 2005).

Figure 3. Disruption of Myc-Max Dimer

(A) Schematic representation of the competition for c-Myc binding. The

inhibitors’ binding stabilizes the globally disordered state of c-Myc and Max

monomers.

(B) Weighted average of the independently recorded CD spectra of 10 mM

c-Myc353–437 and 10 mM Max(p21) (white circles), 1:1 mixture of c-Myc353–437-

Max(p21) in the absence (black circles) and presence of 200 mM 10058-F4

(blue diamonds) or 10074-G5 (red triangles).

(C) Competition between 10058-F4 (blue diamonds) or 10074-G5 (red trian-

gles) and Max(p21). Increasing inhibitor concentrations were incubated with

a 1.5 mM 1:1 mixture of c-Myc353–437 and Max(p21). The competition constant

used to generate the competition curve fit corresponds to the ratio of the Myc

affinity KD
inhibitor/KD

dimer. Error bars represent SEM.

(D) Output of the disorder predictor PONDR VSL2B for c-Myc353–437. Positions

of binding site containing peptides are overlaid and occur in regions of

transition from high to low predicted disorder.
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Similarly, Max induces one structure in the bHLHZip of Myc, while

the small molecules induce alternate, localized structures.

Other examples exist of binding interactions between proteins

and small molecules, the selectivity of which depends on short

peptide sequences (Rodi et al., 1999). Morohashi et al. (2005)

defined short peptides capable of binding the small-molecule

NK109 as ‘‘drug target motifs.’’ Recently, small molecules

were found that act as substrate-targeted inhibitors (Kodadek,

2002), which bind a short hydrophobic sequence on b-amyloid

precursor protein (Kukar et al., 2008).

The structured interaction partners of ID proteins have been

proposed as drug targets (Cheng et al., 2006). The potential

wide-spread existence of ID protein segments susceptible to

small-molecule binding also suggests the possibility of specific

chemical modulation of ID proteins by targeting the ID proteins

themselves. Interactions between ID proteins tend to be opti-

mized for functional flexibility, having relatively low affinity yet

high specificity due to the entropy loss related to the structural in-

duction required by complex formation (Dyson and Wright, 2005).

Interactions akin to those described here, with affinities in the low

micromolar range, might affect protein function in vivo, provided

a sufficient binding specificity. Also, since more than one binding

site may be found within a domain of interest, linked compounds

could potentially exploit the effects of multivalency to increase

both affinity and specificity. The effective targeting of ID proteins

offers the potential for introducing a whole class of heretofore

underappreciated targets for chemical biology and drug

development.

SIGNIFICANCE

Several small molecules have been described that disrupt

c-Myc-Max heterodimerization. In order to do so, these mol-

ecules specifically bind c-Myc and stabilize the intrinsically

disordered (ID) monomer over the highly ordered c-Myc-

Max heterodimer. The sequences and characteristics of

sites within an ID region capable of specific binding by small

molecules were unknown. Here, we characterize the distinct

binding sites and interactions of two small molecules that

form soluble, reversible complexes with c-Myc. The binding

of these molecules induced a global conformational disor-

dering that affected a protein-protein interaction occurring

over a large surface area. Within a relatively short ID domain,

two independent, specific binding sites were found, sug-

gesting that potential binding sites may be prevalent in ID

proteins and that the discovery of small molecules capable

of modulating the conformation and interaction of various

ID proteins may be practicable. The absence of protein order

in ID domains with their characteristic sequence accessibil-

ity and lack of tertiary contacts, and the short, linear sites to

which the current compounds have been shown to bind, fur-

ther suggest that it may be possible to predict from primary

amino acid sequence locations within these domains which

are susceptible to specific small-molecule binding.

EXPERIMENTAL PROCEDURES

Detailed Supplemental Experimental Procedures are available online in the

Supplemental Data.
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Mutagenesis

The region encoding human c-Myc amino acids 351–439 was amplified via

PCR with a GeneMorph II Random Mutagenesis Kit (Stratagene, Inc.), introduc-

ing an average of two point mutations/molecule, and directionally cloned into

the pQE9 vector (QIAGEN, Inc.). For truncation mutagenesis, the indicated re-

gions were amplified and directionally cloned into the pET151D vector using the

TOPO ligation system (Invitrogen). Proteins were overexpressed in Escherichia

coli BL21DE3(pLysS) cells and purified by Ni-affinity chromatography followed

by reversed-phase HPLC.

Fluorescence Polarization

Inhibitors were titrated in the presence and absence of equimolar protein

component. For the point mutants, the buffer contained 20 mM MES, pH 5.3,

1 mM DTT, and 5% DMSO (these proteins contain a His tag and have reduced

solubility at higher pH). For all other proteins and peptides, experiments were

conducted in buffer containing 13 PBS (137 mM NaCl, 2.7 mM KCl, 4.3 mM

Na2HPO4, 1.4 mM KH2PO4, pH = 7.4), 1 mM DTT, and 5% DMSO. Polarization

measurements were made using excitation and emission wavelengths of 380

and 468 nm, respectively, for 10058-F4, or 470 and 550 nm for 10074-G5 at

25�C, with sample specific G-factor determination and background correction.

All measurements represent the average of at least three independent trials.

NMR Spectroscopy

Peptide samples (�200 to �500 mM) in the absence or presence of inhibitor

were prepared in 100% D2O, 5 mM sodium phosphate buffer, pH 7.5, or

90% H2O-10% D2O, 5 mM sodium phosphate buffer, pH 6.3 (for Ha(i)–HN(i + 1)

NOE sequential assignments). Two-dimensional 1H homonuclear and 1H-13C

HMQC spectra were recorded at 25�C over sweep widths of �10 3 10 ppm

(�140 3 10 13C) with 16–64 scans/t1 increment, 1.5–2 s relaxation delay,

and sizes of 512–1024 3 2048 complex points. NOE mixing times of 300,

250, and 150 ms were employed for c-Myc402–412, c-Myc363–381, and

c-Myc353–437, respectively.

Molecular Modeling

Peptide models generated from PREDITOR (Berjanskii et al., 2006) dihedral

constraints were energy minimized using CHARMM27 parameters (MacKerell

et al., 1998). The inhibitors were flexibly docked to the bound conformation

model of their respective binding sites using the AutoDock LGA algorithm

(Morris et al., 1998).

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, Supple-

mental References, ten figures, and five tables and can be found with this article

online at http://www.chembiol.com/cgi/content/full/15/11/1149/DC1/.
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