
Pergamon h
Appl. Math. Lett. Vol. 7, Ngho. 2, pp. 29-34, 1994 

Copyright@1994 Elsevier hghScience Ltd 
Printed in Great Britaign. All rights reserved 

0893-9659(94)E0007-X gh
0893-9659/94-$6.00 + 0.00 h

Finite Difference Methods ghfor 
Time Dependent, Linear hgh

Differential Afgghghghghglgebraic Equations* 

P. J. RABIER AND W. C. fghgRHhEINBOLDT 
Department of Matheghgfmatics hand Statistics 

University of Pitthsburgh, Pghittsburgh, PA 15260, U.S.A. 

(Received Octoberh 1993; accepghted November 1993) 
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1. INTRODUCTIONhf 

Time-depefghndent, lghinear differential algebraic equations (DAEs), 

A(t)? + hB(t)x = b(tf), A(t), B(t) E CQR”), b(t) E R”, t E R (1.1) hg

arise igfhdn many circuit and control problems (see e.g., [l-3] for some references). In general, 

standard, ODE-type, numerical methods for (1.1) are known to fail or perform poorly when the 

index exceeds one, and certain Taylor-type methods developed in [2], that apply to a larger class 

of problems, require the solution of large augmented systems of equations. 

Recently we developed a new, global reduction theory [4] which leads to existence and unique- 

ness results for classical as well as generalized solutions of (1.1) under rather general conditions. 

The aim here is to show that this reduction process allows for the construction of simple, conver- 

gent finite difference approximations for the numerical solution of (1.1) which appears to provide 

a new tool for the solution of general systems of the form (1.1). 

2. SUMMARY OF THE REDUCTION PROCESS 

In its basic form the reduction process of [4] assumes that the coefficient functions A and B 

are analytic. Although generalizations to the non-analytic case are also discussed in [4], we shall 

retain here, for simplicity, the analyticity assumption. Throughout this note analytic mappings 

will be referred to as “mappings of class C”.” 

A main tool for the proof of the globality of the reduction procedure is the concept of “trans- 
formation functions” introduced by Kato [5]. With it and with another result of Kato [6] the 
following basic result was proved: 
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THEOREM 1. Let 3 c lR be an open interval, m 2 1 any integer, and M E C”(J; G(IR?)) with 

r = yEy rank M(t). Then, there is a subset S C 3 of isolated points such that rank M(t) = T 

if and only if t E J \ S. Furthermore, the orthogonal projections onto rge M(t) and ker M(t), 

t E J’ \ S are analytic on t E J’ \ S and can be extended as analytic functions over the entire 
interval 3. 

With the notation of this theorem the orthogonal projection P(t) onto rge M(t), for t E J\S, 

is at any point of 5’ an orthogonal projection onto a subspace containing rge M(t) and this 
subspace, called the extended range of M(t) and denoted by ext rge M(t), is independent of the 
specific choice of P. 

For ease of notation, we call a pair (A, B) of coefficent functions admissible if A, B E 

C+‘(J;L(JF)) on a fixed open interval 3 c IR. An admissible pair is said to be regular if 
rank [A(t + B(t)B(t)T] = 72, Vt E J. Then Theorem 1 ensures that rank A(t) = r, 

Vt E 3 \ S where S c 3 consists of isolated points, and that there is a family of projec- 
tions P E C”(J;L(W”)) on o ext rge A(t), Vt E J. Now Q = I - P can be shown to satisfy t 

dim ker Q(t)B(t) = T, Vt E J. Moreover, there exist mappings C E C”(J;L(lR’; EP)) and 
D E C”(J; C(lR”, W”)) such that 

C(t) E GL(IRY, ker Q(t)B(t)), vt E 3. (2.1) 

D(t) E GL(ext rge A(t),R’), V’t E J-, (2.2) 

respectively. For any such choice of mappings Q, C, D the pair of admissible (Al, B1) defined by 

Al, B1 E C”(J; L(W)), Al = DAC, B1 = D(BC + Ae), (2.3) 

is called a reduction of the regular pair (A, B) (in J). Clearly, such a reduction is not unique, 
since it depends upon the choice of C and D. However, any two reductions of (A, B) turn out to 
be equivalent. 

More specifically, between admissible pairs (A, B) and (A, B), define a relation (A, B) N (A, B) 

in J’ by the conditions A = MAN and B = M(BN + A#) for some M, N E C”(J; GL(JRn)). 

This turns out to be an equivalence relation on the set of all admissible pairs (on J’). Furthermore, 
if (A, B) N (A, B) then, on 3, we have 

(i) rank A(t) = rank A(t), 

(ii) (A, B) is regular if and only if (A, B) is regular, and - - 
(iii) If (A, B) and (A, B) are regular, any reduction (Al, B1) of (A, B) is equivalent to any 

reduction (A,,Bl) of (A,B). 

This permits the definition of our reduction procedure which, up to equivalence, is independent 
of any particular choice that must be made at each step. Suppose that the admissible pair (A, B) 

is regular. Then, any two reductions (Al, B1) and (Al,&) of (A, B) are either both regular 
or not. If they are, then once again any reductions (AZ, Bz) of and (Aa, &) of (Al, B1) and 
(Al, &), respectively, will be simultaneously regular, and so on. In line with this, an admissible 
pair is called completely regular (in J’) if this reduction procedure can be continued indefinitely. 
In particular, the complete regularity of a pair (A, B) in J implies its regularity in 3. 

For a completely regular pair (A, B) consider a sequence (Aj, Bj), j = 0, 1, . . . , A0 = A, 

Bo = B, such that (Aj, Bj) is some reduction of (Aj-1, Bj-I), j > 0. Then, rj = Ea$rank A,(t)], 

is independent of the specific choice of (Aj, Bj), j > 0 and with r-1 = n we have Aj(t) E L(IW’J-~), 

for t E J and j 2 0. Moreover, the rj 2 0 decrease monotonically with j whence there exists 
a smallest integer 0 5 v 5 n such that T V = ru_l and A,(t) E GL(IK’~-l), ‘dt E ,7 \ S, where 
S, c J consists only of isolated points. This integer v is the index of the pair (A, B). 

THEOREM 2. Let (1.1) be a DAE with an admissible pair (A, B) of coefficient functions and 
anybECk(~;lWn),lIIcIooork=w. Suppose that (AI, B1) is any reduction of (A, B) 
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defined, say, by the projection Q and the mappings C, D satisfying (2.1), (2.2). Then there 

exists u. E C”(J; IF) such that B(t)uO(t) - b(t) E ext rge A(t), Vt E 3, and indeed we may use 

u. = BT(AAT + BBT)-‘b. With this, a differentiable mapping x : ,7 -+ R” solves (1.1) if and 

only if x = Cxl + uo where x1 : 3 + IV is a differentiable solution of the reduced DAE 

Al(t)?1 + Bl(t)x = bl(t), t E .?-, bI = D(b - Bu,, - AT&,). (2.4) 

By recursive application of this result it follows that when (A, B) is completely reducible with 

index V, then after v steps we arrive at a linear ODE 

A,(t)& + &(+v = b,(t), P-5) 

where A,(t) E GL(R’u-*) except perhaps at isolated points. Thus (2.4) is equivalent with an 

explicit ODE with singularities. A simple example for this is the system 

( 

2t 2 0 

0 0 2 

) 

i+x=o 

-29 -2P -2t 

given in [I] which has index 2. Here the final reduced ODE is -2t(l + 3t2 + t4)j.2 + (-3 - 8t2 

+3t6) x2 = 0, and hence, is singular at t = 0. In [I] t i was noted that the DAE has index 2 

for t > 0 and the singularity at t = 0 was interpreted as index 3 at that point. 

Of course, the case of (1.1) is of special importance when 

A,(t) E GI~(IW’~-‘), vt E 3. (2.6) 

The condition (2.6) is independent of the reduction, and if it holds then (2.5) is an explicit, linear 

ODE without singularities for which the standard existence and uniqueness results are applicable. 

Thus if the initial condition x(to) = x0, to E 3 satisfies a certain consistency condition (see [4]) 

the resulting initial value problem for (1.1) h as a globally defined unique solution in J. 

3. FINITE DIFFERENCE APPROXIMATIONS 

The global reduction of the DAE (1.1) allows for the construction of convergent finite difference 

approximations of (1.1). These approximations are applied to the reduced DAE at stage j = v - 1 

of the process which after one further step becomes the ODE (2.5) for which we assume now 

specifically that (2.6) holds. In other words, the finite difference scheme is applied to a (reduced) 

DAE of index one. Thus, for ease of notation, we assume here simply that the original DAE (1.1) 

has index one. As before (Al, B1) denotes a reduction of the admissible pair (A, B) defined by the 

mappings Q, C, D. We also note that the index one assumption is then equivalent, for instance, 

with the invertibility of A(t) + Q(t)B(t), Vt E J, (see [4]). 

For a given, sufficiently small step h > 0 suppose that ti = to + ih E J for i = 0, 1, . , m and 

consider first the explicit Euler approximation 

A(ti)i(xi+l - xi) + B(&)x, = b(&). 

Then the following solvability result holds: 

THEOREM 3. Any solution 

xo,x1,...,x, EiRY 

of (3.1) satisfies for i = 0, 1, . . , m - 1 the equations 

(3.1) 

(3.2) 

Q(W(tih = Q(W(h), 

P(k) + Q(h+dB(ti+l)]xi+l = [A(h) - hB(ti)]xt + Wti) + Q(ti+l)b(t,+l). 

(3.3) 

(3.4) 



32 P. J. RABIER AND W. C. RHEINBOLfghfghD’I 

Conversely, nbfghfgfor sufficiefghntly small h and any given x0 E lKn satisfying (3.3) (at to), the solution (3.2) 
of (3.4) is unique bnand is alhso a solution of (3.1). 

PROOF. For any solutighon (fgh3.2) of (3.1) it follows, after multiplication by Q(ti), that (3.3) holds 
for 0 5 i 5 m - 1. Hencfgghhe, by adding, for i = 0,. . . , m - 1, the (i + l)st equation (3.3) to (3.1) we 
obtain (3.4). The smoothhnefghss of A, B, and Q ensures that, for sufficiently small h, the matrix in 
the square bracket on fgthe lefght of (3.4) is nonsingular for i = 0,. . . , m - 1 since, as noted above, 

A(&) +Q(W(ti) gbhcfgfgis invertible by thehb indeghx-one assumption. Hence for given x0 the solution (3.2) 
of (3.4) is uniquely dfgethermined. If (3.3) holds for x0 (at to) then, by induction on i, it follows that 
this solution (3.2) of (fgh3.4) satisfies (3.3) for i = 0,. . . , m - 1. In fact, if (3.3) is valid for some i, 
0 5 i < m, then we obfghtaingfh after multiplication of (3.4) by Q(ti) that Q(ti)Q(ti+l)B(ti+l)xi+l = 

Q(t,)Q(ti+db(ti+d.fgh Since Q(hfg) is injective fghghon rge Q(ti+l) = fgrge A(ti+l)’ (for ti+l - ti small 
enough) thfghis implies that (3.3) hfgholds for i + 1 in place of i. Now by adding the i + lSt equation 
(3.3) tfgho (3.4) we see that the soluhtion of (3.4) also solves (3.1). I ghfgh

For fgany gfhsolution of (3.4) it follows from (3.3) that xi - uo(ti) E ker Q(ti)B(ti) for all i whence 

xi - IhfghLo = C(t&i, Vi, (3.5) hfg

for somfghe sequence gfhzi E Iw’, i = 0,. . . , m + 1. Then, using that B(ti+l)uo(ti+l) - b(ti+l) belongs 

to [rge A(fgb+dl’, fhwe obtain frhom (3.4), afther a simple calculation, that 

A(ti)C(ti++i+fghl - zi) + [o(M) + A(ti,; (c(ti+l) - C(ti))] zi 

= ci E b(ti) - Afg(t,fghfg); (uo(ti+l) - uo(ti)) - B(ti)uo(ti). (3.6) 

After multiplying hfhthis by D(ti) we see that (3.6) is a finite difference approximation of the initial 
value problem 

A,(t)i + B,(t)2 = c(t), 4to) = 20, (3.7) 

where ~0 is characterized by the condition C(to)zo = x0 - uo(to), and 

a,(t) = D(t)A(t)C(t + h), (3.8a) 

h(t) = D(t) B(t)C(t) + A(t); (C(t + h) - C(t))] , (3.8b) 

b(t) = b(t) - A(t); (uo(t + h) - uo(t)) - B(t)uo(t). (3.8~) 

Since (2.6) was assumed to hold for the ODE (2.5) obtained at the last reduction step, (2.5) is 
equivalent with the linear, explicit ODE 

i = K(t)z + k(t), K(t) s a,(t)-%&), /c(t) E a,(t)-‘b(t). (=4 

Hence, by a standard estimate for Euler’s method (see e.g. [7, Theorem 7.51) we obtain 

llz(k) - 4 I Kllhl. (3.10) 

On the other hand, a comparison of (3.7) and the reduced equation (1.3) shows that for h --+ 0 

the difference of the coefficient functions (3.8) and the corresponding coefficient functions of (2.5) 
is of order 1 hi uniformly on [to, tm]. Thus a standard application of Gronwall’s inequality provides 
that 

max Ilxcl(t) - z(t)11 I Kzlhl, 
to<t<t,n 

whence altogether we obtain from (1.4) and (3.5) that 

llzi - x(ti)ll = IIC(tiNxl(ti) - zi)lI 5 WI, Vi, (3.11) 
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with E = to~tz,, IIC(t)ll(~l + 4. 1 n o th er words, when ~0 satisfies (3.3) at to, then the unique 

solution of the difference equation (3.4) provides an approximation of the solution of (1.1) with 
global error O(h). 

The result is easily extended to variable steps in t by using a continuous grid function. It is 
also conceptually straightforward to derive higher order discretizations or implicit schemes. We 
illustrate this briefly for the implicit Euler scheme 

(3.12) 

Now any solution (3.2) satisfies for i = 0, 1, . . . , m - 1 the equations 

Q(~i+lP(~i+lh+~ = Q(ti+l)b(ti+l), (3.13) 

P(ti+l) + Q(h+l)B(ti+l) + hB(h+d] xi+1 = A(ti+~)zi + hb(t,+l) 
+ Q(h+l)b(b+l), (3.14) 

For small h the matrix on the left of (3.14) is nonsingular and hence, for given 50 the solution (3.2) 
of (3.14) is unique. This solution satisfies (3.13) for i = 0,. . , m - 1 as is readily seen by 
multiplying (3.14) with &(&+I) and dividing by h + 1. Thus subtraction of (3.13) from (3.14) 
shows that the solution of (3.14) also solves (3.12). Moreover, the unique solution of (3.14) 
represents again an approximation of the solution of (1.1) with global error O(h). The proof is 
entirely analogous to that given for (3.4) and will not be repeated here. 

If, for h > 0 the matrix A(ti+l) + hB(ti+l) in (3.12) is nonsingular, then the solution of (3.12) 
can be computed directly. This observation is well-known to apply also to higher order BDF 
formulas and is the basis of the widely used DAE solver DASSL (see (31). However, the nonsin- 
gularity assumption requires the matrix pencil A(t), B(t) to be regular for all t E J which is not 
necessarily true for all index one problems. Moreover, since, in any case, the matrix becomes 
singular for h = 0, increasing difficulties are expected for decreasing h. This problem is not 
shared by either (3.4) or (3.14). 

Difference schemes as (3.4) and (3.14) open up surprisingly effective numerical methods for the 
solution of the systems (1.1). In particular, (3.4) can be used as the base method in an explicit 
extrapolation integrator. An implementation of the resulting algorithm for general index-one 
problems (1.1) has been called LTVXE. It has the general form of the extrapolation code EULEX 
(see [S]) and, as EULEX, it is based on the order and step control mechanism of [9]. 

Of course, when (1.1) has index exceeding one, the application of this integrator pre-supposes 
the availability of the DAE arising at stage v - 1 of the reduction process. Under the assumption 
that subroutines for all needed derivatives of the coefficients A, B, and b are given, a computa- 
tional implementation of the reduction process is feasible. This will be discussed elsewhere. 

Here we show only one simple example of the method when applied to the index one problem 

(3.15) 

This is an example, called not regular in [3], for which the matrix pencil is singular for all t E IR. 

Accordingly, as noted above, DASSL cannot be expected to solve (3.15), and, in fact, DASSL 
failed consistently for any tolerance with either one of the error messages “the iteration matrix 

is singular” or “the corrector failed to converge repeatedly or with abs(h) = hmin.” 

Our reduction shows readily that (3.15) indeed has has index one and that the exact solution 
is%(t) = ((l-t) et+t3,et-t 2 T LTVXE performs satisfactorily for all tolerances. For example, ) . 

a run with LTVXE from t = 0 to t = 8.0 with tolerance lo-’ used 801 steps and produced at 
t = 8.0 the approximate solution z = (-20354.512, 2916.9580)T which has a relative error of 
9.531 x lop6 under the maximum norm. 
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