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Abstract

Let H be a closed normal subgroup of a compact Lie group G such that G=H is connected.
This paper provides a necessary and su8cient condition for every complex representation of H
to be extendible to G, and also for every complex G-vector bundle over the homogeneous space
G=H to be trivial. In particular, we show that the condition holds when the fundamental group
of G=H is torsion free.
c© 2002 Elsevier Science B.V. All rights reserved.

MSC: primary 20C99; secondary 19L47; 22E99

1. Introduction

One of the classical problems in >nite group theory is to characterize extensions of
representations. We mean an extension of a representation in the following way: Given
a normal subgroup H of a group G, a (complex) representation � :H → GL(n;C)
is called extendible to G if there exists a representation �̃ :G → GL(n;C) (called a
G-extension) such that � = �̃ on H . It is to be noted that the dimension n is not
changed, since � as a sub-representation is always contained in the restriction of the
induced representation of � to H .
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In the case of >nite G, it is well known that every complex irreducible representa-
tion of H , which is G-invariant under conjugation (see Section 2 for the de>nition),
is extendible to G if the second group cohomology H 2(G=H;C∗) vanishes [5, Theo-
rem 11.7]. On the other hand, the extension problem for in>nite groups has not been
extensively studied. In this article, we study the problem for compact Lie groups when
G=H is connected. Our main result is a necessary and su8cient condition for every
complex representation of H to be extendible to G. It is also shown that the condition
is related to a topological invariant, the fundamental group of G=H .

For any group G, let G′ denote the commutator subgroup of G.

Theorem 1.1. Let G be a compact Lie group and H a closed normal subgroup such
that G=H is connected. Then every complex representation of H is extendible to G
if and only if H is a direct summand of G′H .

Corollary 1.2. Let G be a compact Lie group and H a closed normal subgroup such
that G=H is connected. Then every complex representation of H is extendible to G
if the fundamental group �1(G=H) is torsion free, or equivalently if (G=H)′ is simply
connected.

Our theorem provides a complete characterization of the triviality of complex G-
vector bundles over the homogeneous space G=H . Let E be a complex G-vector bundle
over G=H . We recall that E is trivial if it is isomorphic to the product bundle G=H×V
for some complex G-module V . Since E is uniquely determined by the >ber at the
identity element of G=H (say E0), the bundle E is trivial if and only if E0 as a
complex representation of H is extendible to G. Theorem 1.1 leads us to the following
corollary.

Corollary 1.3. Let G be a compact Lie group and H a closed normal subgroup such
that G=H is connected. Then every complex G-vector bundle over the homogeneous
space G=H is trivial if and only if H is a direct summand of G′H .

The existence of G-extensions plays an important role even in equivariant K-theory.
Let X be a connected topological space with a compact Lie group G action. Let H be
the normal subgroup of G which consists of all elements of G acting trivially on X .
Then the projection G → G=H induces the canonical homomorphism � :KG=H (X ) →
KG(X ) which sends a G=H -vector bundle over X to the same bundle viewed as a
G-vector bundle with the trivial H -action.

On the other hand, suppose that every complex irreducible representation of H is
extendible to G. Then there is an injective (not natural) group homomorphism e :
R(H) → R(G) between two representation rings de>ned as follows. For each irreducible
complex H -module U choose a G-extension UG, and de>ne e([U ]) = [UG] where [ ]
denote the classes in the representation rings. Then extend the de>nition of e to R(H)
so that it de>nes a homomorphism R(H) → R(G). For each complex G-module V we
can associate the trivial complex G-vector bundle V =X ×V , which de>nes the natural
homomorphism t :R(G) → KG(X ). We now de>ne a group homomorphism

� :R(H)⊗ KG=H (X ) → KG(X ); (V; �) �→ t ◦ e(V )⊗ �(�): (1)
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This homomorphism is an isomorphism. Indeed, the inverse is given as follows. Let
Irr(H) denote the set of all isomorphism classes of complex irreducible representations
of H . For each [�]∈ Irr(H) choose a G-extension of �, and let V� be the corresponding
G-module to the chosen G-extension. For a complex G-vector bundle E over X , the
canonical isomorphism

E
∼=→

⊕
[�]∈Irr(H)

V� ⊗ HomH (V�; E)

induces a group homomorphism KG(X ) → R(H)⊗KG=H (X ) which is the desired inverse
(see [2, Section 2] for more general arguments). Therefore, we have a generalization
of Proposition 2.2 in [6] which deals with the extreme case when G acts trivially on
X .

Corollary 1.4. Let G be a compact Lie group and H a closed normal subgroup such
that G=H is connected. Let X be a connected G-space such that H acts trivially on
X . If H is a direct summand of G′H , then the map � :R(H)⊗KG=H (X ) → KG(X ) in
(1) can be de6ned, and it is a group isomorphism.

This article is organized as follows. In Section 2, we shall give some basic notions
and then show that a complex irreducible representation of H , which is G-invariant
under conjugation, induces an associated projective representation of G which may be
viewed as a G-extension in the projective representation level. Section 3 is devoted
to prove that every complex representation of H has a G-extension when G=H is
connected and abelian. In Section 4, we shall proceed the study in the case that G=H
is semisimple and connected. After showing that the extension problem can be reduced
to this case, we shall prove Theorem 1.1.

2. Associated projective representations

Let G be a topological group and H a closed normal subgroup of G. By a (complex)
representation of G we shall mean a continuous homomorphism of G into the general
linear group GL(n;C) of nonsingular n × n matrices over the >eld C of complex
numbers. A representation � :H → GL(n;C) is called extendible to G if there exists
a representation �̃ :G → GL(n;C) (called a G-extension of �) such that �(h) = �̃(h)
for all h∈H .

~
H

�

�

GL (n,C)

G

Moreover, it is enough to get a G-extension of � that there is a representation �̃ :G →
GL(n;C) such that its restriction to H is isomorphic (or similar) to �, i.e., there exists
a matrix M ∈GL(n;C) such that M−1�̃(h)M = �(h) for all h∈H .
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Given a representation � :H → GL(n;C) the map g� :H → C de>ned by the conju-
gation g�(h) = �(g−1hg) becomes a representation of H for each g∈G. We say that
� is G-invariant if it is isomorphic to the conjugate representation g� for all g∈G,
which is a necessary condition of � to be extendible to G.

In the following, we assume that a representation � :H → GL(n;C) is irreducible
and G-invariant. Then there exists a matrix Mg ∈GL(n;C) for each g∈G such that
M−1

g �(h)Mg=g�(h)=�(g−1hg) for all h∈H . Since � is irreducible, the Schur’s lemma
implies that Mg is unique up to multiplication by nonzero constant in C∗=C\{0}. So
we are able to de>ne a function �∗ of G into the projective linear group PGL(n;C) =
GL(n;C)=C∗ by �∗(g)= [Mg] for each g∈G, where [Mg] denotes the image of Mg by
the canonical projection � : GL(n;C) → PGL (n;C).

H
�−−−−−→GL(n;C)�

� �

G
�∗−−−−−→PGL(n;C)

Lemma 2.1. Let G be a topological group and H a compact normal subgroup of G.
Given a complex irreducible representation � :H → GL(n;C) which is G-invariant,
the function �∗ :G→PGL(n;C) de6ned above is a continuous homomorphism, called
the projective representation of G associated with �. Moreover, the image of �∗ is
contained in U (n)=S1 ⊂ PGL(n;C) if � is a unitary representation of H .

Proof. It is immediate that �∗ is a homomorphism. Since H is compact we may
assume that � is a unitary representation of H , i.e., the image of � is contained in the
unitary group U (n). Then Mg is a constant multiple of a matrix in U (n) so that �∗(g)
is contained in U (n)=S1 for all g∈G. For the continuity of �∗ it su8ces to show that
the graph of �∗ in G × PGL(n;C) is closed, since U (n)=S1 is a compact HausdorM
space.

Consider the family of continuous maps �h :G × GL(n;C) → GL(n;C) for each
h∈H given by (g;M) �→ �(h)M�(g−1hg)−1M−1. Then the set

⋂
h∈H

�−1
h (I) =

⋃
g∈G

{(g;M)∈G × GL(n;C) |M ∈ �−1(�∗(g))};

is the inverse image of the graph of �∗ in G × PGL(n;C) by the canonical projection
1 × � :G × GL(n;C) → G × PGL(n;C), which is obviously closed in G × GL(n;C).
Therefore, the graph of �∗ is also closed in G × PGL(n;C).

We may say that � is extendible to G in the projective representation level, since
�∗(h) = [�(h)] for all h∈H , i.e., �∗ = � ◦ � on H .
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~
H

�

�

�*

�

GL (n,C)

G PGL (n,C)

Note that any G-extension (if exists) �̃ of � is a lifting homomorphism of �∗, i.e.,
�∗ = � ◦ �̃, since �∗(g) = [�̃(g)] for all g∈G.

Remark. In case that G is >nite, choose a transversal T containing e for H in G
and set Me = I , the identity matrix in GL(n;C). For each t ∈T and h∈H , the map
�′ :G → GL(n;C) sending th �→ Mt�(h) is a lifting (not necessarily homomorphism)
of �∗, i.e., � ◦ �′ = �∗, and it determines a cocycle � in the second group cohomology
H 2(G=H;C∗), which depends only on �. Moreover, � is extendible to G if and only
if � is trivial, see [5, Theorem 11.7] for more details.

3. Extensions when G
/
H is connected abelian

In this section, we shall prove that every complex representation of H is extendible
to G when G=H is compact, connected, and abelian, that is a torus. We begin with a
general result on extensions of representations in the special case when G = SH for
some closed subgroup S of G.

Lemma 3.1. Let G be a compact topological group such that G = SH for a closed
subgroup S and a closed normal subgroup H of G. Then a complex representation
� :H → GL(n;C) is extendible to G if and only if there exists a representation
’ : S → GL(n;C) such that

(1) ’= � on S ∩ H , and
(2) ’(s)−1�(h)’(s) = �(s−1hs) for all s∈ S and h∈H .

Proof. The necessity is obvious so we prove the su8ciency. De>ne a function �̃ :G →
GL(n;C) by �̃(sh)=’(s)�(h) for s∈ S and h∈H . It is immediate that �̃=� on H . In
this proof, we shall use the symbols s; s′ and h; h′ for elements in S and H , respectively.
Claim: �̃ is well de6ned. If sh=s′h′ ∈G, then (s′)−1s=h′h−1 ∈ S∩H . Then condition

(1) implies that ’(s′)−1’(s) = �(h′)�(h)−1 and thus �̃(sh) = ’(s)�(h) = ’(s′)�(h′) =
�̃(s′h′).
Claim: �̃ is a homomorphism. For sh; s′h′ ∈G, condition (2) implies that

�̃((s′h′)(sh)) = ’(s′)’(s)�(s−1h′s)�(h)

=’(s′)’(s)’(s)−1�(h′)’(s)�(h)

= �̃(s′h′)�̃(sh);

since (s′h′)(sh) = (s′s)(s−1h′s)h and s−1h′s∈H .
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Claim: �̃ is continuous. The map p : S×H → G sending (s; t) �→ st is a continuous
surjection. Since both S and H are compact, p is a closed map so that G has the
quotient topology induced by p.

~�

~��p
p

GL (n,C)G

S × H

Then the continuity of �̃ follows from the universal property of the identi>cation map p
since the composition �̃◦p : S×H → GL(n;C) sending (s; t) �→ ’(s)�(t) is continuous.

Remark. In case that � is irreducible, condition (2) in Lemma 3.1 implies that ’
is a lifting homomorphism of the associated projective representation �∗ (de>ned in
the previous section) over S, i.e., � ◦ ’ = �∗ on S. On the other hand, any lifting
homomorphism ’ of �∗ over S satis>es condition (2).

Our main concern in this paper is to study extensions of representations when G
is a compact Lie group and H is a closed normal subgroup of G such that G=H is
connected. In this case, every complex representation � of H is G-invariant. Indeed,
for each g∈G, there is a continuous path gt in G from g to an element h∈H since
every connected component of G contains an element of H . Then the path gt induces
a continuous family of conjugate representations gt � so that all representations gt � are
isomorphic (see [3, Lemma 38.1] for more general result). In particular, g�= g0� and
�= h�= g1� are isomorphic.

Let � be a complex irreducible representation of H . Since � is always G-invariant,
the associated projective representation �∗ exists by Lemma 2.1. To get a G-extension
of � we shall >rst >nd a closed subgroup S of G such that G=SH , and then construct
a lifting homomorphism ’ of �∗ over S (so that condition (2) is satis>ed). Finally,
modifying ’ a little to satisfy condition (1) we may get a G-extension of �.

Lemma 3.2. Let G be a compact Lie group and H a closed normal subgroup such
that G=H ∼= S1. Then there exists a circle subgroup S of G such that G = SH and
S ∩ H is 6nite cyclic.

Proof. Let G0 denote the identity component of G. Since the canonical projection
p :G → G=H is open and closed, p(G0) is a connected component of G=H so that
p(G0)=G=H . It is well known in Lie group theory [4, Theorem 6.15] that G0 =Z0G′

0,
where Z0 is the identity component of the center of G0, which is a torus and G′

0 is
the commutator subgroup of G0. Then G′

0 ⊂ G0 ∩ H ⊂ H since G=H = G0=(G0 ∩ H)
is abelian, and thus p(Z0) =G=H . Using the isomorphism G=H ∼= U (1) we may view
p|Z0 as a one-dimensional unitary representation of the torus Z0. It is elementary in
representation theory that there exists a circle subgroup S ⊂ Z0 such that p(S)=G=H .
Therefore, G= SH and, furthermore, the proper subgroup S ∩H of the circle group S
is >nite cyclic.
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Lemma 3.3. Let T be a maximal torus in U (n). Then the exact sequence 0 → S1 →
T → T=S1 → 0 splits. Here S1 is identi6ed with the subgroup of U (n) consisting of
constant multiples zI for z ∈ S1 ⊂ C where I denotes the identity matrix.

Proof. Since any maximal torus T in U (n) is conjugate to the subgroup "(n) ⊂ U (n)
of diagonal matrices

D(z1; : : : ; zn) =


 z1

. . .
zn


 ; zi ∈ S1;

it su8ces to show that the exact sequence 0 → S1 → "(n) → "(n)=S1 → 0 splits.
But the splitting is immediate because of the homomorphism "(n) → S1 mapping a
diagonal matrix D(z1; : : : ; zn) to the constant multiple z1I ∈ S1.

Proposition 3.4. Let G be a compact Lie group and H a closed normal subgroup
such that G=H ∼= S1. Then every complex representation of H is extendible to G.

Proof. Let � :H → GL(n;C) be a given representation. Since H is compact, we may
assume that all the images of � are contained in U (n) ⊂ GL(n;C). Moreover, it
is enough to prove the case that � is irreducible. Since G=H ∼= S1 is connected, �
is G-invariant so that the associated projective representation �∗ :G → U (n)=S1 ⊂
PGL(n;C) = GL(n;C)=C∗ exists by Lemma 2.1. From Lemma 3.2 we can choose a
circle subgroup S of G such that G = SH and S ∩ H is >nite cyclic.

We shall >nd a lifting homomorphism ’0 : S → U (n) of �∗ over S. Since �∗(S) is
compact, connected, and abelian, it is a torus in U (n)=S1. Note that every maximal
torus in U (n)=S1 has the form T=S1 for some maximal torus T of U (n) [1, Theorem
2.9, Chapter IV]. Choose a maximal torus T of U (n) such that �∗(S) ⊂ T=S1. By
Lemma 3.3 the exact sequence 0 → S1 → T �→T=S1 → 0 splits, i.e., the canonical
projection � :T → T=S1 has a continuous section (homomorphism) s :T=S1 → T such
that the composition � ◦ s is the identity map of T=S1. Then ’0 = s ◦ �∗|S is a desired
lifting homomorphism of �∗ over S.

T ⊂  U(n)

�

S
  

�0

T/S1 ⊂  U (n)/S1

s

�*

Let t0 denote a generator of the >nite cyclic group S ∩H . Since � ◦’0 = �∗ = � ◦ �
on S ∩ H , ’0(t0) = ��(t0) for some constant �∈ S1 ⊂ C∗. Note that � is an nth root
of unity, where n is the order of S ∩H . So it is possible to choose a one-dimensional
unitary representation % of the circle group S such that %(t0) = �−1. Then the unitary
representation ’= %⊗ ’0 satis>es the conditions (1) and (2) in Lemma 3.1.

Corollary 3.5. Let G be a compact Lie group and H a closed normal subgroup
such that G=H is connected and abelian. Then every complex representation of H is
extendible to G.
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Proof. Since G=H is compact, connected, and abelian, it is isomorphic to a torus. So
we have a >nite chain of subgroups

H = H0 / H1 / · · · / Hn−1 / Hn = G

such that Hi is normal in Hi+1 and Hi+1=Hi
∼= S1. Applying Proposition 3.4 inductively,

any representation of H is extendible to G.

4. Extensions when G
/
H is connected

In this section, we consider the general case, so G=H will be assumed to be connected
(not necessarily abelian). In this case, the commutator subgroup (G=H)′ = G′H=H of
G=H is semisimple connected [4, Theorem 6.18]. The following proposition reduces
the extension problem to the case that G=H is semisimple and connected.

Proposition 4.1. Let G be a compact Lie group and H a closed normal subgroup of
G such that G=H is connected. A complex representation of H is extendible to G if
and only if it is extendible to G′H .

Proof. The necessity is obvious, and the su8ciency follows from Corollary 3.5 since
the factor group G=G′H ∼= (G=H)=(G′H=H) = (G=H)=(G=H)′ is compact, connected,
and abelian, that is a torus.

In the case that G=H is semisimple connected, the following result is well-known in
Lie group theory (see for instance, [4, Proposition 6.14]).

Lemma 4.2. Let G be a compact Lie group and H a closed normal subgroup such
that G=H is semisimple and connected. Then there is a semisimple connected closed
normal subgroup S in G such that G=SH and the map S×H → G sending (s; h) �→ sh
is a homomorphism with a discrete kernel isomorphic to S ∩ H .

Remark. Proposition 6.14 in [4] deals with the case when G is connected. However,
the same proof holds even if G is not connected, since G=H is connected. Moreover,
we can >nd the fact in the proof that S is semisimple and connected.

The following result implies that the existence of a G-extension when G=H is
semisimple and connected is completely determined by the restriction of a given rep-
resentation to S ∩ H .

Proposition 4.3. Under the hypotheses of Lemma 4.2, a complex irreducible repre-
sentation � of H is extendible to G if and only if � is trivial on S ∩H , i.e., �(g)= I ,
the identity matrix, for all g∈ S ∩ H .

Proof. It is immediate that S commutes with H , since the map S × H → G sending
(s; h) �→ sh is a homomorphism. To prove the su8ciency, it is enough to choose the
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trivial representation ’ of S, i.e., ’(s)= I for all s∈ S. Since S commutes with H , the
two conditions (1) and (2) in Lemma 3.1 are satis>ed immediately.

On the other hand, suppose �̃ is a G-extension of �. Since S commutes with H ,
we have �̃(s)−1�(h)�̃(s) = �(h) for all s∈ S and h∈H . Then the Schur’s lemma
implies that �̃(s) is constant for all s∈ S, so we may view the restriction �̃|S as a
one-dimensional complex representation of S. Since semisimple Lie groups have no
nontrivial abelian factor group, the trivial representation is the unique one-dimensional
complex representation of S. Therefore, �̃ is trivial on S, in particular, on S ∩H .

Remark. Note that the number of G-extensions (if exist) is exactly one, since every
G-extension should be trivial on S.

Corollary 4.4. Let G be a compact Lie group and H a closed normal subgroup
such that G=H is semisimple and connected. Every complex representation of H is
extendible to G if and only if H is a direct summand of G, i.e., G ∼= S×H for some
subgroup S of G.

Proof. The su8ciency is obvious so we prove the necessity. If H is not a direct
summand of G, then S ∩H in Lemma 4.2 contains a nontrivial element, say s0. Since
a faithful representation of H always exists [1, Theorem 4.1, Chapter III], we can
choose an irreducible sub-representation � of H such that �(s0) is not trivial. Then �
does not extend to a representation of G by Proposition 4.3.

We shall now prove the main result in this paper. For the second statement of
Theorem 1.1, we need the following lemma giving a relation between the normal
subgroup S ∩ H in Lemma 4.2 and the fundamental group of G=H .

Lemma 4.5. Under the hypotheses of Lemma 4.2, there exists a surjective homomor-
phism �1(G=H) → S ∩ H .

Proof. Since S=(S∩H)=G=H , the restriction of the canonical projection p :G → G=H
on S is surjective and its kernel S ∩ H is discrete. It follows that p|S is a covering
homomorphism of G=H . From the uniqueness of the universal covering homomorphism
q̃ : G̃=H → G=H , there exists a covering homomorphism q : G̃=H → S such that the
diagram

G/H S

p|s

G/H

~q

q

commutes (compare with [4, Proposition 9.12]). Since S ∩H = ker p|S = q(ker q̃) and
ker q̃ is isomorphic to �1(G=H), we have a surjective homomorphism of �1(G=H) onto
S ∩ H .
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Theorem 1.1 (rephrased). Let G be a compact Lie group and H a closed normal
subgroup such that G=H is connected. Then every complex representation of H is
extendible to G if and only if H is a direct summand of G′H .

Proof. Since the factor group G′H=H = (G=H)′ is semisimple and connected, the
theorem follows immediately from Proposition 4.1 and Corollary 4.4.

Proof of Corollary 1.2. We claim that Tor(�1(G=H)), the torsion subgroup of �1

(G=H), is isomorphic to �1((G=H)′). Denote by T the torus (G=H)=(G=H)′. Then
the homotopy exact sequence of the >bration (G=H)′ → G=H → T implies that
�1(G=H) ∼= �1((G=H)′) ⊕ �1(T ), since the second homotopy group of a compact Lie
group
vanishes, see [1, Proposition 7.5, Chapter V]. Since (G=H)′ is semisimple, �1((G=H)′)
is >nite [1, Remark 7.13, Chapter V] so that it is isomorphic to Tor(�1(G=H)) as
we claimed. Therefore, the condition of �1(G=H) being torsion free is equivalent to
(G=H)′ being simply connected.

By Lemmas 4.2 and 4.5, G′H = SH for some semisimple connected closed normal
subgroup S in G′H and there is a surjective homomorphism �1(G′H=H)=�1((G=H)′) →
S ∩ H . Therefore, if (G=H)′ is simply connected, then �1((G=H)′) = S ∩ H = {e} so
that H is a direct summand of G′H .
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