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Abstract This paper presents the application of the renormalization group (RG) methods to the
delayed differential equation. By analyzing the Mathieu equation with time delay feedback, we
get the amplitude and phase equations, and then obtain the approximate solutions by solving the
corresponding RG equations. It shows that the approximate solutions obtained from the RG method
are superior to those from the conventionally perturbation methods. c© 2013 The Chinese Society of
Theoretical and Applied Mechanics. [doi:10.1063/2.1306307]
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The renormalization group (RG) method1–3 is one
of the unified tool for global asymptotic analysis of
the singularly-perturbed differential equations.4,5 Mo-
tivated by RG methods being widely used in solid state
physics and other areas,5,6 it has been applied to decuce
approximating solutions of differential equations, with
and without turning points, with fast and slow time
scales, with boundary layers, etc. It is usually used
to provide an option to classical perturbation methods,
such as the multiple time scales method, the averag-
ing method, and the WKB method.4 Some numerical
experimental from RG method agree with those from
classical methods. Moreover, RG method introduces
automatically the appropriate gauge functions of small
parameter ε, and avoids the guess of appropriate form
of functions. However, up to now, there are a little
applications of RG method in the fields of engineering
and the applied mechanics.7–10 The aim of this paper
is to apply RG method to solve the delayed differential
equations by considering a Mathieu equation with time
delay feedback.

We consider the following general differential equa-
tion

ẋ = Ax+ εf(x),

x(t0) = x0,
(1)

where f(x) is the nonlinear function, ε � 1, and t0 is
the initial time. The aim of this paper is to give ap-
proximate analytical solutions of Eq. (1) on time scales
of O(1/ε). The RG method consists of the following
steps.7

(1) A naive perturbation expansion is derived for
the solutions of the given system.

(2) All instances of the initial condition are removed
by making a preparatory change of variables.

(3) Introduce an arbitrary time k in between t and
initial time t0.

(4) Remove terms involving (k− t0) by renormaliz-
ing the solution.
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(5) Apply the RG condition dx/dk|k=t = 0 to get
the renormalized solution.

By using the RG method, we investigate the follow-
ing Mathieu equation with delayed position feedback

ÿ + ay = by(t− τ)− 2εy cos t, (2)

where ε � a, τ is time delay, by(t − τ) is the delayed
position feedback, and b = O(ε). The stability of solu-
tions near a = 1/4 is firstly investigated without losing
generality, and then the stability boundary in the (a, ε)
plane is determined. By expanding a and y in powers
of ε, we have

a = 1/4 + a1ε+ a2ε
2 + · · · ,

y = y0 + εy1 + ε2y2 + · · · (3)

The aim of the paper is to determine the values of
a1, a2, y0, y1, y2, ...

Using multiple scale method, we can solve this prob-
lem. However, the multiple time scales τ1 = εt, τ2 =
ε2t, · · · are not enough to derive the coefficient a2, and
the hidden time scale σ = ε3/2t must be included. This
is a typical shortcoming of multiple scale analysis.1,2

However, some studies show that the RG method can
automatically give the time scales σ = ε3/2t, only star-
ing with a straightforward perturbative expansion.1,2

For simplicity, we only consider the first-order expan-
sion.

Substituting a = 1/4 + a1ε and y = y0 + εy1 into
Eq. (2), one gets

ÿ0 + 1/4y0 = 0,

ÿ1 + 1/4y1 = cy0(t− τ)− 2y0 cos t− a1y0,
(4)

with c = b/ε. The solution of the first equation of
Eq. (4) is

y0 = R0 cos(t/2 + θ0), (5)

where R0 and θ0 are constants depending on the initial
conditions. Substituting Eq. (5) into Eq. (4) gets

y1 = cR0t sin

(
t

2
− τ

2
+ θ0

)
−R0t sin

(
t

2
− θ0

)
−
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a1R0t sin

(
t

2
+ θ0

)
+

1

2
R0 cos

(
3t

2
+ θ0

)
(6)

and

y = R0 cos

(
1

2
t+ θ0

)
+

ε

(
cR0t sin

(
1

2
t− 1

2
τ + θ0

)
−

R0t sin

(
1

2
t− θ0

)
− a1R0t sin

(
1

2
t+ θ0

)
+

1

2
R0 cos

(
3

2
t+ θ0

))
+O(ε2). (7)

We then introduce the renormalization variables R
and θ as R0 = R+Rγε and θ0 = θ+λε. For an arbitrary
time k between 0 and t, we have t = t − k + k, where
0 is assumed to be the initial time. Substituting it into
Eq. (7), one gets

y = R cos

(
t

2
+ θ

)
+Rγε cos

(
t

2
+ θ

)
−

Rλε sin

(
t

2
+ θ

)
+ εR

[
c(t− k) ·

sin

(
t

2
− τ

2
+ θ

)
+ ck

(
sin

(
t

2
+ θ

)
cos

τ

2
−

cos

(
t

2
+ θ

)
sin

τ

2

)
− (t− k) sin

(
t

2
− θ

)
−

k

(
sin

(
t

2
+ θ

)
cos 2θ − cos

(
t

2
+ θ

)
sin 2θ

)
−

a1(t− k) sin

(
t

2
+ θ

)
− a1k sin

(
t

2
+ θ

)
+

1

2
cos

(
3t

2
+ θ

)]
+O(ε2). (8)

In order to eliminate the terms as k sin(t/2+θ) and
k cos(t/2 + θ), we let

γ − ck sin
1

2
τ + k sin 2θ = 0, (9)

λ− ck cos
1

2
τ + k cos 2θ + a1k = 0. (10)

Thus, Eq. (8) can be written as

y = R cos

(
t

2
+ θ

)
+ εR

[
c(t− k) ·

sin

(
t

2
− τ

2
+ θ

)
− (t− k) sin

(
t

2
− θ

)
−

a1(t− k) sin

(
t

2
+ θ

)
+

1

2
cos

(
3t

2
+ θ

)]
. (11)

Since we can not find k in the original problem, the
solution must be independent of k. Therefore, we have
dy/dk|k=t = 0 for any t. Then we have

∂y

∂R

dR

dk
+

∂y

∂θ

dθ

dk
+

∂y

∂k
= 0, (12)

where

∂y

∂R

∣∣∣∣
k=t

= cos

(
1

2
t+ θ

)
+

1

2
ε cos

(
3

2
t+ θ

)
, (13)

∂y

∂θ

∣∣∣∣
k=t

= −R sin

(
1

2
t+ θ

)
−

1

2
εR sin

(
3

2
t+ θ

)
, (14)

∂y

∂k

∣∣∣∣
k=t

= εR sin

(
t

2
+ θ

)(
cos 2θ + a1 − c cos

τ

2

)
+

εR cos

(
t

2
+ θ

)(
c sin

τ

2
− sin 2θ

)
. (15)

Note that the second terms of the right side of
Eqs. (13) and (14) are O(ε). Therefore we approxi-
mately have the following RG equation

dR

dk
= εR sin 2θ − εcR sin

1

2
τ, (16)

dθ

dk
= ε(cos 2θ + a1)− εc cos

1

2
τ. (17)

To analyze the stability of steady-state solution, we
let the right side of Eq. (17) be zero and get

cos 2θ = c cos
τ

2
− a1,

sin 2θ = ±
√
1−

(
c cos

τ

2
− a1

)2

.
(18)

Substituting Eq. (18) into Eq. (16) gets

R = R̄ exp

(
±

√
1−

(
c cos

τ

2
− a1

)2

−

c sin
τ

2

)
εt, (19)

where R̄ is constant. Substituting k = t into Eq. (11)
gets the asymptotic expansions of solutions

y = R cos

(
t

2
+ θ

)
+ εR

1

2
cos

(
3t

2
+ θ

)
, (20)

where R and θ satisfy Eqs. (18) and (19), respectively.
It is clear that

Z ≡ ±
√
1−

(
c cos

τ

2
− a1

)2

− c sin
τ

2
= 0 (21)

determines the boundary of stability. For the given c
and τ , we can get the critical value of a1.

(1) If c = 0, Eq. (2) becomes the classic Mathieu
equation. System is stable for |a1| > 1; |a1| < 1 indi-
cates the divergent solutions; |a1| = 1 is the boundary
of stability.2

(2) If τ = 0, |a1 − c| = 1 is the boundary of stability.
(3) If A ≡ 1−(c cos(τ/2)−a1)2 < 0, −c sin(τ/2) < 0

indicates the system stability, and −c sin(τ/2) > 0 in-
dicates the system instability.

(4) If A > 0, then Z > 0 indicates the stability,
while Z < 0 indicates the instability.



063007-3 Renormalization group methods for a Mathieu equation Theor. Appl. Mech. Lett. 3, 063007 (2013)

Fig. 1. Stability regions in c− τ plane with |a1| < 1.
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Fig. 2. Stable and unstable regions in c− τ with |a1| > 1.

Figure 1 illustrates the stability regions in c−τ with
|a1| < 1. It is clear that when c = 0, system is unstable
which is consistent with that in Ref. 2 with |a1| < 1.
Figure 2 illustrates that the stable and unstable regions
in c−τ with |a1| > 1. It is easy to see from these two fig-
ures that the delayed position feedbacks can effectively
stabilize the system.

Using RG method, we derive the approximate stead
solutions of the Mathieu equation with time delay feed-
back. It shows that the RG method does not need to
guess the appropriate gauge functions, and it is supe-
rior to some classic perturbation methods. Moreover,
the real computation indicates that RG method has
higher computational efficiency compared to some clas-
sical perturbation methods.
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