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SUMMARY

With help of a hCD25 reporter controlled by pre-
T cell receptor a (Ptcra) regulatory elements, T
cell precursors were identified in peripheral
blood. Sca-1+IL-7Ra+Flt3� precursors that
were c-kitloThy-1hi generated T lineage cells
when cultured on OP9-DL1 stromal cells and
upon transfer into Rag2�/�Il2rg�/� mice. No B
cells were generated in vivo and only few
in vitro. These cells, which we call circulating
T cell progenitors (CTP), were found at the
same frequency in Foxn1nu/nu thymus-deficient
mice and wild-type mice, indicating that they
were pre- rather than postthymic. Inhibition of
Notch-dependent transcription in vivo reduced
the frequency of intrathymic early T cell progen-
itors (ETP), but not CTP, indicating that the
latter are less Notch dependent. Thus, CTP rep-
resent T lineage-committed T cell precursors
linking extrathymic with intrathymic lymphopoi-
esis in adult mice.

INTRODUCTION

All blood-cell lineages are derived from self-renewing

hematopoietic stem cells (HSC). HSC generate Fms-like

tyrosine kinase receptor 3 (Flt3)-positive multipotent pro-

genitors (MPPs), that are likewise lineage negative (Lin�),

Sca-1+, and c-kithi (LSK) (Adolfsson et al., 2001), as well

as RAG-1+ early lymphoid progenitors (ELPs) (Igarashi

et al., 2002), L-selectin+ progenitors (LSPs) (Perry et al.,

2004), and common lymphoid progenitors (CLPs) (Kondo

et al., 1997). In the adult thymus, progenitors from the

bone marrow are recruited via the blood stream. However,

the nature of thymic immigrants has remained elusive.

Based on phenotypic similarity to the early T cell progen-

itors (ETPs), multipotent LSK cells in blood were assumed

to represent the most effective thymic immigrants in adult

mice (Allman et al., 2003; Benz and Bleul, 2005; Schwarz

and Bhandoola, 2004). However, immigration of these

cells into the thymus has not been directly shown, and

ETPs unlike LSK cells are dependent on Notch signals

(Sambandam et al., 2005; Tan et al., 2005).

CLP-2 cells that were identified in the BM of transgenic

reporter mice that express human CD25 (hCD25) under
I

control of the pre-T cell receptor a (Ptcra) promoter and

enhancer may likewise constitute a population of thymic

immigrants (Gounari et al., 2002; Martin et al., 2003).

Such cells have a Lin�c-kit�/loB220+ phenotype and orig-

inate from Lin�c-kit+B220�IL-7Ra+ CLP cells. CLP-2 effi-

ciently enter the thymus upon intravenous transfer and

have limited self-renewal capacity (Martin et al., 2003;

Scimone et al., 2006). When cultured in the presence of

Notch ligands, CLP-2 upregulate c-kit, downregulate

B220, and quickly become DN2 cells (Krueger et al.,

2006). Of note, early thymic immigrants after BM transfer

are mostly c-kit� and enriched for B220+ cells (Mori

et al., 2001). However, CLP-2 cells have not yet been

detected in blood.

Homing of extrathymic progenitors to the thymus de-

pends on P-selectin-PSGL-1 interactions, and P-selectin

binding capacity was detected on LSK, CLP, and ETP

cells (Rossi et al., 2005). In addition, the CCR9 chemokine

receptor plays an important role, because Ccr9�/� BM-

derived progenitors home poorly (Rossi et al., 2005; Sci-

mone et al., 2006; Uehara et al., 2002).

Inside the thymus, the heterogeneous double-negative

(DN) 1 thymocyte subset (CD44+CD25�) contains the

most potent T cell precursors that were originally charac-

terized as CD4loc-kit+ (Moore and Zlotnik, 1995; Wu et al.,

1991). These cells have the potential to generate T, B, NK,

and lymphoid dendritic cells. More detailed analysis of the

DN1 subset led to the identification of LSK and IL-7Ra�/lo

ETPs (Allman et al., 2003) with high T, but only limited B

and myeloid, potential. ETPs are heterogeneous with

regard to Flt3 or CC chemokine receptor 9 (CCR9)-eGFP

reporter gene expression (Benz and Bleul, 2005; Samban-

dam et al., 2005). Flt3+ ETPs are more immature, and loss

of Flt3 or CCR9-eGFP expression coincides with loss of B

cell potential. Subdivision of DN1 cells according to c-kit

and heat-stable antigen (HSA) revealed the most potent

T cell progenitors in the DN1a and b subsets that are likely

linked by a precursor-product relationship (Porritt et al.,

2004).

Progressive loss of B cell potential (Benz and Bleul,

2005; Sambandam et al., 2005) and clonal analysis of the

most immature ETPs (Benz and Bleul, 2005) is best com-

patible with the notion that T and B lineages diverge intra-

thymically, although this is disputed (Balciunaite et al.,

2005; Jenkinson et al., 2006; Lu et al., 2005). In contrast,

T lineage commitment in fetal life has been claimed to

occur prethymically. Of note, no CLPs have been identified

in the fetus (Douagi et al., 2002; Kawamoto et al., 1997),
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and in ontogeny, T cell progenitors appear to emerge

earlier than B cell progenitors (Kawamoto et al., 2000). In

addition, T cell progenitors lacking B or myeloid potential

were found in fetal blood and were characterized either

as c-kit+IL-7R+ (Ikawa et al., 2004), expressing paired

immunoglobulin-like receptors (Masuda et al., 2005), or

to be of the c-kitloThy-1+ phenotype (Rodewald et al.,

1994).

Signaling from Notch transmembrane receptors has

been implicated in lineage-fate decisions of cells in multi-

ple developmental systems (Artavanis-Tsakonas et al.,

1999). Specifically, conditional deletion of Notch1 in he-

matopoietic progenitors results in failure of T cell develop-

ment and accumulation of B cells in the thymus (Radtke

et al., 1999; Wilson et al., 2001). Inhibition of Notch-medi-

ated transcription or interference with Notch-Notch ligand

interactions has similar consequences (Koch et al., 2001;

Maillard et al., 2004). Conversely, overexpression of intra-

cellular Notch1 leads to aberrant T cell development in the

BM (Pui et al., 1999). However, it has also been claimed

that fetal thymic precursors are T lineage-committed,

perhaps independently of Notch (Harman et al., 2005;

Masuda et al., 2005).

Here we identified prethymic T cell progenitors circulat-

ing in blood of adult mice by means of transgenic reporter

mice that express hCD25 under control of the Ptcra pro-

moter. These cells have a c-kitloThy-1+ phenotype. In con-

trast to BM CLPs and CLP-2, these cells possess efficient

T, but only very limited B and NK, potential. Of note, these

progenitors are not affected by inhibition of Notch-depen-

dent transcription, consistent with the possibility that

extrathymic T lineage commitment is less dependent on

Notch while Notch signals clearly can induce T lineage

commitment and are essentially required at later stages

of T cell development.

RESULTS

Lineage-Negative hCD25+ Cells in Peripheral Blood

of Adult Mice

T cell development in the thymus depends on continuous

recruitment of hematopoietic progenitors from the BM via

the blood. hCD25+ T cell precursors have so far been iden-

tified in BM and thymus, and it has been shown that

hCD25+ CLP-2 can efficiently seed the thymus upon

intravenous transfer. Here we have analyzed whether

Lin�hCD25+ cells can be detected in the blood of mice un-

der steady-state conditions. We found that approximately

0.06% of Lin� cells in peripheral blood expressed the

hCD25 marker, whereas no background staining was de-

tected in reporter-negative control mice (Figure 1A). This

corresponds to a frequency of 4.1 ± 0.3 per 105 leukocytes

or 330 ± 24 Lin�hCD25+ cells per mL blood. Further sur-

face-marker characterization revealed that most of these

cells are c-kit�/lo and some expressed B220. In both

BM-derived CLP-1 and CLP-2 cells, expression of the

hCD25 transgene corresponds to expression of pre-

TCRa mRNA, whereas hCD25+CD19+ cells in BM, which

are already committed to the B lineage, lack pre-TCRa
106 Immunity 26, 105–116, January 2007 ª2007 Elsevier Inc.
expression (Gounari et al., 2002). Thus, we analyzed

pre-TCRa expression in peripheral Lin�hCD25+ cells as

an indicator of T cell potential. Figure 1B shows that

the pre-TCRa message is clearly present in circulating

Lin�hCD25+ cells, suggesting that these cells might

contain T lineage potential.

Next, we compared the surface phenotype of circulat-

ing Lin�B220+hCD25+ and Lin�B220�hCD25+ cells with

that of Lin�hCD25+ CLP-1 (Lin�hCD25+B220�c-kit+) and

CLP-2 (Lin�hCD25+B220+c-kit�/lo) cells from BM and

hCD25+ DN1 (Lin�hCD25+CD25�CD44+) cells from thy-

mus, the majority of which were shown to be DN1a/b cells

(Figure 1C; Krueger et al., 2006). CLP-1 cells were mostly

c-kit+IL-7Ra+Flt3hiSca-1+CD44hiThy-1.1�, with a minor

fraction of cells expressing the Thy-1.1 marker. CLP-2

cells were c-kit�/loIL-7Ra+Flt3�/loSca-1�/loCD44hiThy-

1.1�. In contrast, circulating Lin�hCD25+B220+ cells

were c-kit�IL-7Ra�Flt3�Sca-1+CD44+ and hetero-

geneous for Thy-1.1+ expression and thus did not

correspond phenotypically to BM-derived CLP-2 cells.

Circulating Lin�hCD25+B220� cells were c-kit+IL-

7Ra+Flt3�/loSca-1+CD44hiThy-1.1+, and thymic DN1 hCD25+

cells were c-kithiIL-7Ra�/loFlt3loSca-1+CD44hiThy-1.1lo.

Approximately 4% of cells with a Lin�B220�c-kitloIL-

7RaloFlt3�/loSca-1+Thy-1.1+ phenotype in blood ex-

pressed hCD25 and it is presently not known whether

the hCD25-negative subset of these cells has similar func-

tional properties as the hCD25+ subset (see Figure S1 in

the Supplemental Data available online). This is similar to

the previous analysis of CLP-1 cells in bone marrow where

only a fraction of these cells express hCD25 (Martin et al.,

2003). Thus, blood-derived Lin�hCD25+B220� cells dis-

played a surface phenotype somewhat similar to CLP-1

cells, but differing with respect to expression of Flt3 and,

markedly, by expression of Thy-1.1, suggesting that these

cells may constitute an adult counterpart of previously de-

scribed c-kitloThy-1+ T cell progenitors from fetal blood

(Rodewald et al., 1994). In fact, these precursors in fetal

blood were likewise found to express Ptcra (Bruno et al.,

1995).

Developmental Potential of Lin�hCD25+ Cells

In order to assess the developmental potential of hCD25+

cells from peripheral blood, we employed OP9-GFP and

OP9-DL1 stromal cell cocultures (Schmitt and Zuniga-

Pflucker, 2002). After 18 days of coculture on OP9-DL1

cells, CD4+CD8+ T cell progeny could be detected in

cultures of hCD25+c-kitloB220� cells, whereas no T cell

progeny was found after coculture of hCD25+B220+ cells

(Figure 2A). Coculture of hCD25+c-kitloB220� cells with

OP9-GFP cells showed that these cells also contained

some NK and B cell potential (Figure 2A). No T cell devel-

opment was observed in these cultures, as evident by the

absence of Thy-1.1+ cells, suggesting that T cell develop-

ment from these precursors is Notch dependent

(Figure 2A). Coculture of hCD25+B220+ cells on OP9-

GFP cells again did not result in any detectable progeny

(data not shown). In order to quantitate T, B, and NK line-

age potential of blood-derived hCD25+c-kitloB220� cells
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Figure 1. Circulating Lin�hCD25+ Precursors

(A) Lineage-depleted BM and blood cells from hCD25 transgenic and nontransgenic mice were stained for lineage markers, hCD25, c-kit, and B220.

The lower panels show the expression of c-kit and B220 of electronically gated Lin�hCD25+ cells. Numbers in FACS plots indicate percentages of

cells within gates or quadrants.

(B) Expression of pre-TCRa in circulating Lin�hCD25+ cells. RT-PCR was performed on 250 CTP cells. The same amount of cDNA from hCD25+ DN3

cells and DN3 cells from Ptcra�/�mice was used as positive and negative controls, respectively. One representative out of two independent exper-

iments is shown.

(C) Expression of surface markers on different Lin�hCD25+ populations. BM CLP-1 (Lin�hCD25+c-kit+B220�) and CLP-2 (Lin�hCD25+c-kit�/loB220+)

cells, blood Lin�hCD25+B220+ cells (‘‘B220+’’), and CTP (Lin�hCD25+B220�) and thymic hCD25+ DN1 (Lin�CD25�CD44hihCD25+) cells were stained

for c-kit, IL-7Ra, Flt3, Sca-1, CD44, and Thy-1.1. Histograms show expression of the respective surface markers (blue histograms) or unstained con-

trols (red histograms) of electronically gated populations as indicated above. One representative out of two independent experiments is shown.
and BM-derived CLP-2 cells, we sorted different numbers

of precursor cells onto OP9-DL1 and OP9-GFP cell-con-

taining cultures and determined the frequency of line-
I

age-positive outgrowth. This analysis revealed that the

potential of hCD25+c-kitloB220� cells to generate T cells

was much higher than the potential to generate B or NK
mmunity 26, 105–116, January 2007 ª2007 Elsevier Inc. 107
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Figure 2. Developmental Potential of Circulating Lin�hCD25+ Cells

(A) Sorted Lin�hCD25+B220� CTP and Lin�hCD25+B220+ cells were cocultured on OP9-DL1 or OP9-GFP cells for 18 days. Cells were stained for

CD4, CD8, CD19, NK1.1, and Thy-1.1, and individual wells were analyzed by FACS. Blue histograms represent specific staining, red histograms rep-

resent unstained controls. 800 CD19+ (center) and 550 NK1.1+ (left) cells were recovered from starting cultures of 200 CTP. One representative out of

three independent experiments is shown.

(B) Limiting dilution analysis of T, B, and NK potential of Lin�hCD25+B220� cells (CTP) from peripheral blood. 1, 5, or 40 cells were directly sorted onto

OP9-DL1 or OP9-GFP cells and analyzed by FACS after 18 days. Wells containing >50 (B and NK potential) or >100 (T potential) lineage-positive cells

were scored positive.

(C) Analysis of myeloid potential of CTP cells. 500 CTP, BM-derived LSK, CLP-1, and CLP-2 cells were cultured in methylcellulose containing SCF,

IL-3, IL-6, and Erythropoietin and colonies were counted microscopically. Data are shown as mean ± SEM (n = 4).

(D) 1000 sorted CTP or 50 Lin�hCD25+B220+ cells (CD45.1) were injected intravenously into irradiated Rag2�/�Il2rg�/� recipients and spleens were

analyzed 5 weeks after transfer by flow cytometry for expression of TCRb, NK1.1, and CD19. One representative out of two independent experiments

with 2 mice per group is shown.
cells (Figure 2B). Approximately 1 in 11 cells was able to

give rise to T cells, whereas B or NK potential amounted

to 1 in 390 or 1 in 330, respectively. In contrast, BM-
108 Immunity 26, 105–116, January 2007 ª2007 Elsevier Inc.
derived CLP-2 cells had similar T and B cell potential

(1 in 14 and 1 in 12, respectively), but lower NK potential

(1 in 63) (Krueger et al., 2006). The relatively low NK lineage
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potential in both assays might have been due to subopti-

mal conditions, i.e., assays were performed in the ab-

sence of IL-15. At concentrations of 200 cells per well

(Figure 2A), we did not detect any wells containing cells

of both lineages in the analysis of B and NK lineage poten-

tial on OP9-GFP cells. Thus, whereas lineage potential

analysis of CLP-2 cells revealed a similar frequency of B

and T lineage precursors (indicating that this assay was

sufficiently sensitive to detect B lineage potential), the fre-

quency of T cell precursors among hCD25+c-kitloB220�

peripheral blood cells was much higher than that of B

cell precursors. Therefore, we termed this population of

cells ‘‘circulating T cell progenitors’’ (CTP).

Expression of the hCD25 transgene regulated by Ptcra

promoter and enhancer elements is indicative of lymphoid

commitment (Gounari et al., 2002; Martin et al., 2003).

However, in order to formally test for myeloid potential,

we performed colony-forming assays with methylcellu-

lose cultures (Figure 2C). Whereas BM-derived LSK cells

showed robust myeloid potential, no colonies were

formed in cultures starting with BM-derived CLP-1,

CLP-2 cells, or CTPs. In order to test the developmental

potential of CTPs in vivo, we injected hCD25+B220+

and hCD25+c-kitloB220� cells (CD45.1) into irradiated

Rag2�/�Il2rg�/� recipients (CD45.2). 5 weeks after trans-

fer, we analyzed for donor-derived cells in the spleen.

No donor-derived cells could be detected after transfer

of hCD25+B220+ cells. However, we could not conclude

from these experiments that hCD25+B220+ cells lack

any precursor potential, because only rather limited num-

bers, which may have been too limited for a meaningful

characterization of this population, could be isolated.

Upon transfer of CTPs, we detected donor-derived T

and NK cells, but no B cells (Figure 2D), in line with the

results obtained in in vitro culture. A fraction of donor-

derived cells were negative for all markers tested. These

could constitute T cells of the gd lineage. After 5 weeks,

no donor-derived T cells could be detected in the thymus,

suggesting a single wave of T cell development originating

from CTPs, similar to what has been described previously

for BM-derived CLP-2 cells (Martin et al., 2003).

Developmental Progression and Expansion of CTP

During the course of intrathymic differentiation, T cell pre-

cursors undergo extensive proliferation. In order to test

whether CTPs have the potential to proliferate and thus

represent potent T cell progenitors, we analyzed the

expansion of CTP-derived cells in OP9-DL1 cocultures

in comparison to blood-derived LSK cells, which have

been suggested to constitute a source of T cell progeni-

tors (Schwarz and Bhandoola, 2004). Both progenitor

populations underwent proliferation during a culture pe-

riod of 14 days, resulting in an approximately 1000-fold

expansion (Figure 3A). Of note, the kinetics of expansion

differed between LSK cells and CTPs: whereas LSK cell-

derived cultures showed only moderate expansion during

the first 4 days of cultures, CTPs expanded almost 100-

fold during this period of time, which may be due to the

differences in IL-7Ra expression and, thus, due to a faster
response to IL-7 present in the cultures. To analyze

whether this difference was reflected by differences in

developmental progression, we analyzed the surface

Figure 3. Developmental Progression and Expansion of CTP

(A) 100 blood-derived LSK cells and 100 CTP were sorted and cocul-

tured on OP9-DL1 cells. Cell numbers were assessed by FACS. Data

are shown as mean ± SEM (n = 4).

(B) 100 blood-derived LSK cells and 100 CTP were cocultured on OP9-

DL1 cells. After 4, 7, and 11 days, cells were analyzed for the expres-

sion of CD4 and CD8 (bottom) and electronically gated CD4�CD8�DN

cells for the expression of CD44 and CD25 (top). One representative

out of two independent experiments is shown.
Immunity 26, 105–116, January 2007 ª2007 Elsevier Inc. 109
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Figure 4. CTP Express Thymus Homing

Markers and Home to the Thymus

(A) BM-derived CLP-1 and CLP-2 cells, CTP

(identified as described in Figure 1), and thymic

ETP (hCD25+CD44+c-kithiCD25�) were stained

with P-selectin-Ig fusion proteins in the pres-

ence (blue histograms) and absence (red histo-

grams) of free Ca2+.

(B) BM-derived CLP-1 and CLP-2 cells, CTP,

and thymic ETP were stained with CCR9 anti-

bodies (blue histograms). Red histograms rep-

resent staining with an isototype control. One

representative out of three independent exper-

iments is shown.

(C) 1.5 3 103 CTP or LSK cells from blood

(CD45.1+CD45.2�) were injected intravenously

into sublethally irradiated (FVB 3 C57BL/6)F1

mice (CD45.1+CD45.2+). Thymi were analyzed

2 weeks after transfer by flow cytometry for ex-

pression of CD45.1, CD45.2, CD4, and CD8.

Numbers in FACS plots indicate percentages

of cells within gates or quadrants.
phenotype of LSK cell and CTP-derived cultures at vari-

ous time points (Figure 3B). After 4 days, most LSK-de-

rived cells displayed a CD44+CD25� DN1 phenotype

that predominantly reached the CD44�CD25+ DN3 stage

after 11 days. No DP cells were detected during this cul-

ture period. In contrast, CTP-derived cultures contained

a high proportion of DP cells already after 4 days of cul-

tures, with the remaining DN cells mainly being of the

DN3 and CD44�CD25� DN4 phenotypes. These results

indicate that the accelerated initial expansion of CTPs cor-

relates with more rapid differentiation when compared to

blood-derived LSK cells.

CTP Express Thymic Homing Molecules and Home

to the Thymus

The signals that mediate thymus homing of circulating

progenitors are still largely unknown. However, there is ev-

idence that the CCL25-CCR9 chemokine receptor system

and P-selectin-PSGL-1 interactions are involved in thy-

mus homing (Rossi et al., 2005; Scimone et al., 2006;

Uehara et al., 2002). Therefore, we addressed the ques-

tion whether CTPs expressed P-selectin ligands and

CCR9 on their surface. BM-derived CLP-1 and CLP-2,

CTPs, and thymic hCD25+CD44+c-kithiCD25� ETP were
110 Immunity 26, 105–116, January 2007 ª2007 Elsevier Inc.
stained with P-selectin-Ig fusion proteins in the presence

and absence of calcium. Calcium-dependent binding

was detected on all populations, indicating that CLP-1,

CLP-2, and CTP cells express similar amounts of P-selec-

tin ligands (Figure 4A). ETP displayed heterogeneous ex-

pression of P-selectin ligands, consistent with previously

published results (Scimone et al., 2006). CTP exhibited

CCR9 surface expression to a similar extent as CLP-2

cells, whereas CLP-1 cells expressed somewhat lower

amounts of CCR9 (Figure 4B). Expression of CCR9 on

ETPs was heterogeneous, which is consistent with data

from previous studies and the implication that loss of

CCR9 expression on ETPs correlates with progressive dif-

ferentiation (Benz and Bleul, 2005; Scimone et al., 2006).

These data indicate that CTPs have a similar pattern of

homing receptors as CLP-2 cells that efficiently home to

the thymus (Martin et al., 2003; Scimone et al., 2006).

Because of the limited number of CTPs, only a few

thymic homing experiments were carried out after intrave-

nous injection of CTPs or LSK cells from blood. Analysis of

donor-derived cells was performed at 2 weeks after trans-

fer. As shown in Figure 4C, donor-derived thymocytes at

this stage mostly exhibited the CD4+CD8+ DP phenotype,

with LSK cells producing 7 times more DP cells when
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compared to CTPs. This confirms previous results with

CTPs from fetal blood (Rodewald et al., 1994), but leaves

open the question whether the difference in LSK and CTP-

derived DP cells reflects differences in thymic homing or

differences in the kinetics of generating DP thymocytes.

CTP Are Present in Blood of Foxn1nu/nu Mice

T cell precursors have been proposed to emigrate from

the thymus (Lambolez et al., 2006). Because the expres-

sion of thymus homing markers does not rule out the pos-

sibility that CTPs might originate in the thymus rather than

the BM, we tested this possibility by generating athymic

hCD25 transgenic Foxn1nu/nu mice and analyzing line-

age-negative hCD25+ cells in both BM and peripheral

blood (Figure 5). FACS analysis revealed that the fre-

quency of Lin�hCD25+ cells in BM and peripheral blood

of Foxn1nu/nu mice was very similar to that of wild-type

(wt) littermates (Figure 5A). In addition, the ratio of re-

porter-positive B220+ cells and CTPs was virtually the

same in Foxn1nu/nu mice when compared to wt littermates,

and CTPs from Foxn1nu/nu mice did express Thy-1.1. In or-

der to functionally analyze CTPs from Foxn1nu/nu mice, we

assessed their developmental potential in OP9-DL1 co-

cultures. As shown in Figure 5B, Foxn1nu/nu mouse-

derived CTPs were able to generate DP cells to a similar

extent as their wt-derived counterparts. Foxn1nu/nu-de-

rived CTP also displayed similar kinetics of developmental

progression as their wt counterparts (Figure 5C). These re-

sults indicate that CTPs are not derived from the thymus.

CTP in the Absence of Notch-Induced Transcription

As shown in Figure 2, CTPs display a clear bias toward the

T lineage in terms of developmental potential. Notch sig-

naling plays a major role in T lineage commitment, and

we have shown in Figure 2A that CTPs are dependent

on Notch signals to further differentiate into T cells. How-

ever, it was not clear whether the observed T cell bias

depended on Notch-dependent transcription. This was

analyzed by adoptive transfer experiments of lineage-

negative BM cells from hCD25 transgenic mice that

were retrovirally transduced to express either a domi-

nant-negative form of the coactivator mastermind-like

fused to eGFP (DN-MAML) or eGFP alone (MigR1). 6 to

8 weeks after transfer, BM, peripheral blood, and thymus

from recipient mice were analyzed by FACS, and the fre-

quency of eGFP-expressing cells in different populations

was determined. eGFP expression was detectable at sim-

ilar amounts in all populations of control-transduced mice

(Figure 6A, top; Figure 6C, black bars). DN-MAML-trans-

duced cells were completely absent among thymic DN3

cells and almost completely absent among DN2 cells, in-

dicating the functionality of the construct used. Interest-

ingly, the frequency of DN-MAML-transduced ETP cells

was only reduced by 80%, suggesting that this population

contained precursors that did not require Notch-depen-

dent transcription (Figure 6A, bottom; Figure 6C, red

bars). Although we detected more Thy-1.1� cells among

the reporter-positive Lin�B220�c-kitlo cells in the adoptive

transfer experiment when compared to the direct ex vivo
analysis (irrespective of whether cells were mock-

transduced or transduced with DN-MAML) (Figure 1C),

the frequency of eGFP+Thy-1.1+ CTP in DN-MAML-

transduced cells was identical to control-transduced cells

(Figure 6B), indicating that CTPs do not require Notch-

dependent transcription.

DISCUSSION

The identity of thymus-colonizing T cell progenitors in the

adult mouse remains largely elusive, although a number of

different candidate populations have been described. By

using a hCD25 reporter gene under control of Ptcra regu-

latory elements, our laboratory had previously identified

a Lin�c-kit�/loB220+ common lymphoid progenitor

‘‘CLP-2’’ in BM, which efficiently enters the thymus upon

intravenous transfer (Martin et al., 2003; Scimone et al.,

2006) and progresses developmentally along the T lineage

in vitro with kinetics similar to ETPs (Krueger et al., 2006).

In the adult organism, T cell progenitors most likely enter

the blood prior to thymic colonization. We therefore

searched for reporter-positive cells in blood. In fact,

such cells can be found in blood, but their phenotype dif-

fers from reporter-positive cells in BM in that the majority

is B220� and expresses low amounts of c-kit and IL-7Ra

as well as high amounts of Thy-1.1. The few reporter-pos-

itive B220-positive cells from blood differ phenotypically

from BM-derived B220-positive CLP-2 cells in that the for-

mer, but not the latter, lack expression of IL-7Ra and are

heterogeneous for expression of the Thy-1.1 marker.

These cells could not be functionally analyzed, i.e., no

progeny was detected when these cells were injected in-

travenously or cultured on OP9-DL1 feeders. However, we

cannot exclude that BM-derived CLP-2 circulate in blood

in numbers that are below our limits of detection. The

B220� cells produced T cells when injected intravenously

and produced CD4+CD8+ DP thymocytes in culture and

in vivo. The estimated frequency of these cells in the circu-

lation of approximately 330 per ml of blood is similar to

that reported for LSK cells (Schwarz and Bhandoola,

2004). In addition, we observed a similar capacity of

CTP and LSK cells to undergo a proliferative burst in vitro.

Considering that a thymus may contain 100–300 progen-

itor niches of which 2% to 3% are replenished per day

(Donskoy and Goldschneider, 1992; Spangrude and Scol-

lay, 1990) and considering that CTPs have the potential of

extensive expansion, it is well conceivable that these cells

alone could be capable of generating all T lineage cells.

This would also be compatible with the finding that

CTPs express CCR9 and PSGL-1, which are critical for

homing of progenitors to the thymus (Rossi et al., 2005;

Scimone et al., 2006; Uehara et al., 2002). Subfractiona-

tion of the thymic DN1 population according to expression

of c-kit and HSA led to the identification of five DN1 sub-

sets, of which DN1a and DN1b correspond to ETPs (Porritt

et al., 2004). Thy-1+ cells were found within the heteroge-

neous DN1c, d, and e subfractions. However, in contrast

to CTPs, these populations did not exhibit a proliferative

burst capacity, which is characteristic for ETPs. When
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Figure 5. CTP Are Present in Peripheral Blood of Foxn1nu/nu Mice

(A) CTP from hCD25 transgenic Foxn1nu/nu mice and hCD25 transgenic Foxn1wt littermates were analyzed by FACS. Cells were stained with anti-

bodies against lineage markers, hCD25, c-kit, B220, and Thy-1.1 to reveal the frequency of Lin�hCD25+ CTP. Numbers in FACS plots indicate per-

centages of cells within gates or quadrants. One representative out of four independent experiments is shown.

(B) 200 CTP from hCD25 transgenic Foxn1nu/nu mice and hCD25 transgenic Foxn1wt littermates were sorted and cocultured on OP9-DL1 cells. After

14 days, cells were analyzed for the expression of CD4 and CD8. Numbers in FACS plots indicate percentages of cells within quadrants. One rep-

resentative out of three independent experiments is shown.

(C) 100 CTP from hCD25 transgenic Foxn1nu/nu mice were sorted and cocultured on OP9-DL1 cells. After 4, 7, and 11 days, cells were analyzed for the

expression of CD4 and CD8 (bottom) and electronically gated CD4�CD8�DN cells for the expression of CD44 and CD25 (top). One representative out

of two independent experiments is shown.
112 Immunity 26, 105–116, January 2007 ª2007 Elsevier Inc.
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Figure 6. CTP Do Not Require Notch-Induced Transcription

Sorted lineage-negative cells from hCD25 transgenic BM were infected with DN-MAML or MigR1 control retrovirus and transferred into irradiated

hosts. BM, peripheral blood, and thymus were analyzed by FACS 6–10 weeks after transfer. Numbers in histograms indicate the frequency of

eGFP+ cells.

(A) eGFP expression in different populations of one representative experiment of six mice per group.

(B) Analysis of Thy-1.1 expression in DN-MAML or MigR1-transduced blood-derived Lin�B220�c-kitlo cells. Numbers in FACS plots indicate percent-

ages of cells within gates or quadrants. Blue gates and histograms indicate eGFP+ cells; red histograms indicate eGFP� cells.

(C) Statistical analysis of four independent experiments. The percentage of eGFP-positive cells was normalized to the percentage of eGFP-positive

cells of total BM for each independent experiment. Data are shown as mean ± SEM.
Immunity 26, 105–116, January 2007 ª2007 Elsevier Inc. 113
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analyzing reporter-positive DN1 cells, which are enriched

in the DN1a and b ETP populations (Krueger et al., 2006),

we found low Thy-1.1 expression, which appears to be in

contrast to the original characterization of DN1a and

b cells. This may have been due to differences in mouse

strains expressing different Thy-1 alleles as has been de-

scribed for HSC (Spangrude and Brooks, 1992).

Interestingly, intravenous injection did not yield any B

cells, and the frequency of B cell precursors in this subset

in OP9 cultures was much lower than the frequency of T

cell precursors. Thus, we termed these cells circulating

T cell progenitors (CTPs). In fact, given the absolute num-

ber of CTPs in the bloodstream, the degree of B lineage

potential detected in vitro can probably be considered

negligible. Although we were able to detect NK potential

in vivo, the in vitro assay revealed a very low NK precursor

frequency, similar to that for B cells. This may have been

due to the fact that the in vitro assay was performed with-

out addition of IL-15, i.e., under conditions that are subop-

timal for NK cell differentiation. The absence of B lineage

potential in CTPs is in stark contrast to LSK cells and other

extrathymic subsets with T cell progenitor potential such

as MPPs, ELPs, and LSPs as well as from CLPs and

CLP-2, although a certain T lineage bias has also been de-

scribed for LSPs (Perry et al., 2004). In contrast, different

circulating fetal thymic progenitors have been demon-

strated to be T lineage restricted prior to thymic coloniza-

tion (Ikawa et al., 2004; Masuda et al., 2005; Rodewald

et al., 1994). Notably, one population (initially character-

ized by Rodewald et al.) also phenotypically resembles

the adult CTPs population by being c-kitloThy-1+ and ex-

pressing pre-TCRa mRNA (Bruno et al., 1995; Rodewald

et al., 1994). In fact, these cells, like their equivalents in

adult blood, could migrate into and differentiate in the thy-

mus. Thus, thymus-seeding CTPs are apparently present

in both fetal and adult blood. Our isolation of adult CTPs

was based on expression of a hCD25 reporter gene driven

by regulatory elements of Ptcra. Isolation of CTPs from wt

mice could be attempted from a Lin�Thy-1.1+Sca-1+c-

kitloIL-7Ralo population, which includes all Lin�B220�Flt3�

reporter-positive cells in hCD25 transgenic mice.

Conversely, only about 4% of these Lin�Thy-1.1+Sca-

1+c-kitloIL-7Ralo cells express hCD25, raising the possibil-

ity that only a fraction of CTPs express the reporter, much

like only a fraction of CLP-1 cells in BM is reporter positive

(Martin et al., 2003).

Signaling through Notch receptors has been suggested

to mediate T versus B lineage decisions. Thus, constitu-

tive Notch signaling leads to extrathymic T cell develop-

ment, whereas abrogation of Notch signaling results in ac-

cumulation of B cells in the thymus (Koch et al., 2001;

Maillard et al., 2004; Pui et al., 1999; Radtke et al., 1999;

Wilson et al., 2001). Inhibition of Notch signaling by a dom-

inant-negative mutant of the Notch coactivator Master-

mind-like did not reduce the frequency of CTPs in periph-

eral blood and did not abrogate Thy-1 expression on those

cells, which correlates with T lineage commitment. In con-

trast, further development along the T lineage was clearly

Notch dependent, because DP thymocytes could be gen-
114 Immunity 26, 105–116, January 2007 ª2007 Elsevier Inc.
erated only on Notch ligand-expressing OP9-DL1 feeder

cells, but not on OP9-GFP control feeder cells. These

data suggest that terminal differentiation of CTPs into T

lineage cells was Notch dependent, whereas early T line-

age commitment was less dependent on Notch. This is

consistent with a recent study postulating that fetal thymic

precursors are T lineage restricted prior to receiving intra-

thymic Notch signals (Harman et al., 2005). Another study

that used mice deficient in the Notch target gene Hes1 and

showing that fetal thymic precursors, which are character-

ized by the expression of paired-immunoglobulin like

receptors, are independent of this transcription factor

could further support the idea of Notch-independent early

T lineage commitment (Masuda et al., 2005). Thus, our

results and results by others are consistent with a Notch-

independent early T lineage commitment step, which is

further enforced by intrathymic Notch signals. This indi-

cates that, at least for certain precursors such as CTPs,

adult T lineage commitment parallels fetal T cell develop-

ment. However, additional studies are required to address

molecular mechanisms of Notch-independent T lineage

commitment.

EXPERIMENTAL PROCEDURES

Mice

hCD25 transgenic mice (FVB, Thy-1.1, CD45.1) have been described

(Gounari et al., 2002; Martin et al., 2003). C57BL/6 Rag2�/�Il2rg�/�

and NCR-Foxn1<nu> mice were purchased from Taconic Farms

(Germantown, NY). NCR-Foxn1<nu> were crossed with hCD25 trans-

genic mice for two generations to generate hCD25 transgenic

Foxn1nu/nu mice. hCD25 transgenic Foxn1nu/nu mice homozygous for

the Thy-1.1 allele were used in experiments. (FVB 3 C57BL/6)F1

mice (CD45.1+CD45.2+) were generated by crossing hCD25 trans-

genic mice with C57BL/6 mice (CD45.2) for one generation. All mice

were maintained in the specific-pathogen-free animal facilities of the

Dana-Farber Cancer Institute, and all animal procedures were done

in compliance with the guidelines of the DFCI Animal Resources Facil-

ity, which operates under regulatory requirements of the US Depart-

ment of Agriculture and Association for Assessment and Accreditation

of Laboratory Animal Care.

Cell Lines and Cell Preparations

OP9 bone marrow stromal cells expressing the Notch ligand delta-like

ligand 1 (OP9-DL1) and OP9-control cells (OP9-GFP) were provided by

J.C. Zúñiga-Pflücker (University of Toronto, Toronto, Canada) and

maintained in aMEM supplemented with 55 mM 2-mercaptoethanol,

10 mM HEPES (pH 7.5), 1 mM sodium pyruvate, 100 U/ml penicillin,

0.1 mg/ml streptomycin, 50 mg/ml gentamycine, and 20% heat-inacti-

vated fetal bovine serum (FBS) and passaged as described (Schmitt

and Zuniga-Pflucker, 2002). Blood was obtained from anesthetized

mice through the retro-orbital venous sinus or cardiac puncture with

identical results. Between 0.6 and 1 ml of blood were obtained per

mouse, and coagulation was prevented through addition of 20 U/mL

heparin (Abbott Labs, IL). Red blood cells were removed by centrifuga-

tion over Ficoll-Paque (Amersham). Typically, blood from 20–30 mice

was used, allowing the isolation of approximately 500 Lin�hCD25+

cells by cell sorting. BM cells and thymocytes were obtained as de-

scribed previously (Martin et al., 2003).

Flow Cytometry and Cell Sorting

Monoclonal antibodies specific for CD4 (RM4-5, GK1.5), CD8 (53-6.7),

CD25 (PC61), CD44 (IM7), TCRb (H57-597), TCRgd (GL3), Gr-1

(RB6-8C5), erythroid cell marker (Ter-119), CD19 (1D3), CD11c
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(HL3), CD11b (M1/70), pan-NK (DX5), NK1.1 (PK136), CD45.1 (A20),

B220 (RA3-6B2), c-kit (2B8), Sca-1 (E13-161.7), Thy-1.1 (CD90.1,

OX-7), and human CD25 (M-A251) were purchased from BD Biosci-

ences and were used as biotin, fluorescein isothiocyanate (FITC), phy-

coerythrin (PE), peridinin chlorophyll protein (PerCP), PerCP-Cy5.5,

PE-Cy7, allophycocyanin (APC), or APC-Cy7 conjugates. Monoclonal

antibodies specific for Flt3 (A2F10) and IL-7Ra (A7R34) were pur-

chased from eBioscience. Anti-CCR9 (rat IgM) and P-selectin-Ig

were provided by U. von Andrian. FITC-conjugated anti-human Fc

was from Caltag. PE-Texas red or PerCP conjugated streptavidin

was used to reveal staining with biotinylated mAb. Four-color flow cy-

tometry was performed on a FACSCalibur (BD, San Jose, CA). Six-

color and seven-color flow cytometry was performed on a FACSAria

(BD). Data were analyzed with FlowJo software (Treestar). For analysis,

dead cells and debris were excluded by appropriate gating of forward

and sideward scatter. Lineage-negative cells were isolated from total

thymocytes by staining cell suspensions with a biotinylated lineage-

specific antibody cocktail, followed by incubation with streptavidin-

conjugated magnetic beads (Dynal) and magnetic bead depletion of

mature lineages. Enriched cell suspensions were surface stained

with streptavidin-PE-Texas red or streptavidin-PerCP. Cells were

sorted with a FACSAria (BD). All populations were resorted; sorted

cells were of R99% purity, as determined by postsort analysis.

OP9 Cocultures

OP9 coculture assays were essentially performed as described

(Schmitt and Zuniga-Pflucker, 2002). Precursors were plated at an ini-

tial density of 1–5 3 102 cells onto subconfluent OP9-GFP or OP9-DL1

monolayers at 5 3 104 cells/well in a 24-well plate. All cocultures were

performed in the presence of 1 ng/ml IL-7 and 5 ng/ml Flt3 ligand

(Flt3L) for OP9-DL1 T cell differentiation assays and 5 ng/ml IL-7 and

5 ng/ml Flt3L for OP9-GFP cocultures. In certain experiments, Flt3L

was replaced by 100 ng/ml SCF as indicated. At day 4 of differentia-

tion, the culture medium was exchanged. Contaminating OP9 cells

were eliminated by filtering the harvested cocultured cells through

a 70 mm cell strainer prior to flow cytometric analysis. For cultures of

less than 102 precursors, cells were plated directly onto 96-well plates

containing 104 g-irradiated OP9-GFP or OP9-DL1 cells (15 Gy) by

a FACSAria cell sorter.

Methylcellulose Cultures

To determine erythroid and myeloid potential, cells were cultured in

Methocult M3434 (StemCell Technologies, Vancouver, Canada) con-

taining rmSCF, rmIL-3, rhIL-6, and rhErythropoietin according to the

manufacturer’s instructions. Plates were inspected and numbers of

colonies were determined 8–10 days after the start of cultures.

Retroviral Infections

The retroviral construct encoding a truncated N-terminal fragment of

mastermind-like 1 fused to eGFP (DN-MAML) and the control vector

MigR1 were provided by J.C. Aster (Brigham and Women’s Hospital,

Harvard Medical School, Boston, MA) and have been described

(Maillard et al., 2004; Weng et al., 2003). Retroviral supernatants

were generated by transient transfections of 293T cells with these

retroviral constructs and appropriate packaging plasmids (Ory et al.,

1996). Lineage-negative BM cells from hCD25 transgenic mice were

retrovirally transduced as described (Aifantis et al., 2002) and intra-

venously injected into irradiated (8 Gy) syngeneic hosts. The resultant

chimeric mice were analyzed after 6–10 weeks.

Adoptive Transfers

50 to 1500 sorted lineage-negative hCD25+ cells from peripheral blood

were intravenously injected into irradiated Rag2�/�Il2rg�/� (5 Gy) mice

or (FVB 3 C57BL/6)F1 (6.5 Gy). Mice were analyzed 2 or 5 weeks after

transfer by flow cytometry. Donor cells were distinguished from host

cells by expression of CD45.1 and absence of expression of CD45.2.
RT-PCR

Cells were sorted and mRNA was extracted by means of the High Pure

total mRNA isolation kit (Roche, Basel, Switzerland). cDNA was pre-

pared with Superscript II RT kit (Invitrogen) and PCR was performed

according to standard procedures. Oligonucleotide primer sequences

were: hCD25-50, 50-TGAGAACTTCAGGCTCCTGGGC-30; hCD25-30,

50-TGGCTTTGAATGTGGCGTGTGG-30; pTa-50, 50-GGCACCCCCTTT

CCGTCTCT-30; pTa-30, 50-GTCCAAATTCTGTGGGTGGGA-30; HPRT-

50, 50-CACAGGACTAGAACACCTGC-30; HPRT-30, 50-GCTGGTGAAA

AGGACCTCT-30.

Supplemental Data

One Supplemental Figure can be found with this article online at http://

www.immunity.com/cgi/content/full/26/1/105/DC1/.
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