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Summary

Background: Nonadditivity in fitness effects from two or more
mutations, termed epistasis, can result in compensation of
deleterious mutations or negation of beneficial mutations.
Recent evidence shows the importance of epistasis in individ-
ual evolutionary pathways. However, an unresolved question
in molecular evolution is how often and how significantly
fitness effects change in alternative genetic backgrounds.
Results: To answer this question, we quantified the effects
of all single mutations and double mutations between all
positions in the IgG-binding domain of protein G (GB1). By
observing the first two steps of all possible evolutionary path-
ways using this fitness profile, wewere able to characterize the
extent and magnitude of pairwise epistasis throughout an
entire protein molecule. Furthermore, we developed a novel
approach to quantitatively determine the effects of single mu-
tations on structural stability (DDGU). This enabled determina-
tion of the importance of stability effects in functional epistasis.
Conclusions: Our results illustrate common biophysical
mechanisms for occurrences of positive and negative epis-
tasis. Our results show pervasive positive epistasis within a
conformationally dynamic network of residues. The stability
analysis shows that significant negative epistasis, which is
more common than positive epistasis, mostly occurs between
combinations of destabilizing mutations. Furthermore, we
show that although significant positive epistasis is rare,
many deleterious mutations are beneficial in at least one alter-
native mutational background. The distribution of condition-
ally beneficial mutations throughout the domain demonstrates
that the functional portion of sequence space can be signifi-
cantly expanded by epistasis.
Introduction

Epistasis, within and between genes, is thought to play an
essential role in the ability for protein sequences to evolve
through neutral drift or adaptation [1, 2]. While contingencies
in fitness limit pathways of divergence, permissive mutations
reveal ‘‘cryptically beneficial’’ substitutions [3] that increase
the number of acceptable mutations [4]. Epistasis can be ex-
plained in physical terms by investigating the biochemical ef-
fects of mutations singly and in combination [5]. Examples
include evolution of a switch in glucocorticoid receptor-ligand
specificity [6], increased hemoglobin affinity to O2 in high-alti-
tude deer mice [7], and antibiotic resistance in a b-lactamase
variant [8], which all rely on nonadditive combinations of
mutations.
*Correspondence: aolson@mednet.ucla.edu (C.A.O.), rsun@mednet.ucla.
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The importance of epistasis is evident for organisms such as
influenza that accumulate mutations at a high rate and adapt
rapidly in response to immunological and drug pressure
[9, 10]. Gong et al. demonstrated how an evolutionary pathway
in influenza nucleoprotein required permissive stabilizing mu-
tations prior to gaining certain adaptive substitutions that alone
disrupted protein structure [10]. Indeed,mostmutations desta-
bilize protein structures [11, 12], and directed evolution exper-
iments show that a large fraction of mutations are deleterious
for function [13]. It was recently shown that 63 of 168mutations
chosen from a homologous protein with the same function
were deleteriouswhen substituted alone and thus that epistatic
interactions are necessary to preserve function [14].
Although these examples show that epistasis is essential in

individual evolutionary pathways, they do not address whether
combinations of mutational fitness effects are typically epi-
static. How likely is it that a mutation has the same fitness in
two different genotypes? Historically, protein engineering ex-
periments have shown that the effects of mutations on protein
function are typically energetically additive [15–18]. Further-
more, next-generation sequencing technology has enabled
the analysis of very large numbers of mutational pairs in exper-
imental evolution which also show that fitness effects are usu-
ally additive [19, 20]. Here, we sought to determine whether
this observation of general pairwise additivity conflicts with
the apparent pervasiveness of epistasis in light of mutational
sensitivity [14]. By analyzing the first two steps of all possible
evolutionary pathways, we can determine the frequency of
pairwise energetic nonadditivity.
Such a comprehensive analysis is necessary in order to

determine how often deleterious mutations can be compen-
sated by at least one additional mutation and, likewise, how
often neutral or beneficial mutations can be negated by an
additional mutation. To do this, we characterized a compre-
hensive fitness map of single and double mutants within pro-
tein G domain B1 (GB1) that was highly correlated to binding
affinity (KA) to immunoglobulin G fragment crystallizable
(IgGFC). GB1 is well characterized structurally and is a clas-
sical model protein for folding and stability studies [21–24].
Although small, GB1 is a stable, compact, and highly soluble
proteinwith no disulfide bonds. The structure includes an a he-
lix packed against a four-stranded b sheet that are connected
by four short loops. This extensive structural and mutagenic
characterization of GB1 provided a substantial reference for
validating our fitness map.
Furthermore, we were able to use the fitness map to accu-

rately predict the effect of all nonlethal single mutations on
structural stability (DDGU). This was accomplished by identi-
fying destabilized mutational backgrounds in which the bind-
ing data reflects a change in fraction folded upon addition of
secondary mutations. Thus, our fitness map enabled us to
identify common biophysical mechanisms of both negative
and positive epistasis. For example, we show that exhaustion
of the intrinsic stability reservoir, or threshold robustness
[25–27], largely accounts for examples of significant negative
epistasis. Stabilizing substitutions, which are rare, produce
positive epistasis, although with a smaller magnitude com-
pared to combinations of destabilizing mutations. We also
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Figure 1. mRNA Display Fitness Profile Scheme

(A) ADNA library encoding all single and doublemutants in GB1was created

(see also Figure S1). mRNA display was used to profile the relative binding

efficiency of all variants. After a single generation of affinity enrichment, the

relative fitness (W) for each variant was determined from the change in

sequence frequency as identified by Illumina sequencing.

(B and C) The binding fitness (red dots) of each single mutant (B) and (C) all

high-confidence double mutants (C; see Figure S1E). The gray dots repre-

sent the contribution to W from background binding to beads, which was

determined from a control lacking IgG-FC.

(D) Thirteen clones were constructed and expressed in vitro with a 35S-

methionine label for comparison to fitness determined by the screen. Bind-

ing efficiency (see also Figure S1D) was used to estimate relative affinity (see

the Experimental Procedures). Error bars represent SD from the triplicated

screen (x axis) and from the pull-down when performed in triplicate (y axis).

(E) Correlation of Dln(KA) from the screen to Dln(KA) for ten variants reported

in the literature (see Table S3).

See also Figure S1 and Table S1.
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describe long-range positive epistasis that is pervasive within
a highly conformationally dynamic network of residues. Our
results confirm that epistasis is rare and also that many muta-
tions are detrimental to function. However, this comprehen-
sive fitness profile shows that many deleterious mutations
are compensable by at least one of the numerous possible
secondary mutations. Together, these results provide an em-
pirical, biophysical description of epistasis and resolve how
rare nonadditivity can contribute to the extensive divergence
of protein sequences as observed in nature.
Results

High-Resolution GB1 Double-Mutant Affinity Profile
We developed a cassette saturation-mutagenic approach for
assembling a library that includes all single and double muta-
tions within the 56 residue GB1 domain (excluding Met1) (Fig-
ure 1; Figure S1 and Table S1 available online). Two technical
hurdles were overcome in thus study: the ability to error cor-
rect and the ability to build a library that is focused on one or
two amino acid mutations throughout the entire 55 codon
random region. To enable sequencing error correction, we
included internal barcodes in each cassette (Figure S1A). Link-
ing of saturation-mutagenized cassettes was accomplished in
a sequence-independentmanner by using a type IIS restriction
endonuclease (BciVI) (Figure S1B). After digestion, a single,
degenerateM (A/C) overhang on 30 fragments enabled specific
ligation to a G, T, or K (G/T) overhang on 50 fragments.
The use of in vitro display technologies to analyze the effects

of individual mutations on binding function is well established
[28, 29]. Next-generation sequencing has greatly expanded
the ability to analyze mutational fitness effects quantitatively
[30]. In this study, relative binding affinity of all single and
nearly all double amino acid mutants to IgG-FC was chara-
cterized using mRNA display [31]. mRNA display is an
in vitro genetic system in which peptides are covalently linked
to the encoding mRNAs (Figure 1A) typically used to evolve
novel molecular recognition tools [31, 32]. Here, we used
deep sequencing combined with mRNA display to monitor
the evolution of GB1 mutants in real time after one generation
of affinity enrichment (Figure 1A).
By measuring the frequency of each variant before and

after enrichment (Table S2), we determined relative binding
efficiency, or fitness (Figures 1B, 1C, and S1D; see the Exper-
imental Procedures). While fitness is traditionally a population-
genetics term, protein fitness can be defined [30, 33, 34], and
here relative fraction bound is analogous to a classical defini-
tion of relative fitness (W), which is the number of progeny rela-
tive to the wild-type (WT) per generation. The conditions of this
screen, in which the concentration of IgG-FC is below theKD of
WT GB1, provided a large dynamic range in observed fitness
effects, from 100-fold below to 8-fold higher than WT fitness
(Figures 1B and 1C). Thus, our evolution experiment investi-
gates affinity-based adaptation for improved or new function.
We caution that this extremely simplified, noncompetitive
evolutionary experiment has many differences in comparison
to natural evolution and the relationship between affinity and
in vivo fitness will not be directly correlated for many proteins,
especially considering that many proteins are multifunctional.
However, there are examples in natural evolution such as viral
host switching that show a relationship between the affinity of
host-adapted receptor binding domain variants and viral infec-
tivity in cell culture [35].
Using a Poisson-based 90% confidence interval, we deter-

mined that the fitness effects of all 1,045 single mutants
were determined with high confidence and 509,693 double
mutants (95.1%of all) were characterizedwith high confidence
(Figure S1E). Importantly, the high-confidence data set in-
cludes abundant doublemutants throughout all 1,485 possible
positional pairs (Figure S1E). The single generation of affinity
enrichment was performed in triplicate, and Figure S1F shows
that the single-mutant fitness profiles are highly correlated
(R > 0.996 for all three comparisons). Thus, the binding, PCR,
Illumina adaptor ligation, and sequencing steps are highly
reproducible. Furthermore, we included a no-IgG control to



Figure 2. Affinity Profile Validation and Fitness

Maps

(A) A heatmap depicting fitness of all single mu-

tants. Residues previously determined to interact

with IgG-FC [21] are highlighted in red. The frac-

tion side-chain solvent accessibilities (closed cir-

cles, <0.1; partial circles, >0.1; open circles, >0.4)

are depicted below. Circles are connected by

straight or curved lines to delineate b strands

and the a helix, respectively.

(B and C) Average ln(W) plotted on GB1 (PDB ID:

1PGA; B) [36] and the complex between protein G

domain C2 (space filled) and IgG-FC (cartoon)

(PDB ID: 1FCC; C) [21].

(D) A heatmap depicting fitness of all single mu-

tants in the background of V54A.

(E) Comparison of the fitness profile to fitness ef-

fects in the background of V54A.

See also Figure S2.
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show that background binding does not affect fitness calcula-
tions for any variant, including mutants known to be unfolded
(Figures 1B and 1C).

We also show that W can be used to approximate relative
affinity (KA-mut / KA-wt) similar to the ‘‘shotgun scanning’’
approach [29] (see the Experimental Procedures). This was
used to facilitate validation and enable the comparison of en-
ergetic effects to fitness effects. We show that Dln(KA) values
predicted by this screen are highly correlated to those of 13
single or double mutants reconstructed and analyzed for vali-
dation by an in vitro pull-down assay (Figure 1D). Furthermore,
the Dln(KA) predicted by the screen is highly correlated to that
of an addition ten variants independently reported in the liter-
ature (Figure 1E and Table S3).

Figure 2A depicts ln(W) as a heatmap for all 19 single mu-
tants at each position. The average ln(W) values per position
are displayed on GB1 structures alone or in complex with
IgG-FC (Figures 2B and 2C). As expected, core residues are
sensitive to substitution [37], indicating severe structural
destabilization or that small changes in structure that accom-
modate core volume changes might adversely affect binding
affinity [38, 39]. Surface residues that are sensitive to mutation
correlate with alanine scanning mutagenesis [40] and clarify
relative importance for ligand recognition [21]. However, bene-
ficial and detrimental surface mutations are found throughout
the domain, thus highlighting the importance of such compre-
hensive screens for characterizing the sequence determinants
of functionality [28, 30, 41–44]. For example, alanine scanning
could not uncover the importance of position Thr25, where
acidic substitutions are highly deleterious and basic substitu-
tions are highly beneficial while Ala is neutral [40] (Figures 1E
and 2A).

The double-mutant fitness landscape is depicted as a heat-
map showing all high-confidence double mutants (up to 361)
for all 1,485 positional pairs (Figure S2A). The comprehensive
nature of this screen enables an alternative approach to inter-
pret this data by showing the fitness of all substitutions (a) in
alternative mutational backgrounds (b). For example, we
show the fitness effects of all single mutants (Wa

0) in the
background of V54A (Figures 2D and
2E). V54A alone is functionally neutral;
however, certain positions become
more sensitive to mutations, whereas
others change from deleterious to
beneficial, notably at position Gly 41 (Figure 2D; vide infra).
Furthermore, we show how the fitness of all mutations will
change in the background of highly adaptive mutations, such
as A24E, which is observed in nature (Figures S2B–S2D). In
this background, the functional test is less stringent (i.e., the
KD of A24E is closer to [IgG]), and thus the distribution of
fitness effects (DFE) [45] shifts significantly (Figures S2E–
S2G), as it would in a less stringent test of fitness (Figure S2H).

Frequency and Proximity of Epistatic Interactions
Figures 2D and 2E show that certain mutations display a
change in fitness in combination with V54A and are thus
epistatic. Various models can be used to determine whether
combinations of mutations display epistasis (ε) [19, 46, 47].
The difference between the fitness in Figure 2D and the fitness
in Figure 2A produces one measure of epistasis [ε = ln(Wa

0) 2
ln(Wa)], which is identical to the relative epistasis model
described by Kahn et al. [ε = ln(Wab) 2 ln(Wa) 2 ln(Wb)] [46].
We show that the relative model is suitable for the highly adap-
tive landscape of this experiment (Figure S3A). Here, epistasis
(ε) refers to the relative model unless stated otherwise.
We displayed ε for all observed double mutants (Figure 3A)

and the average ε for all substitutions at each pairwise posi-
tional combination (Figure 3B) as a heatmap. In addition to
the 509,693 high-confidence variants, 7,585 variants were un-
ambiguous in sign or significance in ε, resulting in character-
ization of 96.5% of all pairs. The 90% confidence interval
(see above and the Experimental Procedures) was used to
minimize epistasis resulting from very low-fitness double-mu-
tants, which could display very large fold change in observed
compared to expected fitness due to statistical noise. All 1,485
pairwise positional combinations are represented (Figure S1E),
thereby providing a comprehensive description of epistasis
throughout the entire protein molecule.
Generally, mutational pairs interact additively or nearly addi-

tively, and thus strongly epistatic pairs are rare (Figures 3C and
S3B–S3G). This observation is in agreement with two recent
large-scale analyses of epistasis [19, 20]. It is worth noting
that although only a fraction of all double mutants display



Figure 3. Pairwise Epistasis Map throughout GB1

(A) A heatmap depicting epistasis for 517,278 double mutants (96.5% of all

possible). The amino acid order is listed top to bottom and is the same left to

right. Each of the 1,485 pairs display 19 3 19 sequence variants.

(B) Average ε for all sequence combinations at each positional combination

multiplied by a factor of 3 in order to match the range of the color bar.

(C) Histogram showing extent of epistasis (increments of 0.1).

(D) 2D histogram relating ε to Cb distances in 1PGA [36].

(E) jεj > 1 as a percentage of total occurrences in each Cb distance bin.

See also Figure S3.

Figure 4. Positions Display Negative Epistasis in General Independent of

Amino Acid Combination

(A) Average ε between position 5 and all other positions in GB1 (1PGA) [36].

Distant surface residues that demonstrate negative epistasis are labeled.

(B) Binding fitness and epistasis for all 361 combinations of substitutions for

Leu5 and Asp22. Leu5 is a critical core residue that is sensitive to mutation,

whereas Asp22 is part of a helix-stabilizing N-cappingmotif near the binding

surface, where substitutions are generally well tolerated for binding func-

tion.

(C) The most significant values of negative epistasis are listed. Each pair in-

cludesmutations that are expected to destabilize the structure but alone do

not unfold the protein or significantly disrupt affinity. A Poisson-based 90%

confidence interval was used to generate an upper boundary for binding

fitness, thereby enabling a conservative estimate of epistasis.

See also Figure S4.
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jεj > 1 (w4%), there are nonetheless thousands of such
epistatic pairs (Figures S3B and S3C). We also show that epis-
tasis is similarly rare when calculated using another common
epistasis model, the product model (Figures S3E and S3F)
[19]. Importantly, due to the low frequency or small magnitude
of epistatic effects, the observed double-mutant DFE is nearly
identical to the expected distribution (Figures S3H–S3L).
Although lethal double mutants are slightly more frequent
than would be predicted based on a model without epistasis
(Figure S3H), this demonstrates the predictability of the distri-
bution of multiple mutant fitness effects in this adaptive land-
scape. We also show that observed relative epistasis in this
experiment closelymatches amodel of energetic nonadditivity
(scaled by21 / RT; Figures S3M and S3N) [18]. The differences
resulting from the nonlinear nature of the relationship between
fraction bound and affinity are numerous but relatively small
(Figure S3M). This would not be observed in a test of muta-
tional robustness for well-adapted proteins, as is depicted
by the DFE in Figure S2H.

As expected, strongly epistatic pairs tend to be close in
space, although very large negative epistasis (ε < 23) can be
long range (Figure 3D). However, most neighboring residues
do not display either formof epistasis (Figure 3E). Even consid-
ering interactions within 6 Å (Cb), only 8.1% display jεj > 1.
Thus, for many mutations, binding fitness is independent of
the background in which one appears. For positions that are
energetically coupled, double mutants might be predicted to
display either negative or positive epistasis depending on
the physicochemical nature of the two amino acid substitu-
tions. To highlight an example, the maps showing ln(W) and ε

for all 361 amino acid combinations at positions 32 and 36
are enlarged (Figures S3O and S3P). However, an interesting
observation from Figures 3A and 3B is that some positional
combinations, including long-range combinations, display
either negative or positive epistasis in general.

General Negative Epistasis throughout GB1
We wanted to determine what mechanism could explain gen-
eral patterns of epistasis independent of specific amino acid
identities. For example, core mutations, such as those at po-
sition 5 (Leu), display general negative epistasis with other
positions throughout the domain (Figures 3B and 4A). In
addition to general negative epistasis between substitutions
at position 5 and other core positions, long-distance negative
epistasis occurs between position 5 and surface positions
within the stable b3-b4 loop [22, 48], as well as substitutions
for Asp22, a helical capping residue (Figure 4A). Figure 4B
highlights ln(W) and ε for all 361 amino acid combinations
within positions 5 and 22. The threshold robustness model
[25–27] (Figures S4A–S4C) may explain the pervasive nega-
tive epistasis exhibited between these and similar residues.
Most proteins are marginally stable [11, 12] yet withstand de-
stabilizing mutations that do not significantly decrease the
fraction of folded protein. However, when two such destabi-
lizing substitutions combine, the stability ‘‘reservoir’’ can be
exhausted thus resulting in a decrease in the fraction of



Figure 5. Relationship between Structural Stability Effects and Epistasis

(A) Comparison of ln(W) to free energy of unfolding relative to theWT (DDGU)

reported in the literature.

(B) The predicted thermodynamic stability of 82 single mutants compared to

DDGU values reported in the literature (see Table S4).DDGU predicted by the

screen are median values identified by estimating the change in fraction of

unfolded protein in five destabilizedmutant backgrounds. This analysis was

limited to variants displayingW > 0.24 (709 of 1,045), as lower fitness values

did not produce sufficient dynamic range to measure decreased structural

stability.

(C) Histograms of DDGU,a + DDGU,b showing how the distribution of pre-

dicted stability changes as the magnitude of negative epistasis increases.

The percentage of each epistasis category resulting from combinations of

significantly destabilized mutations (left of the arrow) is listed.

See also Figure S5 and Table S4.
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native protein and a concomitant loss in function (Figures
S4A–S4C). Thus, additive stability effects produce nonaddi-
tive functional effects. This model is consistent with the
observation that large values of negative epistasis can be
long range (Figures 3D and 3E). The threshold robustness
model is also consistent with the observation that the combi-
nation of buried polar residues at position 5 and substitutions
at 22 that abolish a helical capping motif display some of
the largest values of negative epistasis observed (Figures
4C and S4D).

Structural Stability and Functional Epistasis
We further examined to what extent structural effects could
account for examples of either negative or positive epistasis.
To do this, we developed a method to estimate change in
free energy of unfolding (DDGU) for single mutants from the
binding data. We found that ln(W) is uncorrelated to DDGU re-
ported in the literature as expected for destabilizing mutations
that remain folded at the screen temperature (Figures 5A and
S4A and Table S4). However, for partially unfolded mutants,
addition of a second mutation will increase the fraction
unfolded (fU) if destabilizing and, conversely, will increase the
native fraction (fN) if stabilizing. As noted above, the threshold
robustness effect can be explained as additive stability effects
that produce nonadditive functional effects (Figure S4). We
hypothesized that certain mutants might be identified that
satisfy the condition Wa = fN,a, and if these backgrounds are
generally noninteracting other than through stability effects,
we can estimate fN,ab = Wab / Wb. The predicted fN,ab can
then be used to estimate structural stability of single mutants
(b) by DDGU = 2RT 3 ln(fU,ab / fN,ab) + RT 3 ln(fU,a / fN,a).
The large number of GB1 variants characterized in the liter-

ature provided a substantial reference to identify stability
effects from the binding data. An automated analysis was
performed that identified multiple background mutations (a)
that generated DDGU values that correlate well with the values
found in the literature. These backgrounds therefore satisfy
the conditions stated above. This method is limited however
to mutants (b) with sufficient fitness to produce a dynamic
range in observed fitness (ab; those with Wb < 0.24 correlated
poorly). An average of the values generated from five reference
backgrounds (Y3A, Y3C, L5N, L5S, and F30N) was highly
correlated to 82 DDGU values published in the literature with
a slope of 0.94 and a correlation coefficient (R) of 0.907. We
note that this correlation is very good considering variability
in experimental DDGU calculations illustrated by Potapov
et al. [49]. They show that the correlation (R) between 406 pairs
of DDGU values reported for identical protein variants is 0.86.
In order to estimate the importance of the threshold robust-

ness effect in shaping the GB1 double-mutant fitness land-
scape, we estimated the structural stability of double mutants
by summingDDGU and determined the number of occurrences
of significant negative epistasis for different predicted double
mutant stabilities (Figure 5C). For some combinations, DDGU

will not be additive (Figures S5A–S5C and Table S5), which
can mitigate the threshold robustness effect. However, as
negative epistasis becomes more significant, double mutants
predicted to be very unstable account for most occurrences
(Figure 5C). For example, 97.5% of all double mutants display-
ing ε < 23 are predicted to be at least 4 kcal mol21 less stable
than WT GB1. Thus, our study empirically demonstrates the
extent of the threshold robustness model in functional
epistasis.
It is also expected that positive epistasis will arise from sta-

bility effects. This will occur if a stabilizing mutation increases
the fraction of native protein in the background of a highly de-
stabilized mutant that is partially unfolded at room tempera-
ture. Stabilizing mutations have been shown to set the stage
for evolution by permitting adaptive mutations that are desta-
bilizing alone [10, 50, 51]. However, it is known that stabilizing
mutations are lower in frequency and in magnitude compared
to destabilizing mutations [12], and this is corroborated by our
screen (Figure S5D). Thus, additive effects from the smaller
number and magnitudes of stabilizing mutations overall
contribute less to epistasis in comparison with additive effects
from combinations of two destabilizing substitutions (Figures
S5E–S5J).

General Positive Epistasis within a Dynamic Region

In addition to general negative epistasis, it is also apparent that
combinations of mutations within a smaller group of positions
display positive epistasis on average (Figure 3B). One position
is A24, which shows that positive epistasis is correlated with
low-fitness positions and negative epistasis is correlated
with high-fitness positions (Figure S6A; see also Figures S2C
and S2D). Other positions that display positive epistasis in
general include residues within the b1-b2 loop (7, 9, 11), b
strand 2 (12, 14, 16), C-terminal end of the a helix through
the a-b3 loop (33, 37, 38, 40), and C-terminal b4 residues



Figure 6. Positions that Display General Positive Epistasis Independent of

Amino Acid Combination

(A) Average ε for all pairwise combinations with position 9. Glu56, which

couples the two dynamic loops through H bonds, is highlighted.

(B) Epistasis and binding fitness for all 361 combinations of substitutions for

G9 and T11, which are located within the highly dynamic b1-b2 loop.

(C) The 20 most significant examples of positive epistasis include double

mutants from four pairwise positional combinations. The double mutants

displaying the largest value of positive epistasis per positional pair are

listed. These combinations include neighboring residues within or at the

edge of the conformationally dynamic region that overall demonstrates

pervasive positive epistasis (see Figures 3A and 3B). For calculating epis-

tasis, we limited expected fitness by ln(Wa 3 Wb) R ln(0.01) to minimize

spurious epistasis values for lethal or nearly lethal double mutants resulting

from nonmeaningful predicted fitness values below the background (wW =

0.01).

(D) Fitness and epistasis for all double mutants including positions 41

and 54.

(E) Exchanging volume from core residue Val54 to Gly41 demonstrates the

most extreme value of positive epistasis.

See also Figure S6.
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(54, 56) (Figures 3B and S6B–S6D). These residues participate
in a network of residues that undergo correlated conforma-
tional dynamics [52–54]. Remarkably, the pattern of general
positive epistasis seen in Figure 3B is very similar to that
of correlated NH bond vector motions modeled by Lange
et al. [54].

Combinations of mutations within the 12 positions listed in
the dynamic region account for 49% of epistasis values >1,
while accounting for only 4.4% of all pairs. Figure 6A shows
the structure of GB1 depicting the average epistasis between
substitutions for Gly9 andmutations at all other positions. This
region directly contacts IgG-FC through a main-chain H bond
between the Val39 carbonyl oxygen and Asn434 on IgG [21].
This loop is coupled to the b1-b2 loop through H bonds be-
tween the C-terminal Glu56 carboxylate with the Asp40 and
Lys10 amides [36] (Figure 6A). The dynamic region extends
through b strand 2, which is located on the opposite side of
GB1 relative to the IgG-FC binding surface. Note that several
mutations within this dynamic region also display slightly
negative epistasis on average with substitutions in the protein
core (Figures 3B and 6A). This is consistent with the threshold
robustness effect as such substitutions are predicted to
decrease the stability of the structure.
Many of the residues in the coupled, dynamic region of GB1

are generally sensitive to substitution (Figure 2C). For example,
all 361 possible combinations of substitutions for G9 and T11
are highlighted (Figure 6B). The data show that when one mu-
tation reduces fitness, an additional mutation in this region im-
parts a diminished negative effect.We constructedG9A, T11A,
and the double mutant G9A/T11A to validate this epistatic ef-
fect (Figure S3A). This validation also confirms that subtle
changes in amino acid identity in this region can have a sig-
nificant effect on binding fitness from a distance (Figures 2A
and 2C).
In some cases, combinations of substitutions in the dynamic

region result in dramatic reversal of lethal fitness to positive
fitness (Figure 6C). The most extreme example, G41L/V54G,
results in the exchange of volume from theC-terminal core res-
idue Val54 to the a-b3 loop (Figures 6D and 6E). However, how
the loop conformation can change to accommodate this swap
is not intuitive either by manual inspection or through compu-
tational analysis using the parameters described by Kellogg
et al. [55]. Interestingly, a highly diverged homolog of protein
G of identical length demonstrates the sequence variation
41L/54G (Figure S6E). Furthermore, analysis by EVfold shows
that this is a highly coevolving pair [56]. In summary, this anal-
ysis has uncovered an important role for residues involved in a
dynamic network in contributing toGB1 function and identified
how nonadditivity in this region, in some cases extreme, af-
fects the double mutant fitness landscape.

Impact of Epistasis on Adaptive Pathways

While context independent fitness effects generally dominate
the mutational landscape of GB1 (Figures 3C–3E), epistasis
may promote or limit mutational walks in sequence space (Fig-
ure S7A). While most pairs do not display large positive epis-
tasis, there are 37,405 pairs (7.2%) that display ε > 0.15. We
wanted to determine how positive epistatic effects are distrib-
uted throughout the domain. We calculated fitness for each
single mutant in all alternative backgrounds [ln(Wa

0) = ln(Wab)
2 ln(Wb)] and show the range between the highest [if ln(Wab)
> 22] and lowest values in comparison to the fitness in the
WT background (Figure 7A). Many deleterious mutations
display significantly improved fitness in at least one of the
1,026 possible non-WT backgrounds. In fact, of the 678 single
mutations that are deleterious in the WT background, the
fitness of 429 can reverse in sign [ln(Wa

0) > 0] and are thus
compensable. Even considering only beneficial double mu-
tants [ln(Wab) > 0], more than one-third of the deleterious mu-
tations (240 of 678) reverse in sign in at least one alternative
mutational background and are therefore ‘‘cryptically benefi-
cial’’ (Figures 7B and S7C).

Discussion

With next-generation sequencing, the number of sequence
variants in highly diverse populations can be counted before
and after laboratory-designed tests of fitness, thereby quanti-
fying evolution [30, 34, 41–44, 57–60]. An important question
related to such studies is how often the observed fitness ef-
fects would change in the background of other mutations.



Figure 7. The Fitness Effects of Many Mutations

Change Dramatically Depending on the Back-

ground in which They Appear

(A) The range is bound by a blue dash for the

lowest fitness in any of the 1,026 possible alter-

nate backgrounds and by a red dash for the high-

est fitness. The highest fitness values are limited

to double mutants displaying ln(Wab) > 22.

(B) A map showing deleterious single mutants

that are beneficial in at least one alternativemuta-

tional background even while limiting double-

mutant fitness greater than the WT (orange).

See also Figure S7.
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Fields and colleagues have demonstrated the ability to charac-
terize thousands of single and double mutants in segments of
protein domains and thus make important conclusions on the
frequency and nature of epistasis in protein function [19, 20].
In this article, we observe the first two steps of all evolutionary
pathways in the recognition of IgG by GB1 and therefore
observe howfitness profiles change in all alternativemutational
backgrounds. This comprehensive analysis determines how
often deleterious effects are compensated and beneficial ef-
fects are negated for allmutations in an entire proteinmolecule.

The fitness profile in Figure 1B and the DFE in Figure S2E
show that the stringency of this fitness challenge is analogous
to evolution of new function. It is well understood that the high-
est affinity possible will often not be selected for function
in vivo [28]. However, the beneficial mutations we identify
in vitro are found in natural protein G homologs (Figure S2B),
and one homolog that does not benefit from tandem duplica-
tion has seven mutations that are all adaptive in this screen
(see Figure S2B). Furthermore, there are ligand pairs that
demonstrate a functional demand for exceptional affinity
[61], including for IgG binding proteins similar to GB1 [62].
Such an adaptive landscape as described in this experiment
could possibly be analogous to natural evolution in viral recep-
tor host switching. For example, mutations found after adap-
tion of SARS from civet to human show enhanced affinity to
receptor in vitro, and those mutations enhanced viral infec-
tivity in cell culture [35]. Furthermore, affinity-based adapta-
tion can occur if ligand concentrations decrease, for example,
as observed in increased affinity for O2 in high-altitude deer
mouse hemoglobin [7].

We show common biophysical mechanisms for both nega-
tive and positive epistasis, including how additive stability ef-
fects produce functional epistasis. Although the environment
of the cell will modulate the concentration of functional protein
compared to what is observed in vitro [63], there is a clear
relationship between protein stability and fitness in cells and
viruses [10, 27, 64]. The cooperative nature of protein folding
creates an inherently epistatic effect from additive stability
effects [25–27]. In this experiment, additive effects of des-
tabilizing mutations account for nearly all examples of very
large negative epistasis. That destabilizing mutations are
both more common and larger in magnitude compared to sta-
bilizing mutations [12] explains why there are more significant
negative epistatic effects compared to positive epistatic ef-
fects in this experiment. Stabilizing mutations might display
stronger epistatic effects in vivo, however, by counteracting
degradation or aggregation, such as been demonstrated in
b-lactamase evolution [8].

Furthermore, we demonstrated that long-range deleterious
fitness effects throughout a dynamic region are not additive
and therefore that mutations in this region display positive
epistasis in general. These observations mirror results from
extensive characterization of PDZ domains, which also display
long-range mutational sensitivity in dynamic regions [43, 65,
66]. This effect can be exploited for allosteric modulation in
nature or through engineering [67, 68]. The most substantial
occurrences of positive epistasis were found in the region be-
tween positions in which two highly deleterious mutations
combine to produce neutral or beneficial double mutants. A
similar ‘‘hot spot’’ of epistasis predicted to produce a confor-
mational switch that removes unfavorable interactions was
also seen in an exceptionally high-throughput mutagenic
study of an RRM domain [20].
The results of this paper reconcile observations about the

importance of epistasis in adaptive evolution despite the rarity
of it. We can see that while it should not be expected that mu-
tations have different fitness in alternative backgrounds, most
mutations can have a very different effect in at least one alter-
native genetic background. Cryptically beneficial mutations
[ln(Wa

0) > 0 and ln(Wab) > 0] are found throughout 43 positions
in the 55-residue domain. Furthermore, while theWT is optimal
at 17 positions, compensatory mutations reveal beneficial mu-
tations within ten of these 17 positions even when limiting
ln(Wab) > 0. Thus, while sign epistasis limits pathways of adap-
tation, it at the same time facilitates sequence change in light
of mutational sensitivity.

Experimental Procedures

See the Supplemental Experimental Procedures for complete details for li-

brary construction, mRNA display and affinity enrichment, sequencing,

data analysis, and validation.

Calculation of Structural Stability Effects

In order to estimate change in fraction folded, we assumed there will be

mutational backgrounds (a) in which Wab / Wb = fN,ab. This can occur if the

reference mutations are partially folded but neutral in the native state, if

the test mutant (b) is fully folded in the native state, and if the two mutations

do not interact functionally (only through additive thermodynamic stability

effects). Thus, these conditions mean, given that the observed W is a prod-

uct of the fraction folded and fitness of the native state (W = fN 3 WN), that

the background mutations must satisfy fN,a =Wa (WN,a = 1) and the test mu-

tants (b) must satisfy fN,b = 1. Therefore, for pairs that are energetically ad-

ditive,WN,ab =Wb. Substituting intoWab = fN,ab3WN,ab gives us fN,ab =Wab /

Wb. We automatically converted the 82 test mutants from the literature (Ta-

ble S4) into fN,ab using all suitable backgrounds (0 < Wa < 1) and then into

relative free energy of unfolding. At equilibrium, kF 3 [U] = kUn 3 [N], and

thus fU,ab / fN,ab = kUn / kF, which by definition equals KUn, and therefore

DDGU = 2RT 3 ln(fU,ab / fN,ab) + RT 3 ln(fU,a / fN,a). Numerous substitutions

at positions Y3, L5, F30, and A26 produced highly correlated data. The

average DDGU values from the top five backgrounds from positions 3, 5,

and 30 (Y3A, Y3C, L5N, L5S, and F30N) produced highly correlated data

with a slope close to 1.
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