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SUMMARY

IL-17 cytokine production by the Th17 T cell subset is
regulated by intestinal commmensals. We show that
microbial colonization also regulates innate IL-17
production. A population of CD62L� g/d T cells, in
particular a lineage expressing the IL-1 receptor 1
(IL-1R1), can be quickly activated by microbes to
produce IL-17. Antibiotic treatment and monocoloni-
zation of mice suggest that specific commensals—
but not metronidazole-sensitive anaerobes like
Bacteroides species—are required for maintaining
IL-1R1+ g/d T cells. Signaling through the guanine
nucleotide exchange factor VAV1, but not through
Toll-like receptors or antigen presentation pathways,
is essential for inducing IL-1R1+ g/d T cells. Further-
more, IL-1R1+ g/d T cells are a potential source of
IL-17 that can be activated by IL-23 and IL-1 in
both infectious and noninfectious settings in vitro
and in vivo. Thus, commensals orchestrate the
expansion of phenotypically distinct gd T cells, and
innate immunity is a three-way interaction between
host, pathogens, and microbiota.

INTRODUCTION

Mammals are born sterile and are colonized by commensal

bacteria during and after birth. The interaction of commensal

bacteria with their host is complex, with contrasting outcomes:

colonization both induces tolerance to certain antigens, such

as lipopolysaccharide (LPS), and facilitates the immunologic

development and subsequent health of the host (Mazmanian

and Kasper, 2006; Mazmanian et al., 2008). The various immuno-

logic functions of indigenous commensal bacteria in the

mammalian gut include the exertion of a profound effect on

CD4+ T cells. Specifically, microbial colonization expands the

population of CD4+ T cells (Macpherson and Harris, 2004),

enhances the differentiation of Th17 cells (interleukin 17 [IL-17]-

producing CD4+ T cells) (Atarashi et al., 2008), and corrects an

imbalance among different CD4+ T cell subsets (Mazmanian

et al., 2005; Ivanov et al., 2008).
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Although g/d T cells are only a minor subset of T lymphocytes,

their deletion by genetic knockout or by treatment with a specific

antibody renders mice more susceptible to infection with a variety

of microbes (Hayday, 2000; Nakasone et al., 2007). The features

that may make g/d T cells of special interest in host defense at

selected sites include (1) earlier maturation in the fetal thymus

than a/b T cells, (2) possession of a relatively restricted repertoire

of the variable region of the T cell receptor (TCR), (3) frequent

association with epithelium, and (4) ability to accumulate quickly

at sites of infection (Hayday, 2000). One important function of

g/d T cells in defense against certain pathogens and tumors is

the production of various cytokines, chemokines, and antibacte-

rial compounds (Skeen and Ziegler, 1995; Hayday, 2000; Shibata

et al., 2007). Despite an expanding base of knowledge about

g/d T cells, the importance of the commensal microflora in the

regulation of this T cell subset remains largely unexplored.

IL-17, which has been linked to a growing list of infectious,

autoimmune, and inflammatory diseases, is produced mainly

by CD4+ T cells (Th17 cells) and CD8+ T cells. However, in

some cases, other T cells, such as g/d T cells and invariant

natural killer T cells, have also been identified as important sour-

ces of IL-17 (Matsuzaki and Umemura, 2007). g/d T cells have

been considered ideally suited to provide an innate source of

IL-17 in the earliest stages of an inflammatory response—i.e.,

before this cytokine is produced by antigen-specific a/b T cells

(Roark et al., 2008). These IL-17-producing g/d T cells possess

similar features to Th17 cells, such as expression of chemokine

receptor 6 (CCR6), retinoid orphan receptor (RORgt), aryl hydro-

carbon receptor (AhR), and IL-23 receptor (Martin et al., 2009). In

an animal model of experimental autoimmune encephalomy-

elitis, IL-17-expressing g/d T cells can serve in an amplification

loop as an additional source of IL-17 to supplement that

produced by Th17 cells (Sutton et al., 2009).

Herein we show that colonization with commensal bacteria is

a key factor in the expansion of CD62L�g/d T cellsand inparticular

of a g/d T cell lineage carrying CD121a (IL-1 receptor 1, or IL-1R1).

It appears that specific commensal bacteria are required for main-

tenance of these IL-1R1+ g/d T cells. By examining various mouse

strains with specific genetic mutations (VAV1, CD1, MHCI, MHCII,

TLR3, and MyD88), we have found that the guanine nucleotide

exchange factor VAV1 is essential for IL-1R1 expression on g/d -

T cells. Furthermore, we have identified IL-1R1+ g/d T cells as

a potential source of IL-17 that can be activated by IL-23 and IL-1

in both infectious and noninfectious settings in vitro and in vivo.
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Figure 1. Microbial Colonization Is a Key Driving Force in the Expansion of CD62L� and IL-1R1+ g/d T Cells

Cells from the peritoneum (A and B), lung, and small-intestinal lamina propria (iLP) (D and E) of individual SPF mice (Swiss Webster), GF mice, GFC1 mice (GF mice

reconstituted with complex flora for 7 weeks), and GFC2 mice (GF mice reconstituted with complex flora for 12 weeks) were analyzed by FACS after staining with

mAbs to CD33, g/d TCR, and CD62L (or IL-1R1) as well as isotype controls. (C and F) Cells from the peritoneum and iLP of individual mice, as indicated, were

cultured with medium only or with medium containing rIL-1b and rIL-23 (1 ng/mL) for 7 hr. Percentages of CD62L� (or IL-1R1+ or IL-17+) g/d T cells are shown as

mean ± SEM values. Each data point represents an individual mouse, and all collected data pooled from at least five independent experiments are shown. B

(open dot) refers to data from SPF and GF mice at 7 weeks age; d (closed dot) refers to data from SPF and GF mice at �12 weeks age.
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RESULTS

Microbial Colonization of Germ-free Mice Drives the
Expansion of CD62L� and IL-1R1+ g/d T Cells
Peritoneal g/d T cells are thought to be an important component

of innate responses to Gram-positive and Gram-negative bacte-

rial infections in the peritoneum (Skeen and Ziegler, 1993, 1995;

Shibata et al., 2007). Although the total population of peritoneal

CD33 T cells from germ-free (GF) mice ([13 ± 3.5] 3 104;

mean ± SEM for eight mice, 6–7 weeks old) is numerically com-

parable to that from age-matched specific pathogen-free (SPF)

mice ([12 ± 2.9] 3 104; mean ± SEM for 12 mice; p = 0.56), the

total number of g/d T cells is reduced �3-fold in GF mice ([8.1 ±

1.0] 3 103) from that in SPF mice ([25.2 ± 8.7] 3 103; p = 0.0008).

To examine whether microbial colonization plays a role in the

activation of g/d T cells, we compared CD62L expression on

g/d T cells from GF and SPF mice. CD62L, a leukocyte homing

receptor and activation marker, is downregulated after the acti-

vation of a/b or g/d T cells through their TCRs or by mitogens

(Chao et al., 1997). The great majority of g/d T cells in the perito-

neum of SPF mice are CD62L� (Figure 1A), an observation

consistent with the concept that the peritoneal cavity is a repos-
Cell Host
itory of activated/memory T cells (Skeen and Ziegler, 1993).

However, compared with SPF mice, GF mice have far fewer

CD62L� g/d T cells (Figure 1A) (p < 0.0001).

We took mice born to GF mothers and colonized them shortly

after delivery with an SPF microbiota. Seven weeks after coloni-

zation (GFC1 mice), the proportion of CD62L� g/d T cells was

higher than that in GF mice (p = 0.0001). Twelve weeks after

SPF microbial colonization (GFC2 mice), the percentage of

CD62L� g/d T cells in the peritoneum approached levels found

in this site of SPF mice (Figure 1A; p < 0.0001, GFC2 versus

GF mice).

IL-1 exerts pleotropic effects on a variety of tissues through

binding to IL-1R1 (Dinarello, 1996). The IL-1R1 protein was de-

tected on g/d T cells from the peritoneum, lung, and small-intes-

tinal lamina propria (iLP) of SPF mice (see Figure S1 available on-

line). Compared with SPF mice, GF mice had significantly fewer

peritoneal IL-1R1+ g/d T cells (p < 0.0001). However, GFC1 mice

(p = 0.0001) and GFC2 mice (p < 0.0001) had more IL-1R1+ g/d

T cells than GF mice (Figure 1B). By intracellular staining, we

examined IL-17 in g/d T cells after in vitro stimulation of perito-

neal exudate cells (PECs) with recombinant IL-1b (rIL-1b) and

rIL-23. GF mice had fewer IL-17+ g/d T cells than SPF mice
& Microbe 7, 140–150, February 18, 2010 ª2010 Elsevier Inc. 141
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Figure 2. Effects of Different Antibiotic Treatments on IL-1R1+ g/d T Cell Population

From birth onward, Swiss Webster mice received water containing no drugs (CTRL, SPF mice), metronidazole (METRO), neomycin sulfate (NEO), or vancomycin

hydrochloride (VANCO), as described in the Experimental Procedures. (A) Gram’s staining of cecal contents from SPF mice and antibiotic-treated mice; (B) cells

from the peritoneum and small-intestinal lamina propria (iLP) of individual mice were analyzed by FACS after staining with mAbs to CD33, g/d TCR, and IL-1R1. (C)

Cells from the peritoneum and iLP from individual mice were cultured with medium only or with rIL-1b and rIL-23 (1 ng/mL) for 7 hr. Percentages of IL-1R1- and IL-

17-expressing g/d T cells are shown as mean ± SEM values. Each data point represents an individual 6-week-old mouse living in the same housing, and all

collected data pooled from at least six independent experiments are shown.
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(p < 0.0001). However, after reconstitution with an SPF micro-

biota, the percentage of IL-17+ cells was increased in the GFC1

group and was totally restored in the GFC2 group (Figure 1C).

In small-intestinal lamina propria (iLP), GF mice had fewer

CD62L� g/d T cells (Figure 1D) and IL-1R1+ g/d T cells (Figure 1E)

than didSPFmice. Again, there were fewer IL-17+ g/d T cells in this

site from GF mice (Figure 1F). In contrast, the percentages of

CD62L� or IL-1R1+ g/d T cells in the lung are independent of colo-

nization status in the gut lumen (Figures 1D and 1E). These results

reflect the importance of commensal bacteria in maintenance of

CD62L� as well as IL-1R1+ g/d T cells from some but not all sites.

Effect of Treatment with Different Antibiotics
on the IL-1R1+ g/d T Cell Population
Our laboratory has been working with Bacteroides fragilis

(B. fragilis), a ubiquitous Gram-negative anaerobe that colonizes
142 Cell Host & Microbe 7, 140–150, February 18, 2010 ª2010 Elsev
the mammalian lower gastrointestinal tract (Mazmanian et al.,

2005). We tested whether monocolonization of previously GF

mice with B. fragilis would be sufficient to rescue the impaired

IL-1R1+ g/d T cell population in the iLP. We had previously shown

that such monocolonization was sufficient to correct the Th2

skew in GF mice. However, even heavy colonization of these

mice with B. fragilis (Mazmanian et al., 2005) was not sufficient

to restore the deficient IL-1R1+ g/d T cell population in the iLP

(Figure S2).

Using Gram’s staining of cecal contents as a marker of antic-

ipated antibiotic activity, we first examined SPF mice, which, as

expected, harbored a diverse and complex microbial flora

(Figure 2A). In mice and humans, Gram-positive species of

the phylum Firmicutes and Gram-negative species of the phylum

Bacteroidetes (Cytophaga-Flavobacterium-Bacteroides) ac-

count for >90% of commensal bacteria (Lupp et al., 2007; Ley
ier Inc.
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et al., 2008; Ivanov et al., 2008). In an attempt to determine

whether specific antibiotic-sensitive bacteria are responsible

for IL-1R1+ g/d T cell expansion, we treated SPF mice from birth

to 6 weeks of age with one of three antibiotics: neomycin sulfate,

vancomycin, or metronidazole. Although the activity spectra of

these agents overlap to some degree, neomycin is primarily

active against facultative Gram-negative species, vancomycin

predominantly against Gram-positive species, and metronida-

zole against major groups of anaerobes like the Bacteroidetes.

As other investigators have reported, antibiotic treatment was

associated with relatively swollen ceca (data not shown),

a finding that has previously been attributed to bacterial death

(Ivanov et al., 2008).

By examining feces with Gram’s stain, we found that the

bacterial communities were quite different in SPF mice, mice

treated with neomycin sulfate, and mice treated with vancomy-

cin (Figure 2A). In the peritoneum and iLP of each group of

both antibiotic-treated mice, numbers of IL-1R1+ g/d T cells

and IL-1/IL-23-stimulated IL-17+ g/d T cells were lower than

those in SPF mice (Figures 2B and 2C). Consistent with our

B. fragilis monocolonization data, the metronidazole treat-

ment had no impact on g/d T cell numbers. The commensal

bacterial population in metronidazole-treated mice (which

includes very few Gram-negative anaerobes) would be expected

to be quite different from that in SPF mice (in which Gram-nega-

tive anaerobes are the predominant constituent of the flora)

(Figure 2A).

Taken together, our results from antibiotic-treated and mono-

colonized mice suggest that specific components of the micro-

biota excluding the great majority of anaerobic organisms

belonging to the phylum Bacteroidetes (rather than all bacteria

or simply the presence of bacteria) are a requisite for expansion

of systemic and local IL-1R1+ g/d T cells.
Signaling Pathways Used in the Expansion
of IL-1R1+ g/d T Cells
The possible signaling pathways used for induction of IL-1R1+

g/d T cells were examined. Two classes of pathways were poten-

tially involved: (1) those that stimulate g/d T cells via antigen-pre-

senting cell (APC)-derived cytokines, and (2) those that activate

the g/d TCR through antigen presentation.

Recognition of signals induced by microbial pathogen-associ-

ated molecular patterns (PAMPs) is responsible for the activation

of genes important in mounting an effective innate host defense,

especially that mediated by proinflammatory cytokines (Netea

et al., 2006). Toll-like receptors (TLRs) are among the most

important classes of PAMPs (Akira, 2003). The adaptor molecule

MyD88 is essential for proinflammatory cytokine production in

response to all TLR ligands except TLR3. In contrast, type I inter-

ferons can be generated via MyD88-independent TLR signaling

(Akira, 2003).The percentages of peritoneal IL-1R1+ g/d T cells in

MyD88�/� mice, TLR3�/� mice, and their respective age-

matched controls were not statistically different (Figure 3A).

This observation suggested that inflammatory cytokines from

TLR signaling pathways are not required for homeostatic regula-

tion of IL-1R1+ g/d T cells in the peritoneum. At the same time,

these data ruled out the possible role of IL-1 and IL-18 in main-

tenance of peritoneal IL-1R1+ g/d T cells, since MyD88-mediated
Cell Host
signaling is required for cellular responses to these two cyto-

kines (Adachi et al., 1998).

Stimulation of murine and human g/d T cells by peptides in the

context of major histocompatibility class I (MHCI) or MHC class II

(MHCII) molecules demonstrates conventional antigen recogni-

tion by g/d T cells (Kaufman, 1996). MHCI-like CD1 receptors

are widely expressed on the surface of epithelial and profes-

sional APCs and present exogenous, self-lipid, and glycolipid

antigens to g/d T cells (Russano et al., 2007). The percentages

of peritoneal IL-1R1+ g/d T cells didn’t decrease in MHCI�/�

and MHCII�/� mice compared with that in age-matched control

mice (Figure 3B).This result indicated that MHCI- or MHCII-

mediated antigen presentation pathways are not required for

the induction of IL-1R1+ g/d T cells. The percentage of peritoneal

IL-1R1-expressing g/d T cells were higher in CD1�/�mice than in

control mice (Figure 3C), a result suggesting that CD1 molecules

may help decrease the number of peritoneal IL-1R1+ g/d T cells.

This observation is consistent with a report that g/d T cells

expand after deletion of NK T cells, since CD1 molecules are

essential for NK T cell development (Chen et al., 1997; French

et al., 2005).

VAV1, a guanine nucleotide exchange factor for Rho family

GTPases, is essential for both activation and development

of a/b T cells. In g/d T cells, VAV1 is required for activation via

g/d TCR ligation but not for development (Swat et al., 2003).

The proportion of IL-1R1+ g/d T cells in the peritoneum was

much lower in VAV1�/� mice than in control mice (Figure 3D).

We also looked at g/d T cells from other sites, particularly the lung

and the iLP. We found there were far fewer IL-1R1+ g/d T cells in-

these tissues from VAV1�/� mice than from control mice.

After stimulation with rIL-1b and rIL-23, fewer g/d T cells

produced IL-17 from these sites in VAV1�/� mice than in

control mice (Figure 3E). These data indicated that the signaling

pathway through VAV1 plays an important role in the expansion

of IL-1R1+ g/d T cells and IL-1/IL-23-stimulated IL-17+ g/d

T cells.

IL-1R1 Expression Facilitates IL-17 Production
by g/d T Cells from Mucous Sites
g/d T cells don’t produce IL-17 when stimulated by transforming

growth factor b and IL-6 in vitro (Shibata et al., 2007). Instead,

IL-23 alone is sufficient to stimulate peritoneal or pulmonary g/d

T cell production of IL-17 (Shibata et al., 2007; Umemura et al.,

2007). In a recent study, g/d T cells from spleens and lymph

nodes produced IL-17, IL-21, and IL-22 in response to IL-1b

and IL-23 (Sutton et al., 2009). The exact role of IL-1 signaling

in IL-17 production by g/d T cells from different anatomic sites

has remained unclear.

rIL-23 alone induced the production of IL-17 by g/d T cells in

PEC culture, as described in a previous report (Shibata et al.,

2007). Similarly, rIL-1b alone induced very low levels of IL-17

production by g/d T cells (Figures S3A and S3B). However, a

combination of rIL-1b and rIL-23 had an additive effect on IL-17

production by g/d T cells. Since IL-1b is known to be generated

spontaneously in cultures of APCs (Okamoto and Nakano, 1990;

Gorczynski et al., 1997), we measured spontaneous IL-1b levels

in PEC cultures after 7 hr of incubation with no stimulation.

We found that high levels of spontaneous IL-1b were released

by PECs with or without serum in the medium (Figure S3C).
& Microbe 7, 140–150, February 18, 2010 ª2010 Elsevier Inc. 143
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Figure 3. Role of Signaling through Adaptive and Innate Pathways in IL-1R1+ g/d T Cell Expansion

IL-1R1 expression was measured by FACS on g/d T cells from the peritoneumof C57BL/6 (B6) and MyD88�/� mice, B6129SF1/J and B6;129S1-Tlr3tm1Flv/J

(B6;129S1-Tlr3�/�) mice (A); B6, MHCI�/�, and MHCII�/�mice (B); B6 and CD1�/�mice (C); and B6 and VAV1�/�mice (D). For VAV1�/�mice and their controls,

IL-1R1 expression on g/d T cells from cells from the lung and small-intestinal lamina propria (iLP) (D) was also analyzed. (E) Cells from the peritoneum and iLP from

VAV1�/� mice and their controls were cultured with medium only or with rIL-1b and rIL-23 (1 ng/mL) for 7 hr. Each data point represents an individual mouse.

Genetically deficient mice of each strain and their respective age-matched controls were housed in the same conditions before use.
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Therefore, the reported dramatic IL-17 production elicited in g/d

T cells by rIL-23 alone in the presence of APCs (Shibata et al.,

2007; Umemura et al., 2007) probably actually reflects the

effects of a combination of exogenous rIL-23 and spontaneously

generated IL-1b, the latter contributed by APCs.

To better dissect the role of IL-1 and/or IL-23 on early IL-17

production by g/d T cells, we stimulated purified T cells from

PECs, lungs, and spleens for 7 hr with rIL-1b alone, rIL-23 alone,

or a combination of rIL-1b and rIL-23. As shown in Figures 4A

and 4B, neither rIL-1b nor rIL-23 alone induced IL-17 production

in g/d T cells. In contrast, the combination of rIL-1b and rIL-23

synergistically promoted IL-17 production in g/d T cells from all

three sites. To a lesser extent, these same two cytokines also

promoted IL-17 production in peritoneal and pulmonary a/b

T cells (g/d negative) after 7 hr of stimulation (Figures 4A and 4B).

Notably, flow cytometry showed that the IL-1R1 protein was

present on both peritoneal and pulmonary CD62L� g/d T cells

but was rarely detectable on splenic g/d T cells (Figures 4C

and 4D). In response to rIL-1b and rIL-23, IL-1R1+ g/d T cells

produce more IL-17 than do IL-1R1� g/d T cells (Figure 4E),

a difference indicating that IL-1R1 expression is associated

with g/d T cell production of IL-17. These data highlight a critical
144 Cell Host & Microbe 7, 140–150, February 18, 2010 ª2010 Elsev
role of IL-1R1 signaling in IL-17 production by g/d T cells from

different anatomic sites in the absence of APCs.
Promotion of IL-17 Production by IL-1 and IL-23 in
CD44+CD62L�CD27� g/d T Cells Depends upon Intact
p38, PKC, NF-kB, and PI3K Pathways
Upon IL-1b and IL-23 stimulation, we found that IL-17-producing

g/d T cells originate from CD44+CD62L� g/d T cell subsets (Fig-

ure 4F). Moreover, only CD27� g/d T cells are capable of gener-

ating IL-17; this observation is consistent with one recent report

that tumor necrosis factor receptor family member CD27 is

a thymic determinant of interferon g (IFN-g)-producing g/d T cells,

whereas IL-17 production is restricted to CD27� g/d T cells

(Ribot et al., 2009).

To address the intracellular signaling pathways used for IL-17

production by g/d T cells, we exposed purified g/d T cells to rIL-

1b and rIL-23 for 24 hr in the presence of a specific inhibitor of

p38 (SB203580), PKC (rottlerin), NF-kB (BAY 11-7082), or PI3K

(LY294002), as described elsewhere (Sutton et al., 2006). All

inhibitors suppressed g/d T cell induction of IL-17. The implica-

tion is that IL-1 and IL-23 stimulate IL-17 production by g/d T cells
ier Inc.
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Figure 4. IL-1 Acts Synergistically with IL-23 to Promote IL-1R1-Associated IL-17 Production by CD44+CD62L�CD27� g/d T Cells in a p38-,

PKC-, NF-kB-, and PI3K-Dependent Manner

(A and B) CD90.2+ cells (�1.5 3 105/mL) from the peritoneum, lungs, and spleen of 6–8 WT mice (C57BL/6J) were cultured for 7 hr with medium only or with

medium containing rIL-1b alone (1 ng/mL), rIL-23 alone (1 ng/mL), or both rIL-1b and rIL-23 (1 ng/mL). (A) FACS plots gated on CD90.2+ cells are representative

of four independent experiments, and the numbers in parentheses indicate the percentages of IL-17-producing g/d T cells. (B) Data from four experiments are

combined as mean ± SEM values. *p > 0.1 and **p < 0.03 relative to medium alone.

(C) A representative FACS plot demonstrating IL-1R1 expression on g/d T cells from four individual WT (C57BL/6J) or IL-1R1�/�mice is shown. Numbers in quad-

rants refer to percentages of CD33+ cells. Numbers in parentheses indicate percentages of IL-1R1+ g/d T cells.

(D) A representative FACS plot gated on TCRg/d+ from four individual mice indicates that IL-1R1-expressing g/d T cells are CD62L�.

(E) Sorted IL-1R1+ and IL-1R1� g/d T cells from the peritoneum (�1.5 3 104/mL) or lungs (�5 3 104/mL) of six WT mice were stimulated with rIL-1b and rIL-23

(1 ng/mL) for 24 hr. The supernatants were analyzed for IL-17 concentrations by ELISA.

(F) T cells from the peritoneum and lungs of four to six WT mice were cultured for 7 hr with or without rIL-1b and rIL-23 (1 ng/mL). The FACS plots gated on TCRg/d+

represent one of three experiments.

(G) g/d T cells were sorted from the peritoneum (�5 3 104/mL) and lungs (�1 3 105/mL) of 8–12 WT mice and were stimulated with rIL-1b and rIL-23 (1 ng/mL) in

the absence (control) or presence (30 min pretreatment) of SB203580 (p38 inhibitor at 5 mM), rottlerin (PKC inhibitor at 10 mM), BAY 11-7082 (NF-kB inhibitor at

8 mM), or LY294002 (PI3K inhibitor at 40 mM). After 24 hr, supernatants were collected for analysis of IL-17 concentrations by ELISA. +p < 0.047 and 2+p < 0.011

relative to control. Results are mean ± SEM values from two independent experiments with similar results.
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in a p38-, PKC-, NF-kB-, and PI3K-dependent manner (Fig-

ure 4G).

Critical Role of IL-1 Signaling in Optimal IL-17
Production by g/d T Cells in Infection
Monoclonal antibody (mAb) to IL-1R1 dramatically suppressed

E. coli LPS-induced IL-17 production in g/d T cells (Figures 5A

and 5B). To determine whether this suppressive effect was due

to blocking of IL-1R1 signaling in g/d T cells, we labeled PECs
Cell Host
from wild-type (WT) or IL-1R1-deficient (IL-1R1�/�) mice with

carboxyfluorescein succinimidyl ester (CFSE). CFSE-labeled

WT PECs were mixed (1:1) with unlabeled IL-1R1�/� PECs;

CFSE-labeled IL-1R1�/� PECs were mixed (1:1) with WT PECs.

The cell mixtures were cocultured with and without LPS. Using

this approach, we compared IL-17 production in WT and IL-

1R1�/� g/d T cells when identical cytokines were being produced

by APCs in response to LPS. As shown in Figure 5C, IL-17

production was significantly impaired in IL-1R1�/� g/d T cells
& Microbe 7, 140–150, February 18, 2010 ª2010 Elsevier Inc. 145
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Figure 5. IL-1 Signaling Is Required for Optimal IL-17 Production by g/d T Cells in Response to Microbial Products and Microbes

(A and B) PECs (6 3 106/mL) from WT mice were pretreated with Armenian hamster IgG or mAbs (10 mg/mL) to IL-1R1 for 30 min and subsequently stimulated with

E. coli LPS (1 mg/mL) for 7 hr. FACS plots (A) are gated on CD33+ cells. Numbers in parentheses, indicating percentages of IL-17-producing g/d T cells, are

summarized as mean ± SEM values (B) from three independent experiments.

(C) CFSE-labeled PECs from WT (or IL-1R1�/�) mice were mixed (1:1) with unlabeled IL-1R1�/� (or WT) PECs. The resulting PECs (4 3 106/mL/tube) were incu-

bated for 7 hr with and without LPS (1 mg/mL). The FACS plots are gated on TCRg/d+ and represent one of three experiments.

(D and E) Brefeldin A was injected intraperitoneally into WT mice (eight to ten per group) and IL-1R1�/� mice (five or six per group) 2 hr after i.p. infections with

E. coli (ATCC 26, 1 3 108 CFU/ mouse), B. fragilis NCTC 9343 (6 3 108 CFU/mouse), or group B Streptococcus serotype Ia 515 (GBS, 1 3 108 CFU/ mouse). After

5 hr, PECs were tested for intracellular IL-17. FACS plots (D) are gated on CD33+ cells. Numbers in parentheses indicate percentages of IL-17-producing g/d

T cells. All collected data pooled from individual mice are summarized as mean ± SEM values (E).

(F) WT mice (six per group) and IL-1R1�/�mice (five per group) were infected ip with E. coli (1 3 108 CFU/mouse), B. fragilis NCTC 9343 (6 3 108 CFU/ mouse), or

GBS serotype Ia 515 (2 3 107 CFU/mouse). After 24 hr, IL-17 in peritoneal fluid was measured by ELISA. Data are representative of three independent exper-

iments.
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compared with that in WT g/d T cells, a result indicating that

IL-1R1 signaling in g/d T cells is essential for LPS-induced g/d

T cell production of IL-17.

IL-23-dependent g/d T cell production of IL-17 in the perito-

neum is known to be key for neutrophil influx in defense against

Escherichia coli infection (Shibata et al., 2007), yet it has re-

mained unresolved whether IL-1R1 signaling is important at

that site in IL-17 production by g/d T cells. After establishing

an intraperitoneal E. coli infection in mice, we found that both

the percentage of IL-17-producing g/d T cells and the IL-17

concentration in IL-1R1�/� mice were significantly lower than

those in WT mice (Figures 5D–5F). These findings prompted

us to ask whether the IL-1R1 signaling required for optimal

IL-17 production by g/d T cells is restricted to E. coli infection

or is more generally required for response to infection by other

microbes.
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When the intestinal symbiotic microbe B. fragilis escapes into

the peritoneal cavity from its normal niche in the gastrointestinal

tract, it can cause peritonitis and anaerobic sepsis (Tzianabos

et al., 2000; Cobb et al., 2004; Duan et al., 2008). After 7 and

24 hr of in vitro infection of PECs with B. fragilis, g/d T cells

produced more IL-17 than a/b T cells (Figure S4). In mice defi-

cient in IL-1R1, the percentage of IL-17-producing g/d T cells

and the IL-17 concentration were significantly lower after

intraperitoneal infection with B. fragilis than in WT mice (Figures

5D–5F).

Group B Streptococcus (GBS) is a Gram-positive coccus that

is a major cause of pneumonia, bacterial meningitis, and neuro-

logic morbidity in newborn infants (Charrel-Dennis et al., 2008).

We challenged WT mice (C57BL/6J, 6–7 weeks old) and age-

matched IL-1R1�/� mice intraperitoneally with GBS, stained

PECs intracellularly for IL-17 for 7 hr, and measured IL-17 in
ier Inc.
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the peritoneal fluid at 24 hr. After GBS challenge—as in E. coli

and B. fragilis infections—g/d T cells produced predominantly

IL-17 in the early phase, and optimal IL-17 production also

required IL-1R1 signaling (Figures 5D–5F). Taken together, these

data indicated that IL-1R1-dependent IL-17 production by g/d

T cells is an innate source of IL-17 in response to Gram-negative

and Gram-positive pathogens.

DISCUSSION

The peritoneum is a commonly infected site in certain groups of

patients, and experimental inoculation of infectious agents,

drugs, or chemicals into the peritoneal cavity is widely used in

a variety of research (Steward et al., 1968). It has been suggested

that g/d T cells in the peritoneum play a key role in early

responses to various bacterial infections (Skeen and Ziegler,

1993; Shibata et al., 2007).

In the present study, we demonstrate that microbial coloniza-

tion is a key driving factor in the expansion of CD62L� and IL-

1R1+ g/d T cells in the peritoneum (Figure 1). The association

between the presence of the colonizing microbiota and a distinct

phenotype of peritoneal IL-1R1+ g/d T cell raises the question of

whether g/d T cells at other sites express IL-1R1. That might be

expected to be the case in the gut, where g/d T cells coexist adja-

cent to a significant antigenic load of microorganisms (Kawagu-

chi et al., 1993). It is surprising, then, that no significant IL-1R1

expression (<�5%) is detectable on g/d T cells from intestinal in-

traepithelial lymphocytes, Peyer’s patches, mesenteric lymph

nodes, or blood of either SPF (Swiss Webster) or C57 BL/6J

mice (Figure S1). However, iLP g/d T cells from SPF mice express

IL-1R1 (Figure S1). Far fewer g/d T cells expressing IL-1R1 are

found in the iLP from GF mice than in that from SPF mice

(Figure 1E). Consistent with this finding, the higher proportion

of CD62L� iLP g/d T cells in SPF mice than in GF mice (Figure 1D)

suggests more antigen experience of iLP g/d T cells in SPF mice.

Surprisingly, though, microbial colonization does not alter the

percentage of CD62L� or IL-1R1+ g/d T cells in the lung (Figures

1D and 1E). These data indicate that commensal bacteria

orchestrate the phenotype of local and systemic g/d T cells

from particular sites.

Treatment of SPF mice with three antibiotics (neomycin

sulfate, vancomycin, and metronidazole) dramatically disturbs

the composition of the bacterial community in the gastrointes-

tinal tract (Ivanov et al., 2008), and our studies yielded results

consistent with earlier reports. Compared with that in conven-

tionally colonized mice, the number of peritoneal or iLP IL-

1R1+ g/d T cells was low in mice treated with neomycin sulfate

or vancomycin but was similar in metronidazole-treated mice

(Figure 2B). These data suggest that specific microbes among

the commensal bacteria (as opposed to the mere presence of

bacteria) are required for maintenance of IL-1R1+ g/d T cells.

Although the activity spectra of these three antibiotics overlap

to some extent, the most likely interpretation of these data is

that facultative Gram-positive and/or Gram-negative organ-

isms—and not metronidazole-sensitive anaerobes—maintain

this T cell population. This point is interesting in view of the

fact that >99% of the intestinal flora is made up of strict anaer-

obes. In support of this observation, mice heavily monocolon-

ized with B. fragilis, a metronidazole-sensitive anaerobe, had
Cell Host
iLP IL-1R1+ g/d T cell numbers similar to those in completely

GF mice (Figure S2) (Mazmanian et al., 2005).

We investigated the signaling pathways required for mainte-

nance of the IL-1R1+ g/d T cell population. Inflammatory cyto-

kines released through MyD88- or TLR3-mediated TLR signaling

did not play a role in maintaining these cells (Figure 3A). The

expansion of IL-1R1+ g/d T cells was independent of TCR activa-

tion by CD1-, MHCI-, or MHCII-mediated antigen presentation,

given that no decrease in the population of IL-1R1+ g/d T cells

was seen in MHCI�/�, MHCII�/�, or CD1�/� mice (Figures 3B

and 3C). The antigens recognized by g/d T cells remain unclear;

likewise, it is not yet certain whether the g/d TCR is required for

recognition (Chien et al., 1996). However, murine g/d T lympho-

cytes are known to recognize surface-expressed proteins or

phospholigands directly, independent of antigen processing

and MHC presentation (Kaufman, 1996; Chien et al., 1996).

The guanine nucleotide exchange factor VAV1 encodes

a protein that is believed to play a role in tyrosine-mediated

signal transduction, functioning differently in different cell types

(Swat et al., 2003; Malhotra et al., 2009). For instance, VAV1 is

required for B cell receptor (BCR) endocytosis and BCR-induced

Rac-GTP loading, but not for B cell development and maturation

(Malhotra et al., 2009). In contrast, whereas VAV1 is indispens-

able in both a/b T cell activation and development, it is involved

only in activation of g/d T cells (via g/d TCR ligation) and not in

their development (Swat et al., 2003). In VAV1�/�mice, g/d T cells

are markedly impaired in signaling through the g/d TCR, as evi-

denced by a lack of proliferation and cytokine production in

response to stimulation with antibodies to the g/d TCR (Swat

et al., 2003). In this study, we identified a role for VAV1 signaling

in restricting the IL-1R1+ g/d T cell population in the periphery

(Figure 3D).

Our study consistently demonstrates that a lower percentage

of IL-1R1+ g/d T cells corresponds with a smaller proportion of

IL-1b/IL-23-stimulated, IL-17-producing g/d T cells (Figures 1–

3). This correlation indicates that IL-1R1 expression on g/d T cells

is likely associated with IL-17. This association was confirmed by

the observation that IL-1R1+ g/d T cells produce much more

IL-17 than do IL-1R1� g/d T cells (Figure 4E). However, g/d T cells

themselves do not produce detectable IL-17 —i.e., without

rIL-1b and rIL-23 activation (Figures 4A and 4B). It appears that

IL-1R1+ g/d T cells serve as a resting IL-17-producing g/d T cell

pool that can be activated by IL-1b and IL-23. In fact, without

PMA/INO or IL-1b/IL-23 stimulation, the percentage of IL-17+

g/d T cells is undetectable (Figure S3D). The percentages of

IL-17+ g/d T cells are �35% with PMA/INO, or IL-1b and IL-23.

A combination of these two stimulations doesn’t increase the

percentages of IL-17+ g/d T cells, suggesting IL-1b and IL-23

don’t promote the differentiation of IL-17-producing g/d T cells.

However, the combination results in significant increase of

IL-17 intensity, as indicated by Y Geo Mean in IL-17+ g/d T cells.

These data indicated IL-1b and IL-23 promote IL-17 production

by in situ-differentiated IL-17-producing g/d T cells. IL-1- and

IL-23-mediated IL-17 production appears to be restricted to

CD44+CD62L�CD27� g/d T cells and relies upon intracellular

signaling through p38, PKC, NF-kB, and PI3K (Figures 4F and

4G). The same requirement for p38, PKC, NF-kB, and PI3K in

IL-1- and IL-23-mediated IL-17 production by a/b T cells (Sutton

et al., 2006) suggests that a similar mechanism is probably
& Microbe 7, 140–150, February 18, 2010 ª2010 Elsevier Inc. 147



Figure 6. A Proposed Model for How the

Commensal Microbiota Facilitates IL-17-

Mediated Protective Immune Responses

of g/d T Cells to Pathogenic Bacteria

Commensal bacteria and VAV1 signaling drive

expansion of g/d T cells bearing IL-1R1 (a). In the

setting of infection with potentially pathogenic

microbes, macrophages and dendritic cells are

stimulated to produce IL-1 and IL-23 (b), thus

activating IL-1R1-bearing g/d T cells to produce

IL-17 (c). IL-17 mediates a protective immune

response to the pathogenic bacteria by recruiting

neutrophils from blood vessels (d) to the site of

infection (e).
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involved in initiating IL-17 production by these two T cell subsets

upon IL-1 and IL-23 stimulation.

Three lines of evidence make it apparent that IL-1R1 signaling

is important for optimal IL-17 production by g/d T cells in vitro

and in vivo in both infectious and noninfectious settings: (1) Anti-

body blocking of IL-1R1 greatly suppresses E. coli LPS-induced

IL-17 production (Figures 5A and 5B). (2) In a mixed coculture of

IL-1R1�/� and WT PECs, more LPS-induced IL-17 is secreted by

WT g/d T cells than by IL-1R1�/� g/d T cells (Figure 5C). (3) The

proportion of IL-17-producing g/d T cells and the concentration

of IL-17 are much lower in IL-1R1�/�mice than in WT mice after

intraperitoneal injection of Gram-negative and Gram-positive

pathogens, including E. coli, B. fragilis, and GBS serotype Ia

(Figures 5D–5F).

Recently, it has been shown that g/d T cells from spleen and

lymph nodes express IL-23R and the transcription factor RORgt

and produce IL-17, IL-21, and IL-22 in response to IL-1b and IL-

23 (Sutton et al., 2009). Although this study pointed out the crit-

ical role of IL-1 signaling in the induction of IL-17 by g/d T cells

from spleen and lymph nodes, the association between IL-1R1

expression and g/d T cell production of IL-17 was not described.

In addition, it remained unknown whether IL-1 signaling plays

a role in the early IL-17 response by g/d T cells in infection. In

another recent study (Martin et al., 2009), particular PAMP

receptors on peritoneal g/d T cells have been shown to act syner-

gistically with IL-23 to produce IL-17 in response to specific

PAMPs and certain pathogens. However, this study didn’t

dissect the role of IL-1 signaling in g/d T cell production of IL-

17 in vitro and in vivo. Our study bridges the remaining gap

showing IL-1 signaling contributes significantly to optimal IL-17

production by g/d T cells in response to both Gram-positive

and Gram-negative bacterial infections.

IL-17 is a proinflammatory cytokine that induces differentiation

and migration of neutrophils. Accumulating evidence has estab-

lished that IL-23-mediated IL-17 production by g/d T cells is

essential in the resolution of infections by several organisms

such as E. coli, BCG strain of Mycobacterium bovis, and Myco-
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bacterium tuberculosis (Matsuzaki and

Umemura, 2007). It seems that g/d T cells

provide a default source of innate IL-17

production in response to bacterial path-

ogens. Moreover, IL-1R1 signaling is

required for an optimal IL-17 response

in this response. Taken together, our
study suggests a possible model for IL-17 production by g/d

T cells (Figure 6), in which specific commensal components of

the intestinal microbiota and VAV1 signaling drive expansion of

systemic and local g/d T cells bearing IL-1R1 (a). In the setting

of infection with potentially pathogenic microbes, both macro-

phages and dendritic cells are stimulated to produce IL-1 and

IL-23 (b); thus IL-1R1-bearing g/d T cells are activated and

produce IL-17 (c), which mediates a protective immune

response to the pathogenic bacteria by recruiting neutrophils

from blood vessels (d) to the site of infection (e). Therefore, our

study uncovers the importance of commensals on innate IL-17

production by g/d T cells and highlights that innate immunity is

not just a two-way interaction between host and pathogens,

but that a third player is also intimately involved: the endogenous

bacterial flora resident within the gastrointestinal tract.

EXPERIMENTAL PROCEDURES

Mice

WT mice (C57BL/6J), IL-1R1�/� C57BL/6J mice, B6129SF1/J mice, and

B6;129S1-Tlr3tm1Flv/J mice were obtained from Jackson Laboratory. Swiss

Webster SPF mice, Swiss Webster GF mice, MHCI�/� C57BL/6 (B6) mice,

MHCII�/� B6 mice, and control B6 mice were purchased from Taconic Farms.

CD1�/� mice, MyD88�/� mice, and VAV1�/� mice (on a B6 background) and

their respective control mice were generous gifts from Drs. Michael B. Brenner

(Harvard Medical School), Douglas T. Golenbock (University of Massachusetts

Medical School), and Wojciech Swat (Washington University), respectively. All

genetically deficient mice and their respective controls were age-matched

males (6–8 weeks old) and were cohoused under SPF conditions.

Cell Isolation and Culture Conditions

PECs were harvested by lavage with PBS. Pulmonary mononuclear cells

(MNCs) were obtained as follows: the lung was directly incubated at 37�C

for 1 hr in 25 ml of 5% FBS-RPMI 1640 containing 37.5 mg of collagenase

and 12.5 mg of dispase (Invitrogen); the tissue was then pressed through

cell strainers, and MNCs were separated by Ficoll-Hypaque gradient. Splenic

MNCs were likewise separated from spleens by Ficoll-Hypaque gradient.

MNCs from intraepithelial lymphocytes, Peyer’s patches, and iLP were iso-

lated as described elsewhere (Weigmann et al., 2007). For flow sorting,

PECs, splenic MNCs, and pulmonary MNCs were stained with APC-anti
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mouse CD90.2, PE-anti mouse g/d TCR, and Alexa 488-conjugated anti-

mouse IL-1R1 (clone 12A6) to obtain purified T cells, g/d T cells, and IL-1R1+

g/d T cells, respectively. The final purity of the T cells was 85%–98% and

was achieved with a BD FACSAria cell sorter. The cell medium was composed

of RPMI-1640 (GIBCO) supplemented with 10% fetal bovine serum, 1% peni-

cillin-streptomycin, 1 mM sodium pyruvate, and 0.1 mM MEM Nonessential

Amino Acids Solution.
Intracellular Staining

Cells were cultured with medium alone, LPS (E. coli K-235 LPS, Sigma), or

cytokines in a CO2 incubator at 37�C for 7 hr. For the last 5 hr of incubation,

brefeldin A (10 mg/mL) and GolgiStop (3 mL/mL) were added. Cells were

washed, blocked with Fcg blocker (1 mg/mL; BD Biosciences) for 15 min at

4�C, and then stained with surface markers or isotype controls for 30 min at

4�C. Thereafter, BD Cytofix/Cytoperm solution (100 mL; BD Biosciences)

was added, and the mixture was maintained at 4�C overnight. Cells were fixed,

permeabilized, and stained with anti-mouse APC (or PE)-conjugated IL-17

mAb, anti-mouse PE-conjugated IFN-g mAb, or isotype controls for 30 min

at 4�C.

Ex vivo intracellular IL-17 staining was performed as described previously

(Shibata et al., 2007). In brief, 500 ml of brefeldin A (0.5 mg/mL) was injected

intraperitoneally 2 hr after injection of E. coli (ATCC 26, 1 3 108 CFU/mouse),

B. fragilis NCTC 9343 (ATCC 25285, 6 3 108 CFU/mouse), or GBS serotype Ia

515 (1 3 108 CFU/mouse). PECs were collected 5 hr after infection. Cells were

stained with surface markers and intracellular IL-17 as described above.
Analysis of IL-1R1 Expression by Flow Cytometry

Cells from different anatomic sites were blocked with Fcg blocker (1 mg/mL) for

15 min at 4�C and then stained with APC-conjugated anti-mouse CD33 mAb,

FITC-conjugated anti-mouse g/d TCR mAb, and PE-conjugated anti-mouse

CD121a mAb (1 mg/mL) for 30 min at 4�C. After being washed twice, cells

were directly analyzed with the FACSCalibur system.
IL-17 Measurement by ELISA

For inhibition experiments, different concentrations of SB203580 (p38 inhibitor

at 5 mM), rottlerin (PKC inhibitor at 10 mM), BAY 11-7082 (NF-kB inhibitor at

8 mM), or LY294002 (PI3K inhibitor at 40 mM) were added to sorted g/d T cell

cultures 30 min before rIL-1b and rIL-23 (1 ng/mL), as described previously

(Sutton et al., 2006). For measurement of IL-17 in vivo, peritoneal contents

were washed with PBS (1 ml for E. coli; 0.6 ml for B. fragilis or GBS) 24 hr after

intraperitoneal infection of WT mice (C57BL/6J, 6–7 weeks old) and age-

matched IL-1R1�/� mice with E. coli (1 3 108 CFU/mouse), B. fragilis (6 3

108 CFU/mouse), or GBS (2 3 107 CFU/mouse). The supernatants or lavage

fluids were assayed for IL-17 by DuoSet ELISA kits (R&D Systems).
Microbiota Reconstitution

Pregnant female GF mice were purchased from Taconic Farms. One day

before the birth of pups, each pregnant GF mouse was cohoused for 24 hr

with one female SPF mouse under SPF conditions. The female SPF mouse

was removed from the cage, and the male pups were housed for 7 or 12 weeks

under SPF conditions. For monocolonization of GF Swiss Webster mice,

B. fragilis NCTC 9343 (1 3 108 CFU) was grown in BHI medium and spread

on food and bedding in a GF isolator. Mice were colonized for 6–7 weeks

before they were sacrificed.
Antibiotic Treatment and Bacterial Analysis

Swiss Webster mice were given metronidazole (1 g/L), neomycin sulfate

(1 g/L), or vancomycin hydrochloride (0.5 g/L) in drinking water for 6 weeks

after birth, as described previously (Ivanov et al., 2008). Antibiotic efficiency

was evaluated according to measurement of the swollen cecum and Gram’s

staining of the cecal contents.
Statistics

Values for p were calculated by unpaired t test. Differences with p values of

< 0.05 were considered statistically significant.
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J. Immunol. 178, 3786–3796.

Weigmann, B., Tubbe, I., Seidel, D., Nicolaev, A., Becker, C., and Neurath,

M.F. (2007). Isolation and subsequent analysis of murine lamina propria mono-

nuclear cells from colonic tissue. Nat. Protoc. 2, 2307–2311.
ier Inc.


	Microbial Colonization Drives Expansion of IL-1 Receptor 1-Expressing and IL-17-Producing gamma/delta T Cells
	Introduction
	Results
	Microbial Colonization of Germ-free Mice Drives the Expansion of CD62L- and IL-1R1+ gamma/delta T Cells
	Effect of Treatment with Different Antibiotics on the IL-1R1+ gamma/delta T Cell Population
	Signaling Pathways Used in the Expansion of IL-1R1+ gamma/delta T Cells
	IL-1R1 Expression Facilitates IL-17 Production by gamma/delta T Cells from Mucous Sites
	Promotion of IL-17 Production by IL-1 and IL-23 in CD44+CD62L-CD27- gamma/delta T Cells Depends upon Intact p38, PKC, NF-kappaB, and PI3K Pathways
	Critical Role of IL-1 Signaling in Optimal IL-17 Production by gamma/delta T Cells in Infection

	Discussion
	Experimental Procedures
	Mice
	Cell Isolation and Culture Conditions
	Intracellular Staining
	Analysis of IL-1R1 Expression by Flow Cytometry
	IL-17 Measurement by ELISA
	Microbiota Reconstitution
	Antibiotic Treatment and Bacterial Analysis
	Statistics

	Supplemental Information
	Acknowledgments
	References


