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Abstract 

We consider several enumerative problems concerning labelled trees whose vertices lie on 
a circle and whose edges are rectilinear and do not cross. 

1. Introduction 

Take n points on a circle labelled counterclockwise from 1 to n and consider graphs 

whose vertices are the given points and whose edges are rectilinear and do not cross. 

Call them noncrossing graphs. The problem of  counting such graphs according to n 

and to the number m of  edges was already studied by Kirkman and Cayley in the 

last century, and more recently by Watson [12] and Domb and Barrett [3]. The last 

reference also considers the enumeration of  connected non-crossing graphs and contains 

recurrence formulae for computing them. Specializing when m = n -  1, one can, in 

principle, compute the number tn of  non-crossing trees (nc-trees for short) on n points 
on a circle (see Fig. 1). 

However, the problem of  counting nc-trees was not considered explicitly in [3]. 

In the work of  Dulucq and Penaud [4] one can find (among other interesting results 

related to configurations o f  chords on a circle and to the decomposition o f  permutations) 
a simple combinatorial proof o f  the following basic fact. 

Theorem 1.1 (Dulucq and Penaud [4]). The number o f  nc-trees on n +  1 points is 

equal to the number o f  ternary trees with n internal vertices. 

I f  we let a, be the number o f  ternary trees with n internal vertices, it is known (see 
[7]) that an = (1/(2n + 1))(3~), a generalized Catalan number. These numbers, although 

not as ubiquitous as the ordinary Catalan numbers, also appear in the solution o f  
several combinatorial problems: dissections o f  a convex polygon into quadrilaterals by 
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? 

Fig. 1. A non-crossing tree. 

means of diagonals, ways of  associating a ternary operation to a string of  symbols, 
lattice-paths below the line y = 2x, and some others. 

Later we will make use of the fact that the generating fimction S- -  ~ o-~z ~ satisfies 
the equation 

S - 1 = z S  3. 

It follows that, if  we define T =  ~ t ~ z  n then T = z S ,  and we have the following 
immediate corollary to Theorem 1.1. 

Corollary 1.2. The number o f  nc-trees on n points is equal to 

,(3::3) 
t n - - 2 n -  1 

and the 9eneratin9 function T = ~ tnz n satisfies z T  - z 2 = T 3. 

On the other hand, we would like to remark that the enumeration of non-crossing 
trees on point configurations, other than a circle, has been studied else- 
where [6]. 

The goal of this paper is to further the enumerative study of non-crossing trees. 
In Section 2, we study the enumeration of non-crossing trees according to the degree 
of  a fixed vertex. In Sections 3-6 ,  we enumerate the following: unicyclic non-crossing 
graphs, bipartite non-crossing trees, non-crossing forests, and unlabelled non-crossing 
trees. In some cases we find closed-form formulae, while in others we obtain algebraic 
equations for the corresponding generating functions and deduce asymptotic estimates 
from them. The paper concludes with some remarks and open problems. 

2. Enumeration according to the degree of a node 

Let t (n ,d )  be the number of trees on n vertices in which a given vertex (say 
number 1) has degree d. The following lemma expresses t ( n ,d )  as a convolution on 
the numbers tn. 
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Fig. 2. Proof of  Lemma 2.1. 

L e m m a  2.1. The numbers  t ( n , d )  can be wri t ten  in t e rms  o f  the number s  t ,  as fo l lows:  

t(n,  d )  = ~ ti, ti2 "'" ti2d. 
il+...+i2d=n+d-- 1 

il,...,i2d >i 1 

Proof .  Let T be an nc-tree on n vertices in which vertex 1 has degree d and is joined to 
vertices kl < • • • < kd. It is clear that, for every i = 1 . . . . .  d - 1, the subgraph induced 
by T on the vertex set {ki . . . . .  ki+l } is the disjoint union of  two nc-trees. Also, the 
subgraphs induced on {2 . . . . .  kl } and {kd . . . . .  n} are both nc-trees. This makes a total o f  
2d  trees of  sizes, say, i l , i2 . . . . .  i2d and it is easily checked that il + . .  "+i2d = n + d - 1 .  

Fig. 2 illustrates this fact for d = 3. 
Moreover, a family of  2d nc-trees on the corresponding vertex sets determines 

a unique nc-tree T in which 6 ( 1 ) = d .  This proves the formula. [] 

In order to obtain a closed formula for t (n ,  d),  we introduce the generating functions 
Td = ~ , t ( n , d ) z  ~, for d > 0 .  The main result will be an application of  the Lagrange-  
Bfirmann inversion formula (see [2]). 

L e m m a  2.2 (Lagrange-Bfirmann).  L e t  s ( z )  be a p o w e r  series  wi th  c o m p l e x  coeffi- 

c ients  and 7 a c o m p l e x  number ,  sa t i s fy ing  an equat ion 

s ( z )  = ~ + z .  g ( s ( z ) ) .  

Then,  

[ zn]u(s ( z ) )  = UO) + - -  - -  1 dn-I  { ~ t t )  } 
n! dt  n-1 9n( t )  t " 

=7 

We are ready for the main result o f  this section. 

Theorem 2.3. For  every  d >. 1 and  n > d 

2 d  ( 3 n  - d - 3"~ 
t ( n , d )  - 3n ---d - 3 k, n - d - 1 ] " 
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Proof. The convolution of the above lemma translates directly into the following equa- 

tion: 

1 T2 d =zd+ls2d" 

Since T/z = S  satisfies S -  1 = z S  3, we can apply Lagrange's inversion to the series Ta 
with 7 = 1, 9(t)= t 3 and u( t )= t 2a. We get 

[Zn]s2d__ 1 d n-1 
n! dt n-1 {2dt3n+2d-l}t=l' 

and after a simple computation one arrives at the expression for t(n,d) claimed 

above. [] 

We will also need a simple consequence of  Theorem 2.3. 

Corollary 2.4. The number o f  nc-trees on n vertices containing the edge (1,n) is 
equal to 

2 ( 3 n - 4 ~  
t(n, 1 ) = 3n------~ \ n - 2 ]" 

Proof. For an nc-tree containing edge (1,n) there exist j ,  with 1 <~j<<.n, such that 
each of the subgraphs induced on {1 . . . . .  j}  and { j +  1 . . . . .  n) is an nc-tree. Thus, the 

required number is tltn-1 + " "  + tn-ltl which, by Lemma 2.1, is equal to t(n, 1). [] 

I f  we consider random nc-trees on n labelled points, then Theorem 2.3 gives the 
density of  the distribution according to the degrees of  the nodes. I f  d(x) denotes the 
degree of  node x in a random nc-tree, then 

p ( d ( x ) = d )  t(n,d) 2d ( 3 n - d -  3)  1 / 3 n - 3 \ - 1  
~-n - 3 n - - - d - 3 \ n - d - l J  ( 2 n -  ) ~ n - 1 )  " 

We have computed the basic statistics of  this distribution. 

Theorem 2.5. The mean and the variance o f  the distribution d(x) are given by 

E(d(x)) = 2(1 - 1/n), 

cr2(d(x)) = (1 - 1/n)(l - 2/n)(3n - 2)/(2n + 1). 

Proof. The mean is the same as for any family of  labelled trees: it is just the sum 2 n - 2  
of  the degrees divided by n. On the other hand, since o '2(d(x))= E(d(x) 2) - E ( d ( x ) )  2, 
we only need to prove that 

E(d(x) 2) =4(1  - l/n) 2 + (1 - l/n)(1 - 2/n)(3n - 2)/(2n + 1) 

( n -  1 ) ( l l n -  12) 
= 

n(2n + 1) 
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This is equivalent to the combinatorial identity 

2d 3 ( 3 n - d -  3~ _ 1 (3n- 3~ (n- 1 ) ( l l n -  12) 

Z 3 n S - d _ 3 \ n _ d _ l  ] 2 n - - l k ,  n - l J  n-(~nnZf) ' 
d 

which can be proved automatically using Zeilberger's algorithm [13]. [] 

The variance of d(x) for general labelled trees is equal to ( 1 -  l / n ) ( 1 - 2 / n )  (see [8] 
3 for this and related results). In the case of  nc-trees the above theorem says it is about 

times higher. It is also interesting to compare Theorem 2.3 with the corresponding result 
for arbitrary labelled trees. I f  we let c(n, d) be the number of  labelled trees on n vertices 

(a_l)(n -- in which a given node has degree d then it is known that c ( n , d ) =  n-2 1)~_a_l 
(and, of  course, the number of  labelled trees is n n-2). It can be of interest to compare 
the ratios t(n, d)/tn ~ 4d/3 a+l and e(n, d)/n n-2 ~ (e(d - 1 )! )-1 for fixed d. 

Finally, the mean number of  leaves (vertices of  degree 1) in a random nc-tree is 
equal to nt(n, 1)/tn ~ 4n/9 = 0.444n while for random labelled trees it is e(n, 1 )/n n-2 
n/e = 0.367n. Hence, a random nc-tree has asymptotically more leaves than a random 
labelled tree. 

3. Unicyclic non-crossing graphs 

A unicyclic graph is a connected graph with a unique cycle or, equivalently, 
a connected graph with the same number of  edges and vertices. I f  we remove the 
unique cycle from a unicyclic graph what remains is a collection of trees. 

A non-crossin9 unicyclic graph (unicyclic nc-oraph for short) on n points will be 
simply a unicyclic graph drawn on a circle without crossings. Let u, be the number 
of  unicyclic nc-graphs on n points, and let Wn be the number of  them containing the 
edge (1,n). The aim of this section is to find a closed-form formula for Un. 

First a technical lemma in the spirit of  Corollary 2.4. 

Lemma 3.1. The followin9 equations hoM: 

u, = t(2, 1)w, + . . .  + t(n, 1)w2, 

Wn =tn - t(n, 1) +2(Uatn_l + " "  + u , - l t l ) ,  

where tn and t(n,d)  are as in the former sections. 

Proof. Let e be an edge belonging to a unicyclic nc-graph G (see Fig. 3). Then to 
the left of  e we have a unicyclic nc-graph containing e and to the right an nc-tree 
containing e, or conversely. I f  we count in two ways the number of  pairs (e, G) with 
e E G then, since G contains n edges, applying Corollary 2.4 we have 

nun = n(t(2, 1)Wn -k- " " q- t(n, 1)w2). 
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Fig. 3. Proof of  Lemma 3.1. 

For the second equation, let G be a unicyclic nc-graph containing (1,n). If ( l , n )  
belongs to the unique cycle then G \ l n  (deletion of an edge) is an nc-tree not containing 
(1,n), and there are tn - t(n, 1) of  them by Corollary 2.4. Otherwise G \ l n  has two 
connected components: one has to be a nc-tree and the other a unicyclic nc-graph. This 
gives 2(ultn-1 + . . .  + [Un-ltl ) possibilities. [] 

For the second equation to hold when n = 1 we need to set t(1, 1 ) =  1. We take that 
as a convention throughout this section. 

Theorem 3.2. The number o f  unicyclic nc-graphs on n points is 9iven by 

u~ \ n - 3 J "  

Proof. From Lemma 3.1 one obtains functional equations involving the generating 
functions U =  ~ UnZ n and W =  ~ wnzn: 

z2U = (T1 - z ) W ,  

W =  T -  T1 +2UT,  

where T and TI = T 2 + z  are as in Section 2 (remember that we have set t(1, 1 )=  1 in 
this case). We can easily express U in terms of the g.f. S of  the generalized Catalan 
numbers an using the fact that T = z S  and S -  1 = z S  3, obtaining 

S ( S -  1) 2 =2.3 S 7 
U = z  

3 - 2S 3 - 2S" 

One could, in principle, use again Lagrange's inversion to find the coefficients of  U 
but the ensuing expressions become too clumsy. Instead, one can first establish the 
relation 

2 ~ = z  2 d2S 
dz 2" 
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This is done using the above expression for U and the functional equation for S. 
We omit the details. From this it follows that 

n U n = ( n 2 1 ) t n  

and, since tn = ( 1 / ( 2 n -  1) "~(3n-3] the result follows. [] 
/ J \  n - - I  / '  

4. Bipartite non-crossing trees 

Even if a tree is always a bipartite graph, in this section we are interested in trees 
with a fixed bipartition. In other words, we take r red points and s blue points dis- 
tributed on a circle, where n = r + s, and ask about the number of  bipartite nc-trees 
on these two sets of vertices. The answer will, of  course, depend on the particular 
distribution of the colours, so we consider two extreme cases particularly appealing: 
first when the red and the blue points are consecutive, and then when the two colours 
alternate. 

Theorem 4.1. The number of  bipartite nc-trees on a chain of  r consecutive red points 
followed by a chain of  s consecutive blue points on a circle is equal to 

( r + s - 2 )  ( r + s - 2 )  
. 

r - 1  s - 1  

Proof. Let 6(1),6(2) . . . . .  6(r) be the degrees of the red vertices in such a tree. Ob- 
viously, 6(1) + . . .  + 6(r) = r + s - 1, the size of the tree, and it is clear that, in the 
non-crossing case, this ordered partition completely determines the bipartite tree. But 
the number of such partitions is precisely (r+s_~2). [] 

The case of alternating colours presents more difficulties. We need a result for ob- 
taining asymptotic estimates from functional equations satisfied by generating functions, 
which we quote directly from Bender [1]. 

Lemma 4.2 (Bender [1]). Assume the power series w ( z ) =  ~ an zn with nonneoative 
coefficients satisfies c~(z,w)-O. Suppose there exist real numbers r > 0  and s>ao 
such that 

(i) for some 6>O,q~(z,w) is analytic whenever Izl <r + 6 and Iql <s + 6; 
(ii) c~(r,s) = C~w(r,s) =0;  

(iii) cA(r,s)¢O, and ~b~( r , s )¢0 ;  and 
(iv) / f  Izl<<,r, Iwl<~s, and ~(z,w)=fbw(Z,w)=O, then z = r  and w=s .  
Then 

an ~ ( ( rC~z )/ ( Zrcc~ww ) ) l/2 n-3/Z r -n, 

where the partial derivatives q~z and (aww are evaluated at z = r and w = s. 
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(a) (b) 

Fig. 4. Bipartite nc-trees. Left: consecutive colours. Right: alternating colours. 

Theorem 4.3. The number of  bipartite nc-trees on n alternating red-blue vertices on 
a circle is, asymptotically, equal to 

~Kn_3/2 ( 135 + 7 8 V ~  n/2 
an -~  j 

for some constant K. 

Proof.  First note that, when n is odd, there will be necessarily two consecutive points 

with the same colour, which will be assumed to be vertices 1 and n. However, we do 

not need to distinguish between the even and the odd case. Our first claim is that the 

an satisfy the following recurrence: 

an : ~ aiajak, 
i,j,k>~l 

i+j+k=n+ 1 
i+j even 

starting with al = a2 = a3 : 1 and a4 = 4. To prove it, consider a bipartite nc-tree T 

on n vertices with alternating colours and let fl be the neighbour o f  1 with largest index, 

which is necessarily even. Then on the vertex set {i,i + 1 . . . . .  n} we have induced a 

bipartite tree o f  the same kind. 

Since in a tree there are no cycles, there has to exist some ~ such that T induces 

respective trees in the vertex sets {1 , . . . ,~}  and {0~ + 1 . . . . .  fl} (see Fig. 4). The three 

induced trees are bipartite with alternating colours and together they determine T. 

Hence, an = ~ a~a~_,an_~+l and the claim is proved. 
Now, let A(z)= ~ an+lZ n (taking an+l instead of  an as the coefficient o f z  n is meant 

to simplify the computations below). The above equation translates into the functional 

equation 

A(z) 2 -F A ( - z )  2 
A ( z ) -  l=zA(z)  2 



M. Noy/Discrete Mathematics 180 (1998) 301-313 309 

After substituting z by - z  and some straightforward manipulation we arrive at 

A_(z)  2 =A+(z) (A+(z) -  1), 

A + ( z ) -  l=z2A+(z)3(2A+(z)-  1) 2, 

where A+(z)= ~ a2n+lZ 2n and A_( z )=  ~ a2n+2Z 2n+l are the even and the odd part o f  

A(z). We can apply directly Lemma 4.2 to the second equation (since it is a polynomial, 

the required conditions can be checked easily) and we get the value r -~ = ( 1 3 5  + 
78V~)/16)  1/2. 

Eliminating A+(z) from the above equations we get another equation o f  degree five 
in A_(z)  2, namely 

16z4u 5 -- 24z4u 4 -k- (9z 4 -- 8Z2)U 3 -- 2z2u 2 -b (1 + 30zZ)u -+- 9z 2 -- 2 = 0 .  

Again using Lemma 4.2 the same value o f  r is found and the theorem is proved. [] 

5. Non-crossing forests 

In this section, we consider the enumeration o f  non-crossing forests, i.e. acyclic 

graphs, on a circle. The techniques will be similar to those employed in the last 

section. Let fn be the number o f  nc-forests on n points on a circle. 

Theorem 5.1. The generating function F = ~ fn+l Zn satisfies the equation 

zF 3 q- (z 2 - z )F  2 + (2z - 1 )F  + 1 = 0. 

The numbers fn are, asymptotically, 

f n  ~ Kn-3/Z°~n,  

where K is a constant and ~ ~ 8.22469 and ~-1 is the smallest positive root of  4~ 3 - 
32~ 2 - 8~ + 5 = 0 .  

Proof.  Let gn be the number o f  nc-forests on n points in which 1 and n belong to the 

same component, and let G = ~ gn+l Zn (note that, for technical reasons, the coefficients 

in F and G are shifted). We derive recurrence equations involving fn and gn as follows. 

Let F be an nc-forest on n points and let fl be the neighbour of  1 with largest index. 

Let ~ + 1 be the point with lowest index (~ > 0) belonging to the component o f  ft. 

Then we have nc-forests on {1 . . . . .  ~} and {fl . . . . .  n}, and a forest on { ~ +  1 . . . .  ,fl} in 

which ~ + 1 and fl belong to the same component. As a consequence (the term fn-1 
arises when 1 is an isolated point). 

fn = f n - - 1  ~ - E  f~g/~--afn--~+l = f n - - 1 - ] -  E 3£gk. 
i+j+k=n+ l 

i,j,k >~ 1 
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Similarly, if  we start with an nc-forest in which 1 and n belong to the same component 
then 

g.= ~ sfojok. 
i+j+k=n+l 

i,j,k >t 1 

In terms of  the generating functions, we have F -  1 =z(FZG + F )  and G -  1 =zFG 2. 
After elimination one gets the equation 

zF 3 + (z z - z ) F  z + (2z - 1 )F  + 1 = 0. 

As in the previous section we apply Lemma 4.2 to the above equation. I f  we let 
49(z, F )  = zF 3 +(z  z - z  )F 2 + ( 2 z -  1 ) F +  1, then eliminating F from ~b(z, F )  = q~r(z, F )  = 
one obtains 

5z 3 - 8z z - 32z + 4 = 0. 

The inverse of  the smallest positive root is equal to 8.22469. [] 

We end this section with a remark. Let F(n)  be the number of  (ordinary) labelled 
forests. There is no simple closed formula for this number (see [8,11] for more recent 
results) but it is known that F(n)/nn-2,,~ x/-e. However, it follows from the above 

theorem that there are exponentially more nc-forests than nc-trees on n points, since 
the number tn of  nc-trees is in the order of  (2--74)nn-3/2 by Corollary 1.2. 

6. Unlabelled non-crossing trees 

When we speak of an unlabelled structure, we mean the orbit of  a set of  labelled 
structures under the action of some group of  symmetries. In the case of  non-crossing 
trees the natural symmetries (automorphisms) to consider are given by the action of 
the dihedral group. Hence, we say two nc-trees on n labelled vertices are equivalent 
if  one is obtained by a rotation and/or a reflection from the other. In other words, an 
unlabelled nc-tree is the shape of  a certain nc-tree drawn on the vertices of  a regular 

polygon. 
One can count exactly the number of  inequivalent nc-trees using a technique of  Moon 

and Moser [9] in a similar problem concerning triangulations of  a convex polygon. 

Theorem 6.1. The number t* o f  unlabelled nc-trees on the vertices o f  a regular n-oon 
is equal to 

1 3n - 3 3 ( 3n/2 - 1 
t * =  2 n ( n -  l ) ( n - 1 )  + ~ - - 2  \ n / 2 - 1 )  for  even n, 

1 ( 3 n - 3 ) +  1 ( ' 3 ( n - 1 ) / 2 " ~  for  oddn .  
2 - - ~ S  1) n -  2n \ ( n -  1)/2 J 
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q p 

(a) (b) (c) 

Fig. 5. Symmetries of no-trees. (a) Rotation; (b,c) reflexions. 

Proof. The proof is an application of the formula 

1 
N ( G ) =  ~G- ~ ~ 2(a) 

aEG 

for counting the number N ( G )  of orbits under the action of a permutation group G, 
where 2(~) is the number of fixed points of tr. Hence, given a rotation or a reflection 
we have to count the number of nc-trees fixed by (r. 

Rotational symmetry: It is clear that there is no rotational symmetry if n is odd, 
and that for even n only when the rotation is of 180 °. In the latter case there must 
exist an edge connecting a pair p and q of 'opposite' points (refer to Fig. 5(a)). On 
one side of pq we can draw any nc-tree containing the edge ( p , q )  and the same tree 
rotates on the other side. Thus, the number of invariant nc-trees is, for a fixed pair of 
opposite points, equal to t(n/2 + 1, 1) (by Corollary 2.4). 

Axia l  symmetry: There are two kinds of axis of symmetry. First those containing a 
vertex p (Fig. 5(b)). For n even the analysis is as above for rotational symmetry and 
gives t(n/2 + 1, 1) invariant trees; for n odd it is clear that there is no edge joining 
the 'left' and the 'right' of  p and the number of invariant trees is just t(n+W2. 

The second case involves an axis joining the middle points of opposite sides and it 
only occurs when n is even. In this case, there is one and only one edge pq from left to 
right and it must be 'horizontal' (see Fig. 5(c)). This amounts to two reflected nc-trees 
of sizes summing up to n/2 + 1. The number of fixed trees is then tltn/2 -k- • • • q- tn/2tl, 
which by Corollary 2.4 is equal to t(n/2 + 1, 1). 

Applying the orbit's formula and taking into account the identity permutation, we 
finally get 

1 (tn + 3n/2t(n/2 + 1, 1)) 

t*.= 1 
2n (t, + nt(n+l)/2) 

for even n, 

for odd n. 
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After substituting tn and t (n ,d )  by the binomial expressions found before we get the 
result. [] 

From the previous theorem it follows that t* ~ tn/2n. This means that most non- 
crossing trees are rigid, i.e., have no symmetry besides the identity. 

We also consider the particular case of  non-crossing Hamiltonian paths. The expres- 
sion n2 n-3 comes from the fact that there are  2 n -2  Hamiltonian paths starting at a 
given vertex. The expression for p* is again an application of the orbit's formula and 
we omit the proof. 

Theorem 6.2. The number o f  labelled non-crossing Hamiltonian paths on n points on 
a circle is equal to n2 n-3. The number o f  unlabelled paths  is 

p ,  = [ 2 n -4  -[- 2 (n-4)/2 f o r  even n, 

L 2 n-4 q- 2 (n-5)/2 f o r  odd n. 

7. Conclusions and open problems 

We have introduced the family of  non-crossing trees which, although much smaller 
than that of  labelled trees, is also a rich source of  enumeration problems. The classical 
recursive techniques for the enumeration of labelled trees do not apply in this case 
and we have developed new techniques, which have proved useful in the solution of 

several problems. 
We would like to mention a couple of  problems left open in this paper. First to 

find a combinatorial proof of  the simple relation n un = (n21)tn obtained in Section 3. 
And secondly, to find a closed formula (possible quite involved) for the number of  
nc-forests. 

In [10] the problem of counting the number of  nc-trees on n vertices having ex- 
actly k leaves was discussed and some partial results were obtained. At the time of  
this writing the author learned from Philippe Flajolet [5] a complete solution to the 
problem: the number of  rooted nc-trees on n vertices and k leaves turns out to be 
(l/(n-~jj~l~fn-l~"~k-l(n-l'~fn-l-k~gn-2k+Jk }Z-~j=O \ j ] k k - l - j }  ~ . There is also a similar formula for un- 

rooted trees, thus, answering in the affirmative a conjecture made in [10]. 
Finally, we mention a few problems for future research. Enumeration of  nc-trees with 

a given partition: we are given a (circular) sequence (dl . . . . .  dn) with ~ ] d i = 2 n -  2 

and ask how many labelled nc-trees are in which vertex i has degree di. Analogues to 
the matrix-tree theorem for nc-trees: given a labelled graph G find a way to compute 
the number of  non-crossing trees on a circle spanning G by means of the adjacency 
or Laplacian matrix of  G. 
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Added in Proof 

Reference [14] contains the solution to some of the open problems mentioned in the 
last section, as well as additional results on the enumeration of  non-crossing graphs. 
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