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Abstract

By extending Darboux method to three dimension, we present necessary and sufficient conditions
for the existence of periodic orbits in three species Lotka—\olterra systems with the same intrin-
sic growth rates. Therefore, all the published sufficient or necessary conditions for the existence of
periodic orbits of the system are included in our results. Furthermore, we prove the stability of peri-
odic orbits. Hopf bifurcation is shown for the emergence of periodic orbits and new phenomenon is
presented: at critical values, each equilibrium are surrounded by either equilibria or periodic orbits.
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1. Introduction

Consider a community of three interacting species modelled by a Lotka—\olterra system
with the same intrinsic growth rates
x1 =x1(b — a11x1 — a12x2 — a13xa),
xp = x2(b — az1x1 — azoxz — azaxa),

xg = x3(b — az1x1 — azoxz — azaxa), (1.1)
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whereux; (1) is the population size of thi&h species at time, x;(0) > 0, andx; denotes

dx;/dt,i =1,2,3. We restrict our attention to the open positive cone!("fmwhereRﬁr =
{x € R3, x >0}, wherex = (x1, x2, x3).
From now on, we use the following notations:

3
F:(Fls P, F3)7 Fi :)C,’(b—Zdinj), i €Z3,
j=1

A :=ajj —aj-1i, Bi:=aj+1i—ai, €723,

1 a1 a1i-1
Aj:=det| 1 aziy1 azi—1 | =Ai-1Aiy1+ Ai1Biy1+ Bi-aBiya, i€Zs,
1 aziy1 aszi-1

aill d4di2 ais
A= det<a21 az2 a23> =a11A1 + a22A2 + azz3Az + B1B2B3 — A1A2A3,
az1 asz ass
whereZz := {1, 2, 3} is considered in cyclic.
We denote byy; the radial projection fronR® \ {0} to the unit spher&? := {x € R3:
x| = 1}, that is, yr1(x) = x/]x|. We denote byy, the radial projection fron($2)° :=
S2NintR3 to the planery := {x e intR3: x3 = 1}, that is,y2(x) = x /x3.

Lemma 1.1 [6]. Consider the vector field” of (1.1); then there is a vector field on
(52)% such that every orbit of is projected onto that o7 by the projection/, and

G =(G1, G2, Gy),

where
3
Gi(x) = (Ix|? = x2) (Fi (x) — bx;) — Z xixj(Fj(x) — bx;),
J#i. j=1

xe(s2) ieza
The corresponding system is
X =Gx), xe(s2)° (1.2)
which has the following properties

(i) If A1A2A3 — B1B2B3 # 0, then it has no periodic orbifs
(i) If AfA2A3 — B1B2B3 =0, then it has a nonconstant analytic first integral.

In this paper, by extending Darboux method in [1,4] to system (1.1), we give the first
integral of (1.1) ifA1A2A3 — B1B2B3 = 0, then the predicted nonconstant analytic first
integral of (1.2) in Lemma 1.1 can be obtained {y. Furthermore, the first integral is
used to give the Hopf bifurcations which generate an infinite family of neutrally stable
(unstable) periodic orbits. Our bifurcation conditions include all those in [3,5,6]. Generally,
the necessary and sufficient conditions are given for the existence of periodic orbits of (1.1).
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Theorem 1.2. The periodic orbit 0f 1.1) exists if and only if one of the following conditions
is satisfied

(i) A1A2A3— B1B2B3=0,b=A=0,4;>0,i € Z3;
(i) A1A2A3— B1B2B3=0,bA >0, A; >0,i € Zs.

The proof of Theorem 1.2 is in Section 4 of this paper.
Since the restriction of/, to (SJZF)0 is one-one, every orbit of (1.2) is projected ontp
by the projectiony,, that is:

Lemma 1.3. Consider the vector field on (SJZF)O; there is a vector field? on the plane
1 such that every orbit of1.2) on (SJZr)0 is projected onto that off on; by the projec-
tion y2, where

H = (x1[(a31 — a11)x1 + (a32 — a12)x2 + (a33 — a13)],
x2[(a31 — az1)x1 + (a32 — azo)x2 + (a33 — az3) ], 0),
the corresponding system is

xX'=H(x), xem. (1.3)

Suppose is an orbit of (1.3). Let
Sy :={kx: k>0, x ev}.
Thenby Lemmas 1.1 and 1.8, = v; (¥, 1 () U{0}, ands, is an invariant cone of (1.1).
We call S, is closed if there is a plane such thatr N S, is a closed curve in imi.

Lemma 1.4. If y is a periodic orbit of(1.1), thenyr1(y) is a periodic orbit of(1.2) on
(52)°, andyr2(¥1(y)) is a periodic orbit 0f(1.3) on 1.

Proof. Suppose/1(y) is not a periodic orbit of (1.2) oa52)°. By Lemma 1.131(y) is
a bounded curve o052)° with two end points. Suppose® = (p?, p3, p9) is one of the
two end points and let

L:={tp% >0,  vi=v(va(y)).

Theny, L C S,.OnS§,, L is tangent toy at some point; p°, wherer; > 0. That is, there
existsc # 0 such that

F(1p%) = ct1p?,
then

3
> aijpd=wb—-c)/nu, iezs,
j=1

F@tp®) =p)p° Vi >0,
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wherep(t) =t (b — (b — ¢)t/t1). Since
p(t1) =tic #0,
then there i$ > 0 such that
() #0, te(t1—45,1n+9).
If b=0, thenp(t) = ct?/11 # 0, and
d(;;:o) = goTlt)F(tpO)’ t >0,

that is, L is an orbit of (1.1) withr1 p© in it, this contradicts the fact that is a periodic
orbit of (1.1) with1p% in'it. If 5 > 0, ¢ > 0, theng(r) > 0, t € (0,11 + 8). Let L1 :=
{y(@): y(t) =1p°, 1 € (0,11 + 8)}, theny(r) satisfies
dy(1) 1
——=——F(y(@)), te€(0,t+3).
7 ) (y) € (0,11 +9)
That is, L1 is an orbit of (1.1) withe1 p° in it, this contradicts the fact that is a periodic
orbit of (1.1) with#1 p@ in it.
If b >0, c <0, the contradiction also exists while another orbit of (1.1) is constructed,

Ly :={z(1): z(t) =1p°, 1 € (11 — 8, +00)}.

Similar tob > 0, the contradiction also existsif< 0, the details are omitted.
Theny1(y) is a periodic orbit of (1.2) on(s2)°. It follows from Lemma 1.3 that
Y2(¥1(y)) is a periodic orbit of (1.3) omr1. Lemma 1.4 is proved. O

Lemma 1.5 [7]. Consider the system
¥ =X(x), xeR? (1.4)
where X (x) is continuous inR?. If y is a periodic orbit of(1.4), and D is the bounded

area surrounded by, there must exist an equilibrium ¢£.4) in D. If every equilibrium
of (1.4) is isolated, the sum of the indexes of the equilibridimust bel.

While we restrict our attention ta, (1.3) becomes a planar systemAfA3 < 0 or
A2A3 < 0, there is no interior equilibrium of (1.3). By Lemma 1.5, there is no periodic
orbit of (1.3). Supposetz = 0. If there is an equilibrium of (1.3), the set of equilibria
of (1.3) must be the line

(a31—a11)x1+ (a2 — a12)x2 + (azz —a13) =0,
or the line

(a31— az1)x1 + (as2 — a22)x2 + (azz —az3) =0,
which separates; into two open areas with no intersection. By Lemma 1.5, there is no
periodic orbit of (1.3). It follows from Lemma 1.4 and the symmetryaaf A, A3 that

Lemma 1.6. (i) If A1A3 <0o0r AxA3 < 0, there is no periodic orbit of1.1).
(i) If A1A2A3 =0, there is no periodic orbit of1.1).



240 Y. Wang / J. Math. Anal. Appl. 284 (2003) 236249

Supposets # 0 and let

<A1 Ao

q = A_a D

3 A3

If A1A3 >0, A2A3 > 0, g is the unigue equilibrium of (1.3), anfl is an invariant line
of (1.1).

1), I :=={kq: k> 0}.

Lemma 1.7 [7]. Consider the system

dzi

P + dzozi +d11z122 + dozzg,

dzz

—-=a+ 2022 + €112122 + €0225. (1.5)

If doo+ do2 =0, e20+ eo2 = 0, the equilibrium(0, 0) of (1.5) is a center.

Lemma 1.8. Consider the vector field on . If

A1A2A3— B1B2B3=0, A; <0,i€Z;3,
there is no periodic orbit 0f1.3) on 1. If

A1A2A3— B1BpB3=0, A; >0, i€ Za, (1.6)
q is a center 0{1.3).

Proof. SinceA;As > 0, A2A3 > 0, g is the unique equilibrium of (1.3). IA1A2A3 —
B1B2B3 =0, the eigenvalues eofH (¢) are given by

+/—A142/A3.

If A; <0,i € Z3, g is a saddle of (1.3), that is, the index @fis —1. It follows from
Lemma 1.5 that there is no periodic orbit of (1.3).
Suppose; > 0,i € Z3. Lety; :=x; —g;,i =1, 2; then (1.3) becomes
¥i = q1(az1 — a1)y1 + q1(az2 — a12)y2 + (az1 — a11)y? + (as2 — a12) y1y2,

¥y = q2(az1— a2 y1 + qa(asz — az2)y2 + (az1 — az) y1y2 + (as2 — a12)ys,  (1.7)

wherey; > —¢g;, i =1, 2.

Let
A :=qi(az1 — a11), B :=qi(az2 — a12), C :=qo(az1 — az1),
0:=vV—A2—BC =,/A1A5/A3.
Let
_ 1 A _ 1 . T
M= ST 2 y2=——22, =

Then (1.7) becomes (1.5), where
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don— (a31 —a11) dur— 2(az1—a11)A n (a32 — a12)
doy . @31~ a1)A® | (azz—a1pA eon— e — 0 oy 1

Sincedzg + dp2 = 0, e20 + ep2 = 0, it follows from Lemma 1.7 that the equilibriug®, 0)
of (1.5) is a center, that ig, is a center of (1.3). Lemma 1.8 is proveda

Suppose the conditions in (1.6) are satisfied, then there is a family of periodic orbits
of (1.3) which surround;. For such periodic orbitg of (1.3), S,, is a closed, invariant
cone of (1.1) which surrounds. We denote by an orbit of (1.3); ther¥k > 0, there
existsd, > 0 such that ifS, N Oky.s, # ¢, Sy is a closed, invariant cone of (1.1) which
surroundd’”.

It follows from Lemmas 1.4 and 1.8 that

Corollary 1.9. If A1A2A3 — B1B2B3 =0, A; <0, i € Z3, there is no periodic orbit
of (1.1).

2. Thecase A1A2A3— B1B2B3=0,A=0,and A; >0,i € Z3

Theorem 2.1. If A1A2A3 — B1B2B3=0,b=A =0, A; > 0,i € Z3, every equilibrium
of (1.1) is a center innt R3..
Proof. Sinceb = A =0, there arey;, i € Z3, which satisfy

3 ’

3
Za,%:O, ZaizyéO.
! i=1

i=
We obtain the first integral of (1.1),
1(x) =xy"x5%x3°.
Without loss of generality, we suppogg # 0. Since

_aitoaztas det( ¥12 913) _ o
a3 az a3 ’

Ax

thena1 + a2 + a3 # 0. It follows from A =0, A; > 0,i € Z3, that every equilibrium
of (1.1) must be on’". Let Iy := {x e intR3: I(x) = I(kq)}, wherek > 0, the normal

vector of I atkq is (1 A7, a2 A5t a3 Az Ask = (k).
We denote byr, the plane

A A
(Ollﬂfl, azﬂil, ozSAEl) : <x1 - kA—;, X2 — kA—z, X3 — k) =0.

Iy is tangent tory, atkqg.
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Since
A1 Ao 3
-1 -1 -1
a1A7 T, 02A5 T, a3A -<—,l—,l>=l a; 0,
( 1 2 3 ) A3’ As ; i
wherel > 0, thenI” ¢ mi,. Letv be an orbit of (1.3). By Lemma 1.8, theresis> 0 such
that if S, N O (kq, 81) # ¢, S, is a closed cone an§l, N my, is a closed curve in imi.
Since I; is tangent tomy, at kq, then there isS2 > 0 (62 < 81) such that if S, N

O(kq,82) # ¢, S, N I is a closed curve in irR?r, that is, a periodic orbit of (1.1). It
follows from the arbitrariness of,, andk that Theorem 2.1 is proved.o

For example, every orbit of the following system is either a periodic orbit or an equilib-
rium:
x1 = —Bx1x2 + fx1x3, X =+px1x2 — Bxoxa,  x3=—Px1x3z+ fxoxs,

whereg > 0.
Theorem 2.2.1f b#£0,A=0, A; > 0, i € Z3, there is no periodic orbit of1.1).

Proof. SinceA =0, there arey;, i € Z3, which satisfy

3 ¥/ 3

j 2
Do =n )« #0,
i=1 ! i=1

wherep = b Y2 | ;. Thenx{Lxy2xg® = cexp(ur), wherec = x51(0)x52(0)x33(0) > O.

Without loss of generality, we supposg # 0. Since

o1+ a2 +a3 a a
= =TT et Y2 3 S 0,
o3 azz az3

Ay

thenoy + a2 + a3 #0, u #0.

If o >0, then lim_ 4. cexp(ur) = +oo. There isi, i € Z3, such that i, ;o0 x;" (1)
=+00. Thenlim_ ;o x; (t) = 400 or lim,, 1~ x; () = 0, which means; (¢) is not peri-
odic.

If w <0, thenlim_, 4o cexp(ut) = 0. Thereis,i € Z3, such that lim_, ;. x;" (1) = 0.
Then lim_ 400 x; () = +00 or lim;— 1+ x;(¢) = 0, which means; (¢) is not periodic.
Theorem 2.2 is proved.O

3. Thecase A1A2A3— B1B2B3=0,A#0,and A; >0,i € Z3

Let p := (p1, p2, p3), Wherep; :=bA;/A,i € Z3.

Theorem 3.1. If
A1A2A3— B1B2B3=0, bA <0, A#0, A; >0,i€Z3,

there is no periodic orbit of1.1).
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Proof. We give the proof of the cage> 0, A < 0. The proof of the case< 0, A > 0 can
be obtained it is replaced with— in the proof of the cask > 0, A < 0.

Letx; = y; + p;, wherey; > —p; > 0. SinceA; > 0,i € Z3,andA = a114A1+azA2+
a3z3A3 < 0, then there exists, i € Z3, such thatz;; < 0. Without loss of generality, we
supposer11 < 0. SinceA # 0, then there is a matridd = (m;;)3x3, detM = 1 such that

1

(y1+p1) —aiiyi
. 0 0 0
M| 35 | = | —9222 |- az33#0,
, 0
Y3 —da33y3
(y3+p3)
im y; aiiyl > di1p
1j————— = —ai1y1 > aiipi,
— T Ojtr)
j
3 ! 3
mlj _ _ _ ml_,'
ij (1) _cexp( a11/y1(s) ds), c= l_[xj 0) > 0.
Jj=1 0 Jj=1

Suppose > 0. Then lim_ 1 cexplai1pit) = +oo. There isj, j € Z3, such that
lim;— 400 x:."l-’ (t) = +00. Then lim_ oo x;(t) = +00 O liM; 100 x;(r) = 0, which
means () is not periodic.

Supposeb = 0. If liminf,_, ;5 y1(t) = 0, then liminf_, ;- x1(#) = 0, which means
x1(¢) is not periodic. If liminf_, ;o y1(#) = m1 > 0, then lim_ 4 —allfé y1(s)ds =
+o00. Thereisj, j € Z3, such that lim_, 4 x;"“ (t) = 400. Then lim_, 4o x; (t) = +00
or lim;- 400 x () = 0, which means (¢) is not periodic. Theorem 3.1 is provedd

Letw(x):=b— Z?:l aiiXi.

Lemma3.2.If A1A2A3 — B1B2B3 =0, A #£ 0, there is a first integral/ (x) of (1.1),

3
U) =] [« v, (3.1)

i=1

where

v(x) = B1A1x1 4+ A1A2x2 + B1B3x3,
3

Za,'joliz—ajj, j € Z3.
i=1

«; also satisfy the system

3
1+ ) o =0 (3.2)
i=1
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Proof. We extend Darboux method in [1,4] to system (1.1) for searching a first integral.
The Darboux method is based on determining pairs of polynomjals), K; (x)) such
that

3
afi

> Figo = fiki. (3.3)

P
We look for an invariant of the form

3
Ux,1)= ]‘[ £ exp(st). (3.4)
i=1
We obtain
3 N 3
U (07 af,'
- - F: U

Taking into account (3.3) and imposing thatis an invariant, we obtain

N
S—i—Z(X,’K,‘ =0, (3.5)

whereq;, s can be determined.
The following three pairs of polynomials satisfy (3.3):

(f1(x), K1(x)) := (x1, (b — a11x1 — a12x2 — a13x3)),
(f2(x), K2(x)) := (x2, (b — a21x1 — azox2 — azsx3)),

(f3(x), K3(x)) := (x3, (b — az1x1 — azax2 — azaxs)).

If A1A2A3 — B1B2B3 =0, we have another paiv, w) which satisfies (3.3). Then there is
an invariant of the form

3
Ux. 1) =[] £ vexpist),

i=1

where

3 3
s+b<1+2ai>=0, Zaiaijz—ajj, i €Z3. (36)

i=1 i=1
SinceA # 0, we can obtain the unique solution of (3.6), and find thaatisfy

3

Zai = —(a11A1 + axpAr2 + a33A3)/A'
i=1

Then 1+ Z?zloq =0,5s=0,U(x,1) =U(x). Lemma 3.2 is proved. O
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Letrz := {x € R%: v(x) = 0}, m is an invariant plane of (1.1) if2Nint RS # ¢. Under
the conditions of Lemma 3.2, ifB1A1)2 + (A142)% + (B1B3)? # 0, it follows from (3.2)
that every surfac§. := {x: U(x) = ¢} is an invariant cone of (1.1), where= U (x°), x% ¢
intR3. Letv = yr2(¥1(S.)); thenw is an orbit of (1.3) and, = v, 2, 1(1)) U {0} = S,..

Lemma 3.3. Suppose that the following conditions are satisfied
A1A2A3— B1B2B3=0, b>0, A>0, A; >0, i¢cZs. (3.7)

If there exists a periodic orbit of1.1), there isép > 0 (8o < pi, i € Z3) such that
div F(x) #0for x € O(p, éo).

Proof. Lety be a periodic orbitof (1.1). SupposE p) = 0; thenp € 72, g € Y2 (¥1(2)).
Sincer; is an invariant plane of (1.1), then by Lemmas 1.1 and {&:83/1(r2)) is an
invariant line of (1.3).

It follows from Lemmas 1.3 and 1.4 that(y1(y)) is a periodic orbit of (1.3). By
Lemma 1.5, the unique equilibriugn of (1.3) must be surrounded hy>(¥1(y)). This
contradicts the fact that, (1 (;r2)) is an invariantline of (1.3) with init. ThenU (p) # 0,
that is,v(p) # 0.

It follows from (3.3) thatw(p) = 0. Since

WV E S (Fi(x) ) P
vF()=Y —aixi ),  Fi(p)=0, ieZs,

Xi
i=1
divF(p)=—-b+w(p)=—-b+#0,

then Lemma 3.3 is proved.O

Lemma 3.4. If the conditions in(3.7) are satisfied, then

(i) There exists)p > 0 such that ifS. N O(p, no) # ¢, S. is a closed cone which sur-
roundsr;

(i) There exists an infinite family of periodic orbits @1) in O (p, o) and p is locally
stable.

Proof. Since the conditionsin (3.7) are satisfied, tli8nA1)2 + (A142)2 + (B1B3)% # 0.

It follows from Lemmas 1.3 and 1.8 thatis a center of (1.3); then the result in (i) is
proved.

Since the eigenvalues aff'(p) are given by

+/—A1A2A3
A
let E§ be the linear spanning by the generalized eigenvectofs\¢fA1A2A3/A, and

let E° be the linear spanning by the eigenvectors-@f ThenE® = {tp: t € R}. Since
R3=E§® E°,thenE* ¢ ES, —p ¢ E.

_b’

’
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Let
EC:={p)+E5=|p+y yeES}, m:=E°NRS.

Then 0¢ .

Let V:={tx: t > 0, x € 7}. Sincep is an interior point ofV, then there ig;; > 0
such thatO(p,n1) C V. If x € O(p, n1), then{tx: t > 0} N # ¢. So there isy2 > 0
(n2 < min{ng, n1}) such thatS,. N x is a closed curve ik, N O (p, n2) # ¢.

It follows from the center manifold theorem for flows [2] that there is a two-dimensional
center manifoldW? of (1.1) which is tangent tar at p. SinceS, N is a closed curve if
S. N O(p, n2) # ¢, there existg)z > 0 (y3 < n2) such that every curvé := S, N W2 is a
closed curve ifS. N O(p, n3) # ¢.

Forésp in Lemma 3.3, it follows from the analyticity df (x) that there is$ > 0 (8 < n3)
such thatl c O(p, 8o) if S. N O(p, ) # ¢. SinceS., W are invariant manifolds of (1.1),
L is a periodic orbit of (1.1). It follows from the arbitrariness £f (with the condition
S. N O(p,8) # ¢) that p is a center orW2. Sincep is asymptotically stable oB*, p is
locally stable. Lemma 3.4 is provedO

Lemma 3.5. Suppose that the conditions {8.7) are satisfied. If there exists a periodic
orbit of (1.1) on S;. N O(p, 8o) for somec, it is the unique periodic orbit 0f1.1) on
Se N O(p, do).

Proof. Suppose there are two different periodic orbitsy» C S. N O (p, do) for somec.
Let D be the area which is surrounded fy y2 on S, and letn := (n1, n2, n3) be the unit
normal vector ofD on S., thenD C S. N O(p, 80), and it follows from Stokes theorem

that

7{(11 X F)dr://nocurl(n x F)do,

aD D
but

mx F)dr=mx F)Fdt=0,

curlm x F)=ndivF — Fdivn + (F,gradn — (n,grag F,
where

3 an

(g, gradh := ;gia—xi
for

g=(g1(x), g2(x), g3(x)),  h=(h1(x), h2(x), h3(x)).

Since

n-curln x Fy=divF — (n- F)divh+n-(F,gradn —n - (n,grad F,

3
d 1

n~(F,grao)n=n-ZFia—zziF«gradnw):O,

i=1 !



Y. Wang / J. Math. Anal. Appl. 284 (2003) 236-249 247

oF 1
— =n-gradn- F) — -F -gradn - n)
ax 2

i

3
n-(n,gradfF =n- Zni
i=1

=n-gradn- F) =0,
then
n-curln x Fy=divF — (n- F)divh +n - (F,gradn —n - (n,grad F =div F.

It follows from Lemma 3.3 ané > 0 that divF (x) < 0 if x € O(p, o), which contradicts
the fact thatf, ,(n x F)dr =0. Lemma 3.5 is proved.O

It follows from Lemma 3.5 that under the conditions in (3.7), the center manifold at
is unique. In fact, if there are two different center manifolat&andw2 at p, then similar
to the proof of Lemma 3.4, thereis> 0 such thafs. N W02 andsS. N W2 are two different
periodic orbits of (1.1) inD (p, do) if Sc N O(p, n) # ¢. This contradicts Lemma 3.5.

Theorem 3.6. If the conditions in(3.7) are satisfied, there exists an infinite family of neu-
trally stable periodic orbits 0f1.1).

Proof. We denote byy the orbit {x(¢): ¢+ > 0} of (1.1). It follows from Lemma 3.4
that for 5o in Lemma 3.3 andjg in Lemma 3.4, there i$1 > 0 (81 < min{&ono})
such that ifx(0) € O(p.81) \ I', Sux(0)) IS a closed cone angd C S(p, §0/2), that is,
v C Su) N S(p,80/2). Since there is no equilibrium oSy (x o)) N S(p, 80/2), it fol-
lows from Poincare—Bendixson theorem that #wimit set of y is a periodic orbityl0
of (1.1). By Lemma 3.5;/10 is the unique periodic orbit of (1.1) ot (x(0)) N S(p. 80/2).

Sincep is locally stable, then fo1 > 0, there is2 > 0 (82 < 81) such that ifx(0) €
O(p,82) \ I', theny C S(p,81/2). The w-limit set of y is a periodic orbity? of (1.1),
y0C S(p,81/2), andSy v (o) = {tx: t =0, x € y°}.

Let x(0) (x(0) € O(p, 82) \ I') fixed, and letA := Sy ) N O(p, 81). Sincey? ¢
S(p,81/2), then onSy (o)), A is a connected area with? in it. Every orbit{y(s): > 0}
of (1.1) with y(0) € A satisfiesy(r) € Sy ) N S(p, d0/2). Since there is no equilib-
rium on Sy () N S(p, do/2) and y9 is the unique periodic orbit of (1.1) 08y (x(0)) N
S(p, 80/2), then it follows from Poincare—Bendixson theorem that #wimit set of
{y(): t > 0} is¥°. By the analyticity of/ (x) and the arbitrariness af0) in O (p, 82)\ I,
Theorem 3.6 is proved.O

Since the eigenvalues aff'(p) are given by

B1B2B3 — A1A2A3+/(A1A2A3 — B1B2B3)? — 4A1A2A3
- 2A
let Ej be the linear spanning by the eigenvectors (or generalized eigenvectors if
Imiz3#0)of Ap3, EC:={p}+ E§={p+y: ye E(‘)}

Suppose > 0,4 >0, A; > 0,i € Z3. It follows from the center manifold theorem for
flows [2] thatif A1A2 A3 — B1 B2 B3 < 0, there is a two-dimensional unstable maniﬁzﬂ@

)

A2,3
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of (1.1) which is tangent t&© at p; if A1A2A3 — B1B2B3 =0, there is a two-dimensional
center manifolcwlzc of (1.1) which is tangent t&¢ at p.

Similarly, supposé < 0, A <0, A; > 0,i € Z3. It follows from the center manifold
theorem for flows [2] that ifA1A2A3 — B1B2B3 > 0, there is a two-dimensional stable
manifold W22 of (1.1) which is tangent t&< at p; if A1A2A3 — B1B2B3 =0, there is a
two-dimensional center manifolwzzc of (1.1) which is tangent t&¢ at p.

It follows from Theorem 3.6 that

Corollary 3.7.1f b > 0, A > 0, A; > 0, i € Z3, Hopf bifurcation occurs wherA;ApA3 —
B1B>B3 =0.

(i) If AjA2A3— B1B2B3 > 0, p is asymptotically stable
(i) If A1A2A3— B1B>B3 =0, p is stable and is a center oW2;
(i) If —2/A142A3 < A1A2A3 — B1B2B3 < 0, p is unstable, and is an unstable focus
on W2.
1

Theorem 3.8. If the following conditions are satisfied
A1A2A3— B1B2B3=0, b<0, A<0, A; >0, i€Z3,

then there exists an infinite family of neutrally unstable periodic orbitd 4.

Theorem 3.8 can be provedrifis replaced with—¢ in the proof of Theorem 3.6. The
details are omitted. Similarly with Corollary 3.7, it follows from Theorem 3.8 that

Corollary 3.9.1f b <0, A <0, A; >0, i € Z3, Hopf bifurcation occurs wheA1A2A3 —
B1Bo2B3=0.

(i) If0< A1A2A3— B1B2B3 < 2\/A1A2A3, p is unstable, but is a stable focus wf;

(i) If A1A2A3— B1B2B3 =0, p is unstable and is a center a2 ;
(iii) If A1A2A3— B1B2B3 <0, p is unstable.

4. Proof of Theorem 1.1
It follows from Lemmas 1.1 and 1.4 that
Lemma4.1.1f A1A2A3 — B1B2B3 # 0, there exists no periodic orbit @¢f..1).
Proof of Theorem 1.1. It follows from Theorems 2.1, 2.2, 3.1, 3.6, 3.8 that under the
conditionA1A2A3 — B1B2B3 = 0, the periodic orbit of (1.1) exists if and onlyafA > 0,

A;>0,ieZ3,orb=A=0,4; >0,i € Z3. Itfollows from Lemma 4.1 thatii1A,A3—
B1B2B3 # 0, there exists no periodic orbit of (1.1). Theorem 1.1 is provedl.
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