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Abstract

By extending Darboux method to three dimension, we present necessary and sufficient con
for the existence of periodic orbits in three species Lotka–Volterra systems with the same
sic growth rates. Therefore, all the published sufficient or necessary conditions for the existe
periodic orbits of the system are included in our results. Furthermore, we prove the stability o
odic orbits. Hopf bifurcation is shown for the emergence of periodic orbits and new phenome
presented: at critical values, each equilibrium are surrounded by either equilibria or periodic o
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a community of three interacting species modelled by a Lotka–Volterra s
with the same intrinsic growth rates

x ′
1 = x1(b − a11x1 − a12x2 − a13x3),

x ′
2 = x2(b − a21x1 − a22x2 − a23x3),

x ′
3 = x3(b − a31x1 − a32x2 − a33x3), (1.1)
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0022-247X/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-247X(03)00340-8
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f (1.1).
wherexi(t) is the population size of theith species at timet , xi(0) > 0, andx ′
i denotes

dxi/dt , i = 1,2,3. We restrict our attention to the open positive cone intR3+, whereR3+ :=
{x ∈ R3, x � 0}, wherex = (x1, x2, x3).

From now on, we use the following notations:

F = (F1,F2,F3), Fi = xi

(
b −

3∑
j=1

aij xj

)
, i ∈ Z3,

Ai := aii − ai−1,i , Bi := ai+1,i − aii, i ∈ Z3,

∆i := det

(1 a1,i+1 a1,i−1
1 a2,i+1 a2,i−1
1 a3,i+1 a3,i−1

)
= Ai−1Ai+1 + Ai−1Bi+1 + Bi−1Bi+1, i ∈ Z3,

∆ := det

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
= a11∆1 + a22∆2 + a33∆3 + B1B2B3 − A1A2A3,

whereZ3 := {1,2,3} is considered in cyclic.
We denote byψ1 the radial projection fromR3 \ {0} to the unit sphereS2 := {x ∈ R3:

|x| = 1}, that is,ψ1(x) = x/|x|. We denote byψ2 the radial projection from(S2+)0 :=
S2 ∩ intR3+ to the planeπ1 := {x ∈ intR3+: x3 = 1}, that is,ψ2(x) = x/x3.

Lemma 1.1 [6]. Consider the vector fieldF of (1.1); then there is a vector fieldG on
(S2+)0 such that every orbit ofF is projected onto that ofG by the projectionψ1, and

G = (G1,G2,G3),

where

Gi(x) := (|x|2 − x2
i

)(
Fi(x) − bxi

)−
3∑

j 
=i, j=1

xixj
(
Fj (x) − bxj

)
,

x ∈ (S2+
)0
, i ∈ Z3.

The corresponding system is

x ′ = G(x), x ∈ (S2+
)0
, (1.2)

which has the following properties:

(i) If A1A2A3 − B1B2B3 
= 0, then it has no periodic orbits;
(ii) If A1A2A3 − B1B2B3 = 0, then it has a nonconstant analytic first integral.

In this paper, by extending Darboux method in [1,4] to system (1.1), we give the
integral of (1.1) ifA1A2A3 − B1B2B3 = 0, then the predicted nonconstant analytic fi
integral of (1.2) in Lemma 1.1 can be obtained byψ1. Furthermore, the first integral
used to give the Hopf bifurcations which generate an infinite family of neutrally s
(unstable) periodic orbits. Our bifurcation conditions include all those in [3,5,6]. Gene
the necessary and sufficient conditions are given for the existence of periodic orbits o
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Theorem 1.2. The periodic orbit of(1.1) exists if and only if one of the following conditio
is satisfied:

(i) A1A2A3 − B1B2B3 = 0, b = ∆ = 0, ∆i > 0, i ∈ Z3;
(ii) A1A2A3 − B1B2B3 = 0, b∆> 0, ∆i > 0, i ∈ Z3.

The proof of Theorem 1.2 is in Section 4 of this paper.
Since the restriction ofψ2 to (S2+)0 is one-one, every orbit of (1.2) is projected ontoπ1

by the projectionψ2, that is:

Lemma 1.3. Consider the vector fieldG on (S2+)0; there is a vector fieldH on the plane
π1 such that every orbit of(1.2) on (S2+)0 is projected onto that ofH onπ1 by the projec-
tion ψ2, where

H = (
x1
[
(a31 − a11)x1 + (a32 − a12)x2 + (a33 − a13)

]
,

x2
[
(a31 − a21)x1 + (a32 − a22)x2 + (a33 − a23)

]
,0
)
,

the corresponding system is

x ′ = H(x), x ∈ π1. (1.3)

Supposeν is an orbit of (1.3). Let

Sν := {kx: k � 0, x ∈ ν}.
Then by Lemmas 1.1 and 1.3,Sν = ψ−1

1 (ψ−1
2 (ν))∪{0}, andSν is an invariant cone of (1.1

We callSν is closed if there is a planeπ such thatπ ∩ Sν is a closed curve in intR3+.

Lemma 1.4. If γ is a periodic orbit of(1.1), thenψ1(γ ) is a periodic orbit of(1.2) on
(S2+)0, andψ2(ψ1(γ )) is a periodic orbit of(1.3) onπ1.

Proof. Supposeψ1(γ ) is not a periodic orbit of (1.2) on(S2+)0. By Lemma 1.1,ψ1(γ ) is
a bounded curve on(S2+)0 with two end points. Supposep0 = (p0

1,p
0
2,p

0
3) is one of the

two end points and let

L := {tp0: t > 0}, ν := ψ2
(
ψ1(γ )

)
.

Thenγ,L ⊂ Sν . OnSν , L is tangent toγ at some pointt1p0, wheret1 > 0. That is, there
existsc 
= 0 such that

F(t1p
0) = ct1p

0,

then

3∑
j=1

aijp
0
j = (b − c)/t1, i ∈ Z3,

F (tp0) = ϕ(t)p0, ∀t > 0,
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whereϕ(t) = t (b − (b − c)t/t1). Since

ϕ(t1) = t1c 
= 0,

then there isδ > 0 such that

ϕ(t) 
= 0, t ∈ (t1 − δ, t1 + δ).

If b = 0, thenϕ(t) = ct2/t1 
= 0, and

d(tp0)

dt
= 1

ϕ(t)
F (tp0), t > 0,

that is,L is an orbit of (1.1) witht1p0 in it, this contradicts the fact thatγ is a periodic
orbit of (1.1) with t1p

0 in it. If b > 0, c > 0, thenϕ(t) > 0, t ∈ (0, t1 + δ). Let L1 :=
{y(t): y(t) = tp0, t ∈ (0, t1 + δ)}, theny(t) satisfies

dy(t)

dt
= 1

ϕ(t)
F
(
y(t)

)
, t ∈ (0, t1 + δ).

That is,L1 is an orbit of (1.1) witht1p0 in it, this contradicts the fact thatγ is a periodic
orbit of (1.1) witht1p

0 in it.
If b > 0, c < 0, the contradiction also exists while another orbit of (1.1) is construc

L2 := {
z(t): z(t) = tp0, t ∈ (t1 − δ,+∞)

}
.

Similar tob > 0, the contradiction also exists ifb < 0, the details are omitted.
Then ψ1(γ ) is a periodic orbit of (1.2) on(S2+)0. It follows from Lemma 1.3 tha

ψ2(ψ1(γ )) is a periodic orbit of (1.3) onπ1. Lemma 1.4 is proved. ✷
Lemma 1.5 [7]. Consider the system

x ′ = X(x), x ∈ R2, (1.4)

whereX(x) is continuous inR2. If γ is a periodic orbit of(1.4), andD is the bounded
area surrounded byγ , there must exist an equilibrium of(1.4) in D. If every equilibrium
of (1.4) is isolated, the sum of the indexes of the equilibria inD must be1.

While we restrict our attention toπ1, (1.3) becomes a planar system. If∆1∆3 < 0 or
∆2∆3 < 0, there is no interior equilibrium of (1.3). By Lemma 1.5, there is no perio
orbit of (1.3). Suppose∆3 = 0. If there is an equilibrium of (1.3), the set of equilibr
of (1.3) must be the line

(a31 − a11)x1 + (a32 − a12)x2 + (a33 − a13) = 0,

or the line

(a31 − a21)x1 + (a32 − a22)x2 + (a33 − a23) = 0,

which separatesπ1 into two open areas with no intersection. By Lemma 1.5, there i
periodic orbit of (1.3). It follows from Lemma 1.4 and the symmetry of∆1,∆2,∆3 that

Lemma 1.6. (i) If ∆1∆3 < 0 or ∆2∆3 < 0, there is no periodic orbit of(1.1).
(ii) If ∆1∆2∆3 = 0, there is no periodic orbit of(1.1).
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Suppose∆3 
= 0 and let

q :=
(
∆1

∆3
,
∆2

∆3
,1

)
, Γ := {kq: k > 0}.

If ∆1∆3 > 0, ∆2∆3 > 0, q is the unique equilibrium of (1.3), andΓ is an invariant line
of (1.1).

Lemma 1.7 [7]. Consider the system

dz1

dτ
= −z2 + d20z

2
1 + d11z1z2 + d02z

2
2,

dz2

dτ
= z1 + e20z

2
1 + e11z1z2 + e02z

2
2. (1.5)

If d20 + d02 = 0, e20 + e02 = 0, the equilibrium(0,0) of (1.5) is a center.

Lemma 1.8. Consider the vector fieldH onπ1. If

A1A2A3 − B1B2B3 = 0, ∆i < 0, i ∈ Z3,

there is no periodic orbit of(1.3) onπ1. If

A1A2A3 − B1B2B3 = 0, ∆i > 0, i ∈ Z3, (1.6)

q is a center of(1.3).

Proof. Since∆1∆3 > 0, ∆2∆3 > 0, q is the unique equilibrium of (1.3). IfA1A2A3 −
B1B2B3 = 0, the eigenvalues ofdH(q) are given by

±√−∆1∆2/∆3.

If ∆i < 0, i ∈ Z3, q is a saddle of (1.3), that is, the index ofq is −1. It follows from
Lemma 1.5 that there is no periodic orbit of (1.3).

Suppose∆i > 0, i ∈ Z3. Let yi := xi − qi , i = 1,2; then (1.3) becomes

y ′
1 = q1(a31 − a11)y1 + q1(a32 − a12)y2 + (a31 − a11)y

2
1 + (a32 − a12)y1y2,

y ′
2 = q2(a31 − a21)y1 + q2(a32 − a22)y2 + (a31 − a21)y1y2 + (a32 − a12)y

2
2, (1.7)

whereyi > −qi , i = 1,2.
Let

A := q1(a31 − a11), B := q1(a32 − a12), C := q2(a31 − a21),

σ :=
√

−A2 −BC =√
∆1∆2/∆3.

Let

y1 = − 1

C
z1 − A

Cσ
z2, y2 = − 1

σ
z2, t = τ

σ
.

Then (1.7) becomes (1.5), where
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d20 = (a31 − a11)

C2 , d11 = 2(a31 − a11)A

C2σ
+ (a32 − a12)

Cσ
,

d02 = (a31 − a11)A
2

C2σ 2 + (a32 − a12)A

Cσ 2 , e20 = e02 = 0, e11 = 1

q2σ
.

Sinced20 + d02 = 0, e20 + e02 = 0, it follows from Lemma 1.7 that the equilibrium(0,0)
of (1.5) is a center, that is,q is a center of (1.3). Lemma 1.8 is proved.✷

Suppose the conditions in (1.6) are satisfied, then there is a family of periodic
of (1.3) which surroundq . For such periodic orbitν0 of (1.3),Sν0 is a closed, invarian
cone of (1.1) which surroundsΓ . We denote byν an orbit of (1.3); then∀k > 0, there
existsδk > 0 such that ifSν ∩ Okq,δk 
= φ, Sν is a closed, invariant cone of (1.1) whic
surroundsΓ .

It follows from Lemmas 1.4 and 1.8 that

Corollary 1.9. If A1A2A3 − B1B2B3 = 0, ∆i < 0, i ∈ Z3, there is no periodic orbit
of (1.1).

2. The case A1A2A3 − B1B2B3 = 0, ∆ = 0, and ∆i > 0, i ∈ Z3

Theorem 2.1. If A1A2A3 − B1B2B3 = 0, b = ∆ = 0, ∆i > 0, i ∈ Z3, every equilibrium
of (1.1) is a center inintR3+.

Proof. Sinceb = ∆ = 0, there areαi , i ∈ Z3, which satisfy

3∑
i=1

αi

x ′
i

xi
= 0,

3∑
i=1

α2
i 
= 0.

We obtain the first integral of (1.1),

I (x) = x
α1
1 x

α2
2 x

α3
3 .

Without loss of generality, we supposeα3 
= 0. Since

∆1 = α1 + α2 + α3

α3
det

(
a12 a13
a22 a23

)
> 0,

thenα1 + α2 + α3 
= 0. It follows from ∆ = 0, ∆i > 0, i ∈ Z3, that every equilibrium
of (1.1) must be onΓ . Let Ik := {x ∈ intR3+: I (x) = I (kq)}, wherek > 0, the normal
vector ofIk at kq is (α1∆

−1
1 , α2∆

−1
2 , α3∆

−1
3 )∆3k

−1I (kq).
We denote byπkq the plane

(
α1∆

−1
1 , α2∆

−1
2 , α3∆

−1
3

) ·
(
x1 − k

∆1

∆3
, x2 − k

∆2

∆3
, x3 − k

)
= 0.

Ik is tangent toπkq at kq .
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t

ilib-
Since

(
α1∆

−1
1 , α2∆

−1
2 , α3∆

−1
3

) ·
(
l
∆1

∆3
, l

∆2

∆3
, l

)
= l

3∑
i=1

αi 
= 0,

wherel > 0, thenΓ /∈ πkq . Let ν be an orbit of (1.3). By Lemma 1.8, there isδ1 > 0 such
that if Sν ∩O(kq, δ1) 
= φ, Sν is a closed cone andSν ∩ πkq is a closed curve in intR3+.

Since Ik is tangent toπkq at kq , then there isδ2 > 0 (δ2 < δ1) such that ifSν ∩
O(kq, δ2) 
= φ, Sν ∩ Ik is a closed curve in intR3+, that is, a periodic orbit of (1.1). I
follows from the arbitrariness ofSν andk that Theorem 2.1 is proved.✷

For example, every orbit of the following system is either a periodic orbit or an equ
rium:

x ′
1 = −βx1x2 + βx1x3, x ′

2 = +βx1x2 − βx2x3, x ′
3 = −βx1x3 + βx2x3,

whereβ > 0.

Theorem 2.2. If b 
= 0, ∆ = 0, ∆i > 0, i ∈ Z3, there is no periodic orbit of(1.1).

Proof. Since∆ = 0, there areαi , i ∈ Z3, which satisfy

3∑
i=1

αi

x ′
i

xi
= µ,

3∑
i=1

α2
i 
= 0,

whereµ = b
∑3

i=1αi . Thenx
α1
1 x

α2
2 x

α3
3 = cexp(µt), wherec = x

α1
1 (0)xα2

2 (0)xα3
3 (0) > 0.

Without loss of generality, we supposeα3 
= 0. Since

∆1 = α1 + α2 + α3

α3
det

(
a12 a13
a22 a23

)
> 0,

thenα1 + α2 + α3 
= 0,µ 
= 0.
If µ> 0, then limt→+∞ cexp(µt) = +∞. There isi, i ∈ Z3, such that limt→+∞ x

αi

i (t)

= +∞. Then limt→+∞ xi(t) = +∞ or limt→+∞ xi(t) = 0, which meansxi(t) is not peri-
odic.

If µ < 0, then limt→+∞ cexp(µt) = 0. There isi, i ∈ Z3, such that limt→+∞ x
αi

i (t) = 0.
Then limt→+∞ xi(t) = +∞ or limt→+∞ xi(t) = 0, which meansxi(t) is not periodic.
Theorem 2.2 is proved.✷

3. The case A1A2A3 − B1B2B3 = 0, ∆ �= 0, and ∆i > 0, i ∈ Z3

Let p := (p1,p2,p3), wherepi := b∆i/∆, i ∈ Z3.

Theorem 3.1. If

A1A2A3 − B1B2B3 = 0, b∆ � 0, ∆ 
= 0, ∆i > 0, i ∈ Z3,

there is no periodic orbit of(1.1).
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Proof. We give the proof of the caseb � 0,∆< 0. The proof of the caseb � 0,∆> 0 can
be obtained ift is replaced with−t in the proof of the caseb � 0,∆< 0.

Letxi = yi +pi , whereyi > −pi � 0. Since∆i > 0, i ∈ Z3, and∆ = a11∆1+a22∆2+
a33∆3 < 0, then there existsi, i ∈ Z3, such thataii < 0. Without loss of generality, w
supposea11 < 0. Since∆ 
= 0, then there is a matrixM = (mij )3×3,detM = 1 such that

M




y ′
1

(y1+p1)

y ′
2

(y2+p2)

y ′
3

(y3+p3)


=


−a11y1

−a0
22y2

−a0
33y3


 , a0

22a
0
33 
= 0,

3∑
j=1

m1j
y ′
j

(yj +pj )
= −a11y1 > a11p1,

3∏
j=1

x
m1j
j (t) = cexp

(
−a11

t∫
0

y1(s) ds

)
, c =

3∏
j=1

x
m1j
j (0) > 0.

Supposeb > 0. Then limt→+∞ cexp(a11p1t) = +∞. There isj , j ∈ Z3, such that
limt→+∞ x

m1j
j (t) = +∞. Then limt→+∞ xj (t) = +∞ or limt→+∞ xj (t) = 0, which

meansxj (t) is not periodic.
Supposeb = 0. If lim inf t→+∞ y1(t) = 0, then lim inft→+∞ x1(t) = 0, which means

x1(t) is not periodic. If lim inft→+∞ y1(t) = m1 > 0, then limt→+∞ −a11
∫ t

0 y1(s) ds =
+∞. There isj , j ∈ Z3, such that limt→+∞ x

m1j
j (t) = +∞. Then limt→+∞ xj (t) = +∞

or limt→+∞ xj (t) = 0, which meansxj (t) is not periodic. Theorem 3.1 is proved.✷
Let w(x) := b −∑3

i=1 aiixi .

Lemma 3.2. If A1A2A3 − B1B2B3 = 0, ∆ 
= 0, there is a first integralU(x) of (1.1),

U(x) =
3∏

i=1

x
αi

i v(x), (3.1)

where

v(x) = B1A1x1 +A1A2x2 + B1B3x3,

3∑
i=1

aij αi = −ajj , j ∈ Z3.

αi also satisfy the system

1+
3∑

i=1

αi = 0. (3.2)
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Proof. We extend Darboux method in [1,4] to system (1.1) for searching a first inte
The Darboux method is based on determining pairs of polynomials(fi(x),Ki(x)) such
that

3∑
j=1

Fj
∂fi

∂xj
= fiKi . (3.3)

We look for an invariant of the form

U(x, t) =
3∏

i=1

f
αi

i exp(st). (3.4)

We obtain

dU

dt
= ∂U

∂t
+

3∑
j=1

Fj
∂U

∂xj
=
(
s +

N∑
i=1

αi

fi

3∑
j=1

Fj
∂fi

∂xj

)
U.

Taking into account (3.3) and imposing thatU is an invariant, we obtain

s +
N∑
i=1

αiKi = 0, (3.5)

whereαi, s can be determined.
The following three pairs of polynomials satisfy (3.3):(

f1(x),K1(x)
) := (

x1, (b − a11x1 − a12x2 − a13x3)
)
,(

f2(x),K2(x)
) := (

x2, (b − a21x1 − a22x2 − a23x3)
)
,(

f3(x),K3(x)
) := (

x3, (b − a31x1 − a32x2 − a33x3)
)
.

If A1A2A3 −B1B2B3 = 0, we have another pair(v,w) which satisfies (3.3). Then there
an invariant of the form

U(x, t) =
3∏

i=1

f
αi

i v exp(st),

where

s + b

(
1+

3∑
i=1

αi

)
= 0,

3∑
i=1

αiaij = −ajj , i ∈ Z3. (3.6)

Since∆ 
= 0, we can obtain the unique solution of (3.6), and find thatαi satisfy

3∑
i=1

αi = −(a11∆1 + a22∆2 + a33∆3)/∆.

Then 1+∑3
i=1αi = 0, s = 0,U(x, t) = U(x). Lemma 3.2 is proved. ✷
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Letπ2 := {x ∈ R3: v(x) = 0}, π2 is an invariant plane of (1.1) ifπ2∩ intR3+ 
= φ. Under
the conditions of Lemma 3.2, if(B1A1)

2 + (A1A2)
2 + (B1B3)

2 
= 0, it follows from (3.2)
that every surfaceSc := {x: U(x) = c} is an invariant cone of (1.1), wherec = U(x0), x0 ∈
intR3+. Let ν = ψ2(ψ1(Sc)); thenν is an orbit of (1.3) andSc = ψ−1

1 (ψ−1
2 (ν))∪ {0} = Sν .

Lemma 3.3. Suppose that the following conditions are satisfied:

A1A2A3 − B1B2B3 = 0, b > 0, ∆ > 0, ∆i > 0, i ∈ Z3. (3.7)

If there exists a periodic orbit of(1.1), there is δ0 > 0 (δ0 < pi , i ∈ Z3) such that
divF(x) 
= 0 for x ∈ O(p, δ0).

Proof. Letγ be a periodic orbit of (1.1). SupposeU(p) = 0; thenp ∈ π2, q ∈ ψ2(ψ1(π2)).
Sinceπ2 is an invariant plane of (1.1), then by Lemmas 1.1 and 1.3,ψ2(ψ1(π2)) is an
invariant line of (1.3).

It follows from Lemmas 1.3 and 1.4 thatψ2(ψ1(γ )) is a periodic orbit of (1.3). By
Lemma 1.5, the unique equilibriumq of (1.3) must be surrounded byψ2(ψ1(γ )). This
contradicts the fact thatψ2(ψ1(π2)) is an invariant line of (1.3) withq in it. ThenU(p) 
= 0,
that is,v(p) 
= 0.

It follows from (3.3) thatw(p) = 0. Since

divF(x) =
3∑

i=1

(
Fi(x)

xi
− aiixi

)
, Fi(p) = 0, i ∈ Z3,

divF(p) = −b + w(p) = −b 
= 0,

then Lemma 3.3 is proved.✷
Lemma 3.4. If the conditions in(3.7) are satisfied, then

(i) There existsη0 > 0 such that ifSc ∩ O(p,η0) 
= φ, Sc is a closed cone which su
roundsΓ ;

(ii) There exists an infinite family of periodic orbits of(1.1) in O(p, δ0) andp is locally
stable.

Proof. Since the conditions in (3.7) are satisfied, then(B1A1)
2 + (A1A2)

2 + (B1B3)
2 
= 0.

It follows from Lemmas 1.3 and 1.8 thatq is a center of (1.3); then the result in (i)
proved.

Since the eigenvalues ofdF(p) are given by

−b,
±√−∆1∆2∆3

∆
,

let Ec
0 be the linear spanning by the generalized eigenvectors of±√−∆1∆2∆3/∆, and

let Es be the linear spanning by the eigenvectors of−b. ThenEs = {tp: t ∈ R}. Since
R3 = Ec ⊕ Es , thenEs /∈ Ec, −p /∈ Ec.
0 0 0
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ic
Let

Ec := {p} + Ec
0 = {

p + y: y ∈ Ec
0

}
, π := Ec ∩ R3+.

Then 0/∈ π .
Let V := {tx: t � 0, x ∈ π}. Sincep is an interior point ofV , then there isη1 > 0

such thatO(p,η1) ⊂ V . If x ∈ O(p,η1), then{tx: t > 0} ∩ π 
= φ. So there isη2 > 0
(η2 < min{η0, η1}) such thatSc ∩ π is a closed curve ifSc ∩ O(p,η2) 
= φ.

It follows from the center manifold theorem for flows [2] that there is a two-dimensi
center manifoldW2 of (1.1) which is tangent toπ atp. SinceSc ∩ π is a closed curve i
Sc ∩ O(p,η2) 
= φ, there existsη3 > 0 (η3 < η2) such that every curveL := Sc ∩ W2 is a
closed curve ifSc ∩ O(p,η3) 
= φ.

Forδ0 in Lemma 3.3, it follows from the analyticity ofU(x) that there isδ > 0 (δ < η3)

such thatL ⊂ O(p, δ0) if Sc ∩O(p, δ) 
= φ. SinceSc,W
2 are invariant manifolds of (1.1

L is a periodic orbit of (1.1). It follows from the arbitrariness ofSc (with the condition
Sc ∩ O(p, δ) 
= φ) thatp is a center onW2. Sincep is asymptotically stable onEs , p is
locally stable. Lemma 3.4 is proved.✷
Lemma 3.5. Suppose that the conditions in(3.7) are satisfied. If there exists a period
orbit of (1.1) on Sc ∩ O(p, δ0) for somec, it is the unique periodic orbit of(1.1) on
Sc ∩ O(p, δ0).

Proof. Suppose there are two different periodic orbitsγ1, γ2 ⊂ Sc ∩ O(p, δ0) for somec.
Let D be the area which is surrounded byγ1, γ2 onSc and letn := (n1, n2, n3) be the unit
normal vector ofD on Sc, thenD ⊂ Sc ∩ O(p, δ0), and it follows from Stokes theorem
that ∮

∂D

(n× F)dr =
∫ ∫
D

n · curl(n × F)dσ,

but

(n × F)dr = (n × F)F dt ≡ 0,

curl(n × F) = ndivF − F divn+ (F,grad)n − (n,grad)F,

where

(g,grad)h :=
3∑

i=1

gi
∂h

∂xi

for

g = (
g1(x), g2(x), g3(x)

)
, h = (

h1(x), h2(x), h3(x)
)
.

Since

n · curl(n× F) = divF − (n · F)divn + n · (F,grad)n − n · (n,grad)F,

n · (F,grad)n = n ·
3∑

Fi
∂n

∂xi
= 1

2
F · grad(n · n) = 0,
i=1
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n · (n,grad)F = n ·
3∑

i=1

ni
∂F

∂xi
= n · grad(n · F) − 1

2
F · grad(n · n)

= n · grad(n · F) = 0,

then

n · curl(n× F) = divF − (n · F)divn + n · (F,grad)n − n · (n,grad)F = divF.

It follows from Lemma 3.3 andb > 0 that divF(x) < 0 if x ∈ O(p, δ0), which contradicts
the fact that

∮
∂D

(n× F)dr ≡ 0. Lemma 3.5 is proved.✷
It follows from Lemma 3.5 that under the conditions in (3.7), the center manifoldp

is unique. In fact, if there are two different center manifoldsw2
0 andw2 atp, then similar

to the proof of Lemma 3.4, there isη > 0 such thatSc ∩W2
0 andSc ∩W2 are two different

periodic orbits of (1.1) inO(p, δ0) if Sc ∩ O(p,η) 
= φ. This contradicts Lemma 3.5.

Theorem 3.6. If the conditions in(3.7) are satisfied, there exists an infinite family of ne
trally stable periodic orbits of(1.1).

Proof. We denote byγ the orbit {x(t): t � 0} of (1.1). It follows from Lemma 3.4
that for δ0 in Lemma 3.3 andη0 in Lemma 3.4, there isδ1 > 0 (δ1 < min{δ0η0})
such that ifx(0) ∈ O(p, δ1) \ Γ , SU(x(0)) is a closed cone andγ ⊂ S(p, δ0/2), that is,
γ ⊂ SU(x(0)) ∩ S(p, δ0/2). Since there is no equilibrium onSU(x(0)) ∩ S(p, δ0/2), it fol-
lows from Poincare–Bendixson theorem that theω-limit set of γ is a periodic orbitγ 0

1
of (1.1). By Lemma 3.5,γ 0

1 is the unique periodic orbit of (1.1) onSU(x(0)) ∩ S(p, δ0/2).
Sincep is locally stable, then forδ1 > 0, there isδ2 > 0 (δ2 < δ1) such that ifx(0) ∈

O(p, δ2) \ Γ , thenγ ⊂ S(p, δ1/2). Theω-limit set of γ is a periodic orbitγ 0 of (1.1),
γ 0 ⊂ S(p, δ1/2), andSU(x(0)) = {tx: t � 0, x ∈ γ 0}.

Let x(0) (x(0) ∈ O(p, δ2) \ Γ ) fixed, and letΛ := SU(x(0)) ∩ O(p, δ1). Sinceγ 0 ⊂
S(p, δ1/2), then onSU(x(0)), Λ is a connected area withγ 0 in it. Every orbit{y(t): t � 0}
of (1.1) with y(0) ∈ Λ satisfiesy(t) ∈ SU(x(0)) ∩ S(p, δ0/2). Since there is no equilib
rium on SU(x(0)) ∩ S(p, δ0/2) andγ 0 is the unique periodic orbit of (1.1) onSU(x(0)) ∩
S(p, δ0/2), then it follows from Poincare–Bendixson theorem that theω-limit set of
{y(t): t � 0} is γ 0. By the analyticity ofU(x) and the arbitrariness ofx(0) in O(p, δ2)\Γ ,
Theorem 3.6 is proved.✷

Since the eigenvalues ofdF(p) are given by

λ1 = −b,

λ2,3 = B1B2B3 − A1A2A3 ±
√
(A1A2A3 − B1B2B3)

2 − 4∆1∆2∆3

2∆
,

let Ec
0 be the linear spanning by the eigenvectors (or generalized eigenvect

Imλ2,3 
= 0) of λ2,3, Ec := {p} + Ec
0 = {p + y: y ∈ Ec

0}.
Supposeb > 0,∆> 0,∆i > 0, i ∈ Z3. It follows from the center manifold theorem fo

flows [2] that ifA1A2A3 −B1B2B3 < 0, there is a two-dimensional unstable manifoldW2

1
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e

the
of (1.1) which is tangent toEc atp; if A1A2A3 −B1B2B3 = 0, there is a two-dimensiona
center manifoldW2

1c of (1.1) which is tangent toEc atp.
Similarly, supposeb < 0, ∆ < 0, ∆i > 0, i ∈ Z3. It follows from the center manifold

theorem for flows [2] that ifA1A2A3 − B1B2B3 > 0, there is a two-dimensional stab
manifoldW2

2 of (1.1) which is tangent toEc at p; if A1A2A3 − B1B2B3 = 0, there is a
two-dimensional center manifoldW2

2c of (1.1) which is tangent toEc atp.
It follows from Theorem 3.6 that

Corollary 3.7. If b > 0, ∆ > 0, ∆i > 0, i ∈ Z3, Hopf bifurcation occurs whenA1A2A3 −
B1B2B3 = 0.

(i) If A1A2A3 − B1B2B3 > 0, p is asymptotically stable;
(ii) If A1A2A3 − B1B2B3 = 0, p is stable and is a center onW2

1c;
(iii) If −2

√
∆1∆2∆3 < A1A2A3 − B1B2B3 < 0, p is unstable, and is an unstable foc

onW2
1 .

Theorem 3.8. If the following conditions are satisfied:

A1A2A3 − B1B2B3 = 0, b < 0, ∆ < 0, ∆i > 0, i ∈ Z3,

then there exists an infinite family of neutrally unstable periodic orbits of(1.1).

Theorem 3.8 can be proved ift is replaced with−t in the proof of Theorem 3.6. Th
details are omitted. Similarly with Corollary 3.7, it follows from Theorem 3.8 that

Corollary 3.9. If b < 0, ∆ < 0, ∆i > 0, i ∈ Z3, Hopf bifurcation occurs whenA1A2A3 −
B1B2B3 = 0.

(i) If 0<A1A2A3 −B1B2B3 < 2
√
∆1∆2∆3, p is unstable, but is a stable focus onW2

2 ;
(ii) If A1A2A3 − B1B2B3 = 0, p is unstable and is a center onW2

2c;
(iii) If A1A2A3 − B1B2B3 < 0, p is unstable.

4. Proof of Theorem 1.1

It follows from Lemmas 1.1 and 1.4 that

Lemma 4.1. If A1A2A3 − B1B2B3 
= 0, there exists no periodic orbit of(1.1).

Proof of Theorem 1.1. It follows from Theorems 2.1, 2.2, 3.1, 3.6, 3.8 that under
conditionA1A2A3 − B1B2B3 = 0, the periodic orbit of (1.1) exists if and only ifb∆> 0,
∆i > 0, i ∈ Z3, orb = ∆ = 0,∆i > 0, i ∈ Z3. It follows from Lemma 4.1 that ifA1A2A3−
B1B2B3 
= 0, there exists no periodic orbit of (1.1). Theorem 1.1 is proved.✷
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