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Abstract

The tame symbol of two invertible holomorphic functions can be obtained by computing their cup
product in Deligne cohomology, and it is geometrically interpreted as a holomorphic line bundle
with connection. In a similar vein, certain higher tame symbols later considered by Brylinski and
McLaughlin are geometrically interpreted as holomorphic gerbes and 2-gerbes with abelian band and
a suitable connective structure.

In this paper we observe that the line bundle associated to the tame symbol of two invertible
holomorphic functions also carries a fairly canonical hermitian metric, hence it represents a class in
a Hermitian holomorphic Deligne cohomology group.

We put forward an alternative definition of hermitian holomorphic structure on a gerbe which
is closer to the familiar one for line bundles and does not rely on an explicit “reduction of the
structure group”. Analogously to the case of holomorphic line bundles, a uniqueness property for the
connective structure compatible with the hermitian-holomorphic structure on a gerbe is also proven.
Similar results are proved for 2-gerbes as well.

We then show the hermitian structures so defined propagate to a class of higher tame symbols
previously considered by Brylinski and McLaughlin, which are thus found to carry corresponding
hermitian-holomorphic structures. Therefore we obtain an alternative characterization for certain
higher Hermitian holomorphic Deligne cohomology groups.
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1. Introduction

The aim of this work is two-fold. For an analytic manifofdve investigate geometric ob-
jects corresponding to the elements of certain low-degree Hermitian-Holomorphic Deligne
cohomology groups. These groups, denoted h%reh (X, ), fortwo integerk andl, were
defined in[9] and, in a slightly different fashion,'iater [d]. It is already an observation
by Deligne (cf.[14]) that Héhh X, ﬁc\X, the group of isomorphism classes of holo-
morphic line bundles with hermitian fiber metric. Here we define an appropriate notion of
hermitian structure on a gerbe (or 2-gerbe) bound/yand show that the corresponding
(equivalence) classes are in bijective correspondence with the elemér_(gﬁ Pp(X , 1), for
k=3, 4. .

As a second result and application, we show that the torsors and (2-)gerbes underlying the
cup products in ordinary Deligne cohomology studied by Brylinski-McLaughiih12]
can be equipped in a rather natural way with the above-mentioned hermitian structures, thus
producing classes in the Hermitian-Holomorphic variant. More precisely, we modify the
cup product at the level of Deligne complexes to land into a Hermitian-Holomorphic one.
This modification is actually quite a natural one from the point of view of Mixed Hodge
Structures.

1.1. Background notions
To explain things a little bit more, leX be an analytic manifold and let € R be a

subring—typicallyA = Z, @ or R. For any integey, setA(j) = (2nv/—1)/ A and letA()?,
be the Deligne complex

Ay = Ox — Q% — . > @I,

Itis well known that (at the level of the derived category) there are Mapy, ® A(k)z, —
A(j + k)7, inducing a cup product in cohomology

H;;(X, A() ® H;(X, A(k))_u) H§+q(x, AG +0)),

where we have usedthe notatiH@(X, A(j)=HP(X, A(j)?,) fortheDeligne cohomology
groups, andH®(X, —) denotes hypercohomology.
The question of obtaining a geometric picture of the cup product in cohomology is a very
interesting one. A chief foundational example is the following. Eet Z the product
71}, ® L2, — Z(2), (1.1)

corresponds to the morphism

05 ® 05 — (O3 28 0 (1.2)
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via the quasi- |som0rph|sm%(1)cf:> 0% ¥ [=1] andZ(Z)(f;(cfx dlog Q}()[ 1]. Deligne
gave a geometric construction of (1. 2) and the ensuing cup product

O5(X) ® O3(X) 3 HYx, 07 X% ol

in hiswork on tame symbols, dfL3]: If fandg are two invertible functions oX, namely two
elements of’, their cup product corresponds t@g-torsor, denotedyf, g1, equipped with

an analytic connection. FurthermoreXifs a Riemann surface, the complgk; — alog Q}()
is quasi-isomorphic t&* and the product s interpreted as tit@onomyof the connection.
For X equal to a punctured disk, centered ap, if f andg are holomorphic oD,
meromorphic ap, the holonomy of f, g] computes théame symbol

(f.8), = (—)"I@ (fr®) /gy (),

wherev( f) is the valuation of atp, cf. [2,13,20] This justifies the use of the nanteme
symbolfor (f, gl.

A particularly pleasant property is that whieand 1— f are both invertible a calculation
[13] using the classical Euler’s dilogarithmz$hows that f, 1 — f] is isomorphic to the
trivial torsor equipped with the trivial connectiah namely the unit element in the group

Hi(X, 0y — dlog QX) From this one also builds an interpretation of the symbol associated
tof andg in terms of Mixed Hodge Structurg¢$3].

In this particular example there appear degree 1 and 2 Deligne cohomology groups:
specifically, itis made use of the fact thatinvertible functions determine elements in the group
Hl(X Z(1)) = 0% (X), and, giverf andg, the class of the torsor with connectiofi g]

is an element on (X, Z(2)) ~H(X, 0y — dlog Q}{). It is therefore natural to investigate

the geometric objects corresponding to similar cup products of higher degree. The case of
(f, L], wheref is again an invertible function aridis an(% -torsor, so it determines a class

in H2 (X, Z(1)=HY X, 0% %), was already considered in REE3], where it is interpreted

in terms of a gerb& overX

This idea has been further pursued by Brylinski-McLaugflii12] In their study of
degree 4 characteristic classes they considered the syrmifdl§ e H%(X, Z(2)) and,
for a pair of 0% -torsors(L, L] € H;(X, Z(2)). The corresponding geometric objects are
identified with a gerbe (resp. a 2-gerbe) both equipped with the appropriate analog of a
connection. Furthermore, the obvious m&2)?, — Z(1)?, induces a corresponding map
HE (X, Z(2)) - HE (X, Z(1)) which simply forgets the connection. Therefore elements
in the groupng(X, 7(1)), for k = 3, 4 correspond to equivalence classes of (2-)gerbes
bound by(%, cf. [7,10,12] Thus in the end several Deligne cohomology groups have a
concrete interpretation in terms of geometric data.

Hermitian-HolomorphicDeligne cohomology, as defined by Brylinski, 8], is an
enhanced version of Deligne cohomology. For all positive intepBrylinski introduces
certain complexe€’(/)®, and defines the Hermitian-Holomorphic Deligne cohomology
groups as the sheaf hypercohomology grou‘p§' (X, 1) =H*X, C(1)*). The complex

C()*hasamag (/)* — Z())%,, thusthereis an obvious maﬁ (XD — HY (X, Z(1))
forgetting the extra-structure.
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A primary example is provided by Deligne’s observation mentioned beforid,4jf.that

PicX ~H? (x, ZQ)y — Ox — ég), (1.3)

wherePicX is the set of isomorphism classes(@f-torsors with hermitian metric, anh,
is the sheaf of smooth real-valued functionsiThe complex in (1.3) is quasi-isomorphic
to C(1)°, therefore

PicX ~HZ2 (X.1).

In fact, both complexes are quasi-isomorphic to the compigk & Ty — C3)[—1],
[12,9], which encodes the reduction of the torsor structure fégjrto T afforded by the
hermitian metric.

Concerning higher degrees, Brylinski-McLaugHli2,11]gave a geometric interpreta-
tion for some of the groupﬁggh A (X,1),k=3,4and =1, 2 interms of classes of gerbes and
2-gerbes bound by y and equipped with a concept of connection valued in an appropriate
Hodge filtration of the de Rham complex Xf

1.2. Statement of the results

In this work we take on the same question of a geometric interpretation for some
Hermitian-Holomorphic Deligne cohomology groups from a holomorphic view-point which,
we believe, is complementary to that of Brylinski-McLaughlin. We define a hermitian struc-
ture on &; -gerbe? as the assignment ofé‘é?,’ -torsor (the %" denotes positive functions)
to any objecP of ¥, subject to several conditions spelled out in Definition 5.2.1. We prove
that classes of gerbes with hermitian structures in this sense correspond to elements of
th_h_(X, ) ~H3X,Z(1)xy — Ox — &%), in complete analogy with (1.3). Moreover
we can define a typél, 0)-connective structure o# by requiring that to any obje® of
%y be assigned a“lé%,—torsor, essentially repeating the steps in REZ]. (hereAy, is the
smoothC-valued de Rham complex, arfd! is the first Hodge filtration) Then a notion
of compatibility between the hermitian structure and the connective one is defined, and in
fact we prove there is only one such tygke 0) connective structure compatible with a
given hermitian structure, up to equivalence. This result is analogous to the corresponding
statement for hermitian holomorphic line bundles, that there is a unique connection—the
canonical or Griffiths connectierRcompatible with both structures.

Similar results are available for 2-gerbes: we define a hermitian structure(fQr2:
gerbeG as the assignment of@%&-gerbefor each objecP of Gy, subject to several
conditions spelled out in Definition 5.5.1. Analogously to the simpler case of gerbes, we
have a concept of typél, 0) connectivity compatible with the hermitian structure and a
uniqueness result up to equivalence.

A second line of results is more specific to the tame symbols we encountered before.
Alongside with the map of complexes

71y, ® Z(D), — Z(2)2,
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we define a companion map
7217, @ Z(1)?, — 2nv/—-1® C(D)* (1.4)

so that it is possible to obtain a different cup product valued in Hermitian-Holomorphic
Deligne cohomology:

Hiy (X, Z(1) ® HY (X, Z(1)) —> 2nv/=1® HT (X, 1).

An immediate consequence is that f@ndg invertible, andL, L’ line bundles, the torsor

(f, gl and the gerbéf, L] support natural hermitian structures of the type discussed above,
in addition to the analytic connection (or connective) ones associated with the cup product
in standard Deligne cohomology. The same conclusions are valid for the 2<derbg.

It turns out that supporting both structures is an easy consequence of the commutativity of
the following diagram:

HL/(X. Z(1) ® HL(X, Z(1)) —2— 2n/=1® H,' (X, 1)

uJ J forget

HIY (X, 7(2) forget it x, zqy)

Indeed, forgetting either structure, brings us back to the same underlying object.

The map (1.4) has a rather natural definition from the point of view of Mixed Hodge
Structures, whose role in the matter was mentioned in relation with the product (1.1), see
[13]. Namely, there is a “universal” MHS#® corresponding to an iterated extension
of Z(0) by Z(1) by Z(2), where in this cas& (n) denotes a Hodge—Tate structure. To
M® we can associate a tensor—the “big period#?) € C®qC, cf. [17]. The
period is in fact a multiple of the extension class.gf®, and it belongs to the kernel
4 =ker(m: CgC — C) of the multiplication map. We find the map (1.4) corresponds
to the image of? (.#®) under the “imaginary part” projectiof®gC — R(1) given by
a ® b — Im(a) Re(h). On the other hand, the standard one (1.1) involves the projection
onto the Kéahler differentialy — .7 /.92 given bya ® b — a db.

Another consequence of the previous diagram is ¢ffag], (f, L], and(L, L'] come
equipped with two connection (or connective) structures. If the unitary connection in a line
bundleL is also analytic, theh is flat. In the case off, g] we find there is an obstruction to
this type of compatibility. This can be cast in cohomological terms, which allows to extend
these considerations 5-gerbes and 2-gerbes. We find that the obstruction vanish, so
compatibility can always be achieved.

1.3. Outline of the paper

This work is organized as follows. In Section 2 we make some preliminary observations
about Deligne complexes and cohomology and collect a few needed facts. We recall the
definition of Hermitian-Holomorphic Deligne cohomology and state some of its properties
in Section 3. Alongside Brylinski's complex(/)®, we use a complex quasi-isomorphic to



102 E. Aldrovandi / Journal of Pure and Applied Algebra 200 (2005) 97—-135

it, denotedD (1)}, , ,» which for a line bundle directly encodes the data definingthenical
connection

In Section 4 we recall the definition of the tame symyblg] for two invertible functions
and some of its properties. We define the modified product (1.4) and show that through it,
the torsor associated {g, g] also comes equipped with a hermitian structure. As mentioned
before, the product (1.4) and its relation with the standard for Deligne complexes become
more clear when analyzed in terms of Hodge Structures. In order to do this, we felt necessary
to recall a few elementary facts and calculations concerning Hodge—Tate structures that
are certainly well-known to experts. For this reason, and also because this development
lies somewhat aside this work’s main lines, we present this material in Appendix A. This
presentation relies in part on the Heisenberg group picture of the Deligne torsor, which we
have recalled in Section 4.2.

Section 5is the main part of this work. There we redefine the notion of hermitian structure
(modeled after that of connective structure) and prove that equivalence classes of these are
classified by the groupﬁl{’fjh (X, 1). We then apply this classification to the Hermitian
structures and the product f1.4) for the higher versions of the tame symbols considered by
Brylinski-McLaughlin.

The interplay between the analytic connection (or connective) structures arising from
standard Deligne cohomology and their hermitian counterparts defined here is analyzed in
Sections 4.4 and 5.7.

Finally, Section 6 is devoted to some concluding remarks.

2. Preliminaries

2.1. Notation and conventions

If zis a complex number, then, (z) dzef%(z + (=1)?z), and similarly for any other
complex quantity, e.g., complex valued differential forms. For a subfig R and an
integerj, A(j) = (2nv/—1)/ A is the Tate twist ofA. We identify C/Z(j)~C* via the
exponential map — exp(z/(2nv/—1)/ 1), andC/R(j) = R(j — 1).

If X'is a complex manifoldA} and Q% denote the de Rham complexes of sheaves of
smoothC-valued and holomorphic forms, respectively. We denotefhythe de Rham
complex of sheaves of real valued differential forms and®yj) the twist&s @rR()).
We setCx = Q% as usual. When needely? will denote the sheaf of smooitp, ¢)-
forms. We use the standard decompositioa 0 + 0 according to types. Furthermore, we
introduce the differential operatdf =9 — 0 (contrary to the convention, we omit the factor
1/(4n+/—1)). We have 20 = d°d. The operator/¢ is an imaginary one and accordingly
we have the rules

dny(w) =7n,(dw), d°n,(w)=mn,11(d w)

for any complex formo.

An open cover oX will be denoted byly. If {U;},.; is the corresponding collection of
open sets, we writ€/;; = U; N U;, U;jx = U; N U; N Uy, and so on. More generally we
can also havély = {U; — X},.;, where the maps are regular coverings in an appropriate
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category. In this case intersections are replaceg:by 1)-fold fibered product®/;;,. i, =
U,'OXX“~X)(U,'". .

If F* is a complex of abelian sheavesXrits Cech resolution with respect to a covering
Uy — X is the double complex

cra ) L e ary, BP),

where theg-cochains with values iR? are given by[ | E” (Ujy...i,,)- TheCech coboundary
operator is denotedl The convention we use is to put the index along@keh resolution in
thesecondlace, so if we denote hythe differential in the complek®, the total differential

is given byD =d + (—1)?) on the componenf?‘i(ux, EP) of the total simple complex.
Furthermore, recall that the Koszul sign rule causes a sign being picked whenever two
degree indices are formally exchanged. Earch resolutions of complexes of sheaves it
leads to the following conventions. @° is a second complex of sheaves X¥nthen one
defines the cup product

U: CPIF) @ C(G) — CIT Ay, FP @ G') c CPTT(E® G)

of two element fi, . ;,} € C"9(F) and{gj,....;,} € C"*(G) by

(=D fioig ® Gigrigitriqs
For a given complex of abelian objects, <&y the symbol’ denotes sharp truncation at
the indexi: ¢’ C” =0 for p <i.

2.2. Deligne cohomology

There are several models for the complexes to use to compute Deligne cohomology
[15,2]. For A c R and an integey the latter is the hypercohomology

H5(X, A(j)) =H*(X, A(j)2)-
Here A(p)?, is the Deligne complex

A = A()x —> 0x -5 @ 45 4 gi? (2.1)

5 Cone(A(j)X ® FiQy Z—>_JQX) [-1], (2.2)

whereF/Q% in Eq. (2.2) is the Hodge (“stupid”) filtration on the de Rham complex. The

symboli denotes a quasi-isomorphism. In view ofiB&Son formula for the cup product
on cones to be recalled beld®], Deligne complexes acquire a family of cup-products
(depending on a real parametgr

N o Yu . °
Ay @ Alk)y, — A + k)2,
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Cup products related to different values of the parametare related by homotopy-
commutative diagrams, hence they induce a well-defined graded commutative cup-product
in cohomology

HE(X, A(j) ® HL(X, A(k) = HEM (X, A + k). (2.3)

In order to explicitly compute cup products, the model given by Eq. (2.1) leads to simpler
formulas (when it can be used). ff € A(j)?, andg € A(k)?,, then from Ref[15] we
quote:
fg degf =0,
fUg=14 fAdg degf>0and deg =k, (2.4)
0 otherwise

The following examples are well known and will frequently recur in the following.

Example 2.2.1. ForA=Z itisimmediately verified thaZ (1)?, rd O%[—1]viathe standard
exponential sequence, so thi# (X, Z(1)) = H*~1(X, 0%). In particularH} (X, Z(1)) =
HO(X, 0%), the global invertibles oiX, and H2 (X, Z(1)) = Pic(X), the Picard group of

line bundles ovekK.

Example 2.2.2.Z(2)3, = (0% dlog Q1)[—1]. Afundamental observation by Deligne (see
Ref.[2]) is thatHé(X, Z(2)) is identified with the group of isomorphism classes of holo-
morphic line bundles with (holomorphic) connection. This is easily understood from a
Cech cohomology point of view. Using the covéx = {U;},.;, a class in

HZ(X, Z(2)) =HY(x, 03 1% o1y

is represented by a pafw;, g;;) with o; € Q}((U,-) andg;; € 0%(U;;) satisfying the
relations

wj—w; =dloggij, gijgjk = &ik-

The Cech representative for the actual classH@;l(X, Z(2)) is obtained (up to a multipli-
cation by z./—1) by extracting local logarithms lag;, see Ref[15] for full details.

Forreal Deligne cohomology, i.e., whesi = R, other models quasi-isomorphic to those
in Egs. (2.1) and (2.2) are available. Since the maps

(R()) > 2%) = ®R() — ©) S R( — 1) = &% —
are all quasi-isomorphisms in the derived categoryj1&], we have
R(j)S, > Cone(FjQ} — &% - 1)) [—1]. (2.5)

Moreover, we can use smooth forms thanks to the fact that the incl@jor> A% is
a filtered quasi-isomorphism with respect to the filtratidhi$2y, — F/A}. Here F/A%
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is the subcomplex oAS, comprising forms of typep, g) wherep is at leastj, so that
FIRy =@p> A" " .

Let (w1, 17) be an element of degreein R(j)?,—this means that; € F/Q% and
N € ﬁ'}'{l(j — 1)—and(wz, 17) any element iR (k)?,. A product is given by the formula
(cf. Ref.[15])

(w1, 11) U (w2, 12) = (01 A w2, (—1)" Tpw1 A g + 11 A Tq2) . (2.6)

Example 2.2.3. Hglz(X, R(1)) is the group of real valued functiomson X such that there
exists a holomorphic one-form such thattoc» =d#. In other words, it is the group of those
real smooth functions such thadyn is holomorphic. In particular, if is holomorphic and
invertible, thenthe class iH}Z(X, R(1)) determined byis represented b/ log £, log| f ).

2.3. Cones
We recall here a variant of B@ison’s formula for the cup product on certain diagrams

of complexes (for full details see Ref4,3,15).
Fori =1, 2, 3 consider the diagrams of complexes

9, C xs Ly 70 Sy 2.7)
and set
N ° o [i—8& e s
C(@)=Cone(Xt @ v I8 z2) -1, i=123.

Suppose there are product mags® X3 el X3, and similarly fory?, andZ?. We assume
the products to be compatible with thig g; only up to homotopy, namely there exist maps

h(X1® X2)* — Z57Y, k(r1®Yy)® — 7257t
such that
faoU—Uo(f1® fo)=dh+hd, gzoU—Uo(g1®g)=dk+kd,

with obvious meaning of the symbols. The following lemma establishes a variant of
Beilinson’s product formuld3].

Lemma 2.3.1.For (x;, y;,z) € X; @Y @ Z,.“l, i =1, 2,and a real parametet, the
following formula

(-x].’ Y1, Zl)UO((x27 Y2, 22)
= (1 Uz 31U vz, (“D®9 (2 = 2 far0) + 292(3) U z2

21U (o f2(x2) + (1 — 0)g2(y2)) — h(x1 ® x2) + k(y1 ® yz)) (2.8)
defines a family of products

C(21) ® C(T2) 2 C(Z3).
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These products are homotopic to one anotlaed graded commutative up to homotopy.
The homotopy formula is the same as that found in [REf

Proof. Direct verification. O

If the mapsf;, g; above are strictly compatible with the products, namely the homotopies
handk are zero, (2.8) reduces to the formulas founfBii5]. Homotopy commutativity at
the level of complexes ensures the corresponding cohomologies will have genuine graded
commutative products.

3. Hermitian holomorphic Deligne cohomology
3.1. Metrized line bundles

Let X be a complex manifold. Consider a holomorphic line buhdba X with hermitian
fiber metricp or, equivalently, an invertible sheafequipped with a map: L — 59(,+
to (the sheaf of) positive real smooth functions, see R4 for the relevant formalism.

Let Fﬁ:(?) denote the group of isomorphism classes of line bundles with hermitian metric.
A basic observation by Deligne (dfL4]) is thatPicX can be identified with the second
hypercohomology group

H2 (x Z()y - Ox =7 ég) . (3.1)

Thisis easy to see iech cohomology. Supposss a trivialization ofL |y, , with transition
functionsg;; € 0% (U;;) determined by; =s,g;;. Letp; be the value of the quadratic form
associated tp ons;, namelyp; = p(s;). Then we have; = pi|g,-j|2. Taking logarithms,
we see that

(2nv/=1c;ji, 109 gij. 3109 p;),
where Ziv/—1c;jx =log gjr —loggix + 109 g;; € Z(1), is a cocycle representing the class
of the pair(L, p).

3.1.1. Canonical connection
Recall for later use that theanonical connectior{19] on a metrized line bundleL, p)
is the unique connection compatible with both the holomorphic and hermitian structures.
In Cech cohomology with respect to the colgy as above, the canonical connection on
(L, p) corresponds to a collection ¢, 0) forms¢; € Ai’o(U,-) satisfying the relations
¢j— <& =dloggij, (3.2)
no(&) = 3dlogp;. (3.3)

The latter just means; = dlog p;, in more familiar terms. The global 2-form

c1(p) =n; = ddlogp; (3.4)
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represents the first Chern class.df H2(X, R(1)). The class of1(p) is in facta pure Hodge
class inH*1(X)—the image of the first Chern classlofinder the magi2 (X, Z(1)) —

HgZ](X, R(1)) induced byZ(1) — R(1). It only depends on the class @f, p) in Pi/c(Y).
3.2. Hermitian holomorphic complexes
In Ref.[9] Brylinski introduced the complexes
C()* = Cone(Z()x ® (FIA5 N a?&51) — 65 () (1. (35)

Definition 3.2.1. The hypercohomology groups

def

Hf (X,))=HP(X,C0) (3.6)

are theHermitian holomorphic Deligneohomology groups.
By the remark after Eq. (2.5), the complex
R(D)% = Cone( F'A% — &5 - D) (-1
also computes the real Deligne cohomology. Then consider the complex
D), = Cone(Z(l):@ ® (FIAY N2 8%() — [R?Ei)f@) [—1]. (3.7)
In Ref.[1] we prove
Lemma 3.2.2. The complexeS(/)* andD(l)y, |, are quasi-isomorphihence we also have

Hj (X,1)=H"(X, DD}p)-

Remark 3.2.3. The complexFIA;( N azzﬁ}(l) appearing in both (3.5) and (3.6) can be
rewritten in terms of the comple% (/)® of Ref.[14]. Set

GU)*=0— - — 0—> AlD L ALFLD gy ALY 4
Then we have'Ay N e? £% (1) = G()* N EX ().

For certain ranges of values of the cohomology index the gra&igahsh (X, 1) are fairly
ordinary. Indeed we have the following easy lemma. .

Lemma 3.2.4. For p <2/ — 1 we have
HY (X, D=H""Y(X, R1)/Z()),

Proof. Using eitherC(/)® or D(I);,;, , We see that they are quasi-isomorphic to

Cone(F'25 N 02 6%1) — RM)/Z()) (-1},



108 E. Aldrovandi / Journal of Pure and Applied Algebra 200 (2005) 97—-135

which leads to the triangle

R()/Z(D[~1] — DO, — F'AY N2 &%) 5 .

The statement follows. [J
In general these groups are interesting wpen2/. The most important example is:

Lemma 3.2.5.
PicX) = H2_ (X, 1).
Proof. We have quasi-isomorphisms
7y — 0x % £ = D)p, — C(D)".
Indeed, note thab (1)}, ,, can be rewritten as
ConaZ(D), — R(D)Z/(F'AY N 6?65 (W)—1]
and
R(DY/(F*8% 16265 (1)) = Cone( FUAY/F1Ay N 0?65(D) —3 &% ) [-11.
By direct verification, the latter complex is quasi—isomorphig””go[—l]. Thus
DDy, — ConaZ(D)y, — E3[-1D[-11—> Z(D)x — Ox > &% O

Since hermitian holomorphic Deligne complexes can be expressed as cones of diagrams
of the form (2.7), they admit cup products, and hence there is a cup product for hermitian
holomorphic Deligne cohomolod®]

U
HY (X, ®H{ (X,k)—> HJ (X, 1+k).
3.3. Explicit cocycles

Use of the seemingly more complicated complex (3.7) in place of the one in (3.5) is
justified by the fact that the data comprising the canonical connection can be characterized
cohomologically, as follows:

Lemma 3.3.1. Let (L, p) be a metrized line bundle on X. Assu(dg p) to be trivialized
with respect to the open covllry of X as before. The data

,0 o 8
& e AYO W, 3logp; € 8%Wy, n; e ATV W),

2n/—1cjjk € Z(Dx(Uijr), loggij € Ox(Uij)

represent a degre2cocycle with values iffot C* (1 D(1)y,, ) if and only if the relations
(3.2), (3.3), (3.4)plus those in SectioB.1,defining the canonical connection are satisfied
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Proof. One need only unravel the cone definibgl)y,,, as follows:

7MLy — Oy . 0 .
I«O@no Jv
Fab sy, —— FiAiesy —— - (38)

[

FA2 Ng5(1) — -

and carefully chase the diagram]

On the other hand, the hermitian holomorphic Deligne complex in the form (3.5) corre-
sponds to “reducing the structure group” frdirt to T. This can be made explicit fé= 1
and a line bundld. — X by choosing sections of the smooth bundle corresponding to
L such thato(¢;) = 1. Clearly the resulting smooth transition functions will be sections of
Ty overU;;. See Refs[9] and[12] for more details.

4. Tame symbol and hermitian structure

Let X be a complex analytic manifold arld C X open. Letf and g two invertible
holomorphic functions otJ. The tame symbdlL3] ( f, g] associated tbandgis a(%|y-
torsor equipped with an analytic connection.

4.1. Cup product and Deligne torsor

We considef andg as elements off (U, Z(1)). Then(f, gl = f Ug € H2(U, Z(2)).
Consider the covelly of X'so thatU is covered by{U N U;};.; and choose representatives
(2n/—1m;j, log; f) and(2nv/—1n;;, log; g) for f andg, respectively (sefL3,15)). Then,
using (2.4), the cup product is represented by the cocycle

d
((2n«/—1)2m,-jn,-k, —2n/~1mj;log;g, |og,.f—g) . (4.1)
8

Under the quasi-isomorphism with the complex, — Q}() (which essentially amounts
to a division by Z./—1) the cocycle (4.1) becomes

—mij __ 1 _ . d_g
(g , 27M/__llog,f . > 4.2)

In Ref.[13] the trivializing section o/ N U; corresponding to (4.2) is denot@dyg; f, g}
Two trivializations overU N U; andU N U; are related bylog; f, g} = {log; f. g} g~".
Furthermore, the analytic connection is defined by the rule:

1 dg

log; f —. (4.3)

V{Iogifsg}:_{logif’g}(g27_“/__1 2
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A general sectios of ( f, g] can be written as=;{log; f, g}, for someh; € Oy (U;), and
therefore

Vs = {log, f. ¢} ® (dhi - llog,-f%g) . (4.4)

1
21/ —
4.2. Heisenberg group

An equivalent approach to the Deligne symbol is via the complex three-dimensional
Heisenberg group, see R€fs,20,22] Let He denote the group of complex unipotent 3
lower triangular matrices. Let

1
Hy = {(ml 1 ) |my,n1 € Z(1), mo € Z(Z)} C Hc.

mo n1 1

The quotientHp/Hz is aC/Z(2)-bundle overC/Z (1) x C/Z(1) via the projection map

1
p: [x 1 ] = ([x], [yD,
z y 1

wherex, y,z € C, and the brackets denote the appropriate equivalence cla(s'l'slm.

CC/Z(2) -action is by multiplication with a matrix of the fon@ :

z 1
The twisting ofHg / H7 is analogous to that of the Deligne torsor in Section 4.1: the right
action of Hy on Hc amounts to:

XH—=x+my, yY—=y+ni, z+—=z+mpy+m. (4.5)

Moreover, the complex form

1
w=——(dz —xd 4.6
o «/—_1( z ) (4.6)
is invariant under the action @¢f, and defines & /Z(2)-connection form on the total space
Hc/Hy.

The invertible function$andg onU define amag f, g): U — C* x C*. Then the tame
symbol( f, g] is obtained as the pull-back:

(f.81=(f.9" (Hc/Hz),

and the sectiofflog; f, g} corresp onds to the class of the matrix

1
(Iogif 1 ) .
0 logg 1

Furthermore, the pull-back of the connection fanran He / Hz along the sectioflog; f, g}
is the same form as the one in (4.1). More generally, a sest@s given at the end of
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Section 4.1 corresponds to the class of the matrix

1
(Iogif 1 ) ,
h; log;g 1

Pulling back (4.6) along the section gives (4.4).
4.3. Hermitian product structure

Consider the “imaginary part” map

C®C— RQ

a®br— —mi(a)mo(h) = —v/—1lm(a)Re(b), 4.7)
Similarly, we have:

Ox ® Ox — 63D f ® g — —m1(f)mo(e). (4.8)

Definition 4.3.1. Define the map

(zx - 0x) ® (2Wx > 0x) — (2@x » 0x T £5®)
Zon/-1® (Z(l)X S0y 59() (4.9)

by using (4.8) in place of the mapy ® Ox — Q%, f ® ¢ — fdg,in (2.4).

Proposition 4.3.2. The product mag4.9)is well definednamely it is a map of complexes.
Furthermore it is homotopy graded commutative

Proof. The fact that (4.9) is a map of complexes is a direct verification. After R&l,
consider the map

h(f®g =re fgeUlx,
and zero otherwise. It provides the required homotoy.

The target complex of the product map in Eq. (4.9) is the complex encoding hermitian
structures appearing in Section 3.1. In other words, up to quasi-isomorphism, we have a
product

Z(1)y, @ Z(1)?, — 2nv/—=1® DDy, -
Remark 4.3.3. The map (4.8) provides an explicit homotopy map for the homotopy com-
mutative diagram

712, @7, — Z(2)%,

J J

RDZ ® RV — R@)Y,
where model (2.5) foR(k)?, is used (se¢l5]).
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Now, in view of Proposition 4.3.2, we have a graded commutative product at the level
of cohomology groups. In particular, gt ¢ be two invertible holomorphic functions on
UcCX.

Proposition 4.3.4. The Deligne torsor underlyingf, ¢g] admits a hermitian fiber metric

Proof. View f andg as elements oHé(U, Z(1)). Taking the product according to (4.9)
yields an element in

H2_ (U.1)=Pic(U)

that is, a holomorphic line bundle with hermitian fiber metric (up to isomorphism).

Taking the image ofthe tame symligl g] underthe magi’, (U, Z2(2)) — HS (U, Z(1))
= Pic(U) induced byZ(2)7, — Z(l)'Q forgets the analytic connection and retains just
the line bundle. Similarly, the maHJ (U,1) — HZ(U, Z(1)) = Pic(U) induced by
D(Dpy — Z(1)¢, forgetsthe hermltlan structure. Clearly both map to the same underlying
line bundle. O

Using aCech cover we can represédrndg as in Section 4.1. Then the cocycle corre-
sponding to their product iﬂéhh U, is

1
<2n\/—1m,~j njk, —m;;log; g, —m n1(log; f) log |g|> . (4.10)
This allows us to identify the representative of the hermitian metric, or rather its logarithm,
as

1
—| e | | 4.11
5 0gp; = = Fﬂl(OQl f)loglgl. ( )
It follows that if sis the local section at the end of Section 4.1 then
1
logp(s) = = F(ﬁl(h i) — m1(log; f) loglg)). (4.12)

4.3.1. Remarks on the Heisenberg bundle

The hermitian metric can be constructed from the more global point of view afforded by
the use of the Heisenberg group recalled in Section 4.2. The hermitian metric on the bundle
Hc/Hz — C* x C* is given by the map : Hc/Hz — R defined by

1
p:|:x 1 }n—>exp

z y 1

1
2n\/__l(m(z) — m1(x) mo(y)). (4.13)

Indeed, using the explicit action (4.5), one checks (4.13) is invariant and provides the
required quadratic form. In particular, the quantity

1
_27'5—\/—_1 n1(x) mo(y)
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is immediately shown to behave as the logarithm of the local representative of a hermitian
metric. Thus the hermitian holomorphic line bundle represented by the cocycle (4.10) is the
pull-back of (Hc /Hz, p) viathe map(f, g): U — C* x C*.

4.3.2. Relations with mixed Hodge structures

Both structures, namely the standard cup prodid@?, ® Z(1)?, — Z(2)7, given by
(2.4), and the modified on&(1)?, ® Z(1)?, — 2nv/—1® D(1)y,,, of Definition 4.3.1, can
be obtained by taking projections of a common object in two different ways.

Letsbe a local section of the pull-back

(f? g] = (f’ g)*(HC/HZ)

as at the end of Section 4.1. (The local expression in terms of matrices is given at the end
of Section 4.2.) Equivalenthg can be considered as a (local) lift of the mapg) : X —
C* x C* to Hc/Hyp.
Let ,/%g) be the resulting variation of Mixed Hodge Structures<oobtained by pulling
back the universal MHS#® on H¢/Hy vias.

Lemma 4.3.5(see Goncharo17]). The periodP(/%’f)) € Ox®q0yx of %(Xz) is
given by

h
PP ——— 91 -10 ———
) /172 ° ® o/ 12
lo lo lo lo
11 gf logg gg gf

/D2 2nd 1> 2n/ 1

Proof. Expression is computed in the appendix for the universal cdsk.

Notice thatthe period actually belongs to the kernel of the multiplicationingap— ab.

Let us now use the mapxRqoUx — OxRcUx. Let #x be the kernel of the multipli-
cation map (ovet). ThenS_?%HC ;fx/fi. The calculations for the following proposition
are done in the universal case in the appendix.

Proposition 4.3.6. Expressiong4.4) and (4.12) respectively correspond to the images of
P(%E(Z)) under the projections’x C OxQcOx — Q%{/@’ sendinga ® b — ab ® 1to
adb,and.fx C Ox®cOx — &% given by(4.8).

4.4, Comparisons

In the previous sections we have shown that the Deligne t@ys@r associated to two
invertible functionsf and g naturally acquires two structures: the analytic connec¥ion
described in Section 4.1 via the standard cup product in Deligne cohomology, and the
hermitian structure described in Section 4.3 via the modified cup product (4.9). We wish to
briefly compare the two structures.

First, observe that using the canonical connection (cf. Section 3.1.1) &/paiy can
also be thought of as a tripld., p, V*), whereV” is the canonical connection determined
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by p. Equivalently, we can just consider the péir, V#). Also, let us stress that the canon-
ical connection is only amoothconnection and is in general far from being analytic (or
algebraic).

Thus our question can be reformulated as follows: for a given line bundiguipped
with an analytic connectioR and a hermitian fiber metrie, how do the pairsL, V) and
(L, VP) compare?

The answer is the following well-known

Lemma 4.4.1. Consider bothv and V" assmoothconnections. Then

1. V — V" determines a global section gk& and
2. this global section is zerdhat is, V = V”, if and only if L is unitary flat namely it
defines an element &f1(X, R/Z).

Proof. Itis a well-known fact that the difference of two connections is a global one-form.
Working in a local setting, let € L|y be a local section, and ldjtr|| be its length with
respect to the metric. TheVis = v ® s, for w € Q}((U), whereasv’s = dlog|s|| ® s,
andolog|s| gives a locall, 0)-form representative o¥”, cf. Section 3.1.1. Clearly, the
differencew — 0log ||s|| gives a global section d_@o.

As for the second point, one would had@log ||s|| = 0, but this represents (L), hence
the conclusion. [J

In a situation when the two connections agree, that is, the connection is simultaneously
analytic and it is the canonical connection associated to a hermitian structure, we say they
arecompatible The line bundle supporting it is necessarily flat.

Interestingly enough, the previous lemma can be recastinto entirely cohomological terms.
This is advantageous in dealing with the special dase( f, g] of special interest to us, as
well as to address the very same question in the case of gerbes later on in this paper.

In the previous lemma we have comparéand VX by mapping their respective local
representatives i&}('o. It will be more convenient to use the sheaf of imaginary 1-forms
instead, namely consider, : Q% — &%(1) andd : £%(1) — &%(1). Consider the
complex

1@*E (2@ 0x % £4),

and the obvious maps of complexes
0:Z(2)% — A2* and B:2nV/-1® D)}, — A(2)°.
As usual, the cone:
o def

I'(2)* = Condo — f)[—1],

characterizes the elements/®)?, and 2t/ —1® D(1)p, ;, whichagreeim(2)®. Atedious
but straightforward direct verification yields:
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Lemma 4.4.2. We have the quasi—isomorphism
re* = (Z(z) L 0y YT Qb ¢ 69 (1) T, 61 (1)) (4.14)

Dropping the last term in (4.14), we obtain the truncation

e (Z(Z) Pl UNy o W Y (1))

which clearly characterizes the element#i2)?, and 2tv/—1® D(1)},,, which agree in
2ny/=1® Z(1),. (in other words]'(2)* can be obtained by replacinty2)® by Z(1)%,in
the previous paragraphs). In particular, let us denote bgxRie, /) the second hyperco-
homology grougH?(X, 1'2)°*), namely the subgroup (Hé(X, Z(2)) x Pic(X) of classes
of pairs(L, V) and (L, p) mapping to the same element of P9 =~ Hé(x, Z(1)). Then
Lemma 4.4.1 has the following reformulation:
Lemma 4.4.3. There is an exact sequence

0 — HYX,R/Z) — Pic(X, V, h) — EX(X)(1), (4.15)

whereE1(X)(1) are the global sections @f}( (1). Thus compatible connections are neces-
sarily flat.

Proof. The complex(2)* is a quotient of'(2)*, namely we have the exact sequence:
0— &x(WI[-31— I'Q)* — I'2* — 0,

and from the resulting long exact cohomology sequence:
0— HX, I'(2*) — H*X, T(2" — E*CO@) — -

It was noted above th&t2(X, I'(2)®*) ~Pic(X, V, h), whereas fol (2)* we have
H2(X, T(2*) ~HY(X, R(2)/Z(2)).

The latter isomorphism follows either from a direct computation, or noticinglthi2x® is
a quotient ofD(2);,,, (see Eq. (3.7)) and

HA(X, (") =H,  (X,2)
and then using Lemma 3.2.4[]

4.4.1. Comparing f, gl and(f, glhn.

Suppose nowL is the Deligne torsor determined by two invertible functiohs
andg. Clearly, the symbols f, g] and (f, glh.n. taken together determine an element of
Pic(X, V, h), since the underlying torsor in RIE) =~ Hé(X Z(1)) is the same. This ele-
ment can be represented by the cocycle

((271«/ 1)? mijnji, —2my/ —1m;; Iog] g, IOglf EB —mny(log; 1) |Og|g|>

with values inl"(2)°.



116 E. Aldrovandi / Journal of Pure and Applied Algebra 200 (2005) 97—-135
Following Goncharoy18] let us define for any two invertibldsandg the 1-form

ra(f, 8) &' m1(dlog £)log |g| — log | f|m(d log g). (4.16)

This is clearly globally defined whefeandg are invertible.
We finally obtain the following comparison.

Proposition 4.4.4. The analytic connection iff, ¢g] and the canonical one associated to
the hermitian structure ifi f, gl n. are compatible if and only if( £, g) =0in E1(X)(1).

Proof. Letw; =log; fdg/g ands; = —my(log; f) log|g|. The connecting homomorphism
from I'(2)° to ﬁ}((l), that is the last map to the right in the sequence (4.15), amounts to
computingry (w;) + do;. A straightforward calculation yields

ni(w;) +do; = —ra(f, g). O

5. Hermitian holomorphic gerbes and 2-gerbes
5.1. Higher tame symbols

Brylinski and McLaughlin considered higher degree versions of the tame symbol con-
struction[10,12], namely cup products of higher degree Deligne cohomology clagsdst
for f a holomorphic invertible function anlda holomorphic line bundle, and., L] for a
pair of holomorphic line bundles. The geometric interpretation of the symbols so obtained,
also put forward in Ref410,12] is that( f, L] is a gerbe orX with band & lien) ¢ and
a holomorphic connective structure. A similar statement holds for the 2-g&cl€].

5.1.1. Cup products
From the point of view of cohomology classes, one computes the relevant cup products.
Using (2.4), we find thatf, L] H%(X, Z(2)) is represented by the cocycle

i 1
mij -
(8/1( . —mbg;fd |098z]> , (5.1)
having made the standard choices for;|6gand the transition functiong;; of L with
respect to the choice of a covHk. Similarly, if glfj are the transition functions @f’, and
2n+/—1c;ji representsy (L) with respect to the covelly, then(L, L'] € H;(X, Z(2)is
represented by the cocycle

e 1
r Tk loggiidlogg” > ) 5.2
(gkl 27_5\/_—1 ggl] gg/k ( )

5.1.2. Hermitian variant
If we use the product

21z, ® Z(1)y — DDy,
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introduced in Section 4.3, fdrL andL’ as above we have

H (X, Z(1) ® H5(X, Z()) — HY, (X, 1),
f®IL]I— (f, Llnn.-

Using the sam€ech data as before, the symlogl L1y}, is represented by the cocycle

(81-7”’, o \/—nl(log, )no(loggu)) (5.3)

Similarly, with L andL” we have the product

H2(X,Z(1)) ® H3(X, Z(1)) — H}
[L1® L +— (L, L'lhn

X, D),

Dhh.

and the representing cocycle

_ 1
(g;d Uk, — m1(log gij) mo(log g’-k)> : (5.4)
2n/—1 J

Similarly to the proof of Proposition 4.3.4, the maps of compleX¢®)?, — Z(1)%,
andD(1)p, — Z(1)7, induce corresponding maps on the symhgisL] and (f, Llnn.,
moreover their images agreeHg(X, 7Z(1)). An identical statement holds fof., L'] and
(L, L'lhn.-

5.2. Gerbes with Hermitian structure

Let ¢ be a gerbe orX with band ¢% [16]. After [7,8], its class is an element of

Hg’[(X, Z(1)~ H3(X, 0%). Let ﬁ‘}H be the sheaf of real positive smooth functions on
X.

Definition 5.2.1. A hermitian structureon & consists of the following data:

1. For each objed® in %, is assigned @”?,’Jr—torsormm (a Ry-principal bundle).
The assignment must be compatible with the restriction func¢tofgy, — %y arising
fromi:V < U inthe covelly of X.

2. For each morphisnf: P — Q in 9y a corresponding morphisrfi, : herm(P) —
herm(Q) of (‘i?jﬁr-torsors? This map must be compatible with compositions of mor-
phisms in%y and with the restriction functors.

For an objecP of %, an automorphismp € Aut(P) is identified with a section af §
overU. We then require that

@, herm(P) => herm(P),
hv— h-|ol? (5.5)

where the latter is thgﬁ?]’yaction on the torsor her@®).

1A 6,0] . -torsor will in general be automatically trivializable. However, in this context it is convenient to
“forget” the actual trivializing map.
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Theorem 5.2.2. Equivalence classes 6f;-gerbes with hermitian structure are classified
by the group

H3(X, Z(L)y — Ox — &%).

Proof. Let% be an(-gerbe orXwith hermitian structure as per Definition 5.2.1. Choose a
full decomposition (sef]) with objectsP; of %y, and isomorphismg;;: P;lu,; — Pilu;;
with respect to a covelly of X. By a standard procedure (see Rdi#8]) these data
determine a cochaig;jx € Aut(P)|u,;, ;(9§|Uijk satisfying the cocycle condition and
determining a class i 2(X, 0%). Furthermore, choose section®f the torsors herrtp;)

aboveU;. From condition 2 in Definition 5.2.1 we have that there must gxist ﬁ(}(#wﬁ
such that: '

fij*("j)=”ipij- (5.6)
On the 3-skeleton of the cover we have that on one hand

Jijy © Fik (i) = fij (ri)pjx =TiPij P jks (5.7)
whereas on the other hand, singo fjx = gijk o fix, we have
(fij o Fi)« (k) = &ijk, © i) = ik, (ripix) = 7ilgijk|* Py (5.8)

Equating the right-hand sides of Egs. (5.7) and (5.8), and extracting the appropriate loga-
rithms, we see we have obtaine@€ach cocycle representing a class in

H3Qy. Z()y — Ox — 6%). (5.9)
Conversely, leta class H;h_h_ (X, 1) be given, and assume we represent it via the choice
of iy by a degree Zech cocycle with values in the complex
Z()x — Ox — &3,
which we write as
(2nv/=1ciji. 109 gijk. 5109 p;).-

This cocycle determines, via the magl)y, — Z(1)7,, a cocycle{g;jx} € C2(y, 03)
which can be used, according to R¢#%8], to glue the local stackbors((y;,) into a global
%, in fact a gerbe. Given @ﬁi -torsor P;, namely an object 0%y, =~ Tors(0y, ), define a
hermitian structure by

herm(P;) = trivial &9, , -torsor.

Then usep;; to glue herniP;) and_herniP;) overU;;, namelydefinean isomorphism via
Eq. (5.6). Since the isomorphisn® — P; andP, — P; — P; differ by the equivalence
determined by;x, we see using (5.5) that the condition

2
Pij Pk = 18ijk|Pik

ensuing from the cocycle condition, ensures the compatibility of this definition

overUij,. O
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Corollary 5.2.3. Using the quasi-isomorphism
D, = (Z2x ~ Ox > £5),
the class of a gerbe with hermitian structure is in facH@h_h' (X, 1.

We will see (cf. Section 5.3) this group also automatically classifies a special type of
connective structure o#.

5.3. Hermitian connective structure

The structure defined in Section 5.2 can be supplemented by a variant of Brylinski's
connective structur8] by taking into account the first Hodge filtration as in Rél{. Let
% be an(x gerbe oveiX.

Definition 5.3.1. A type (1, 0) connective structuren ¢ is the assignment to each object
P of %y of aFlé%,—torsorQQP) compatible with restriction functors and morphisms of
objects. In particular, fop € Aut(P), we require that

¢,: Co(P) — Co(P),
V +— V +dlogo, (5.10)

whereV is a section of CaP) overU.?

Definition 5.3.2. Let % be equipped with a hermitian structure. A ty{e 0) connective
structure or is compatiblewith the hermitian structure if for each objdebf 4 there is
an isomorphism of torsors

herm(P) — Co(P)
r— V,

such that for a positive functiomon U
r-p+— V,+0logp.
(In other wordsV,., =V, + 0logp.)

Connective structures of tyé, 0) are classified as follows.

Theorem 5.3.3. Let againD(1);,,, be the complex given {.7)for I = 1. Equivalence
classes of connective structures ofi @-gerbe% compatible with a given hermitian struc-
ture are classified by the group

H3(X, D)}

2 Note thatd log ¢ is holomorphic, hence of typé., 0).
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We have the following analog of the existence and uniqueness of the canonical connection
on an invertible sheaf.

Corollary 5.3.4. A connective structure compatible with a hermitian structure on a gerbe
% is uniquely determined up to equivalence

Proof. It is an immediate consequence of the fact that the groups in Theorems 5.2.2 and
5.3.3, being computed from quasi-isomorphic complexes, are actually the same (and equal
to H;hh (x,1.) 0O

Remark 5.3.5. The groupH3(X, D(D)}1,) gH%hh (X, 1) is notequal to Brylinski's

H (X. 2 — 65 — ;).
cf. Ref.[9, Proposition 6.9(1)](In fact there is an epimorphism
CO)” = (D) — 3D — 63 (D)

with non-trivial kernel) It follows that the notion of “hermitian gerbes with hermitian con-
nective structure” in loc. cit. is not identical to our notion 6% -gerbe with hermitian
structure and compatible tyg#, 0) connective structure.

Proof of Theorem 5.3.3. Choose a coveMx as usual and letP;, f;;, r;) be a decompo-
sition of @ and its hermitian structure as in the proof of Theorem 5.2.2.

If ¥ has a compatible typ@, 0) connective structure, we have a map hésm,) > r; —
V; € herm(Gy;,). For every isomorphisnf;; the compatibility condition from Definition
5.3.2 determines a form

& =0logp,; € FIAY(Uij)
satisfying the condition
Cjk — Cik + &y = dlog gijk. (5.11)

The imaginary 2-forr; ; d=8f5&jij =00 log p;; thenisacocycle with values iﬁlA@( ﬂﬁf( D).
Altogetherg; jk, % log p;;, &;j andy,; determine acocycle of total degree 3 in@ech res-
olutionC*QUx, D(D)fp,)-
Conversely, given a degree 3 cocycle with value®il);, ,, , a gerbed with hermitian
structure can be obtained by gluing triviﬁ[}[ -torsors andﬁ?,h 4 torsors as in Theorem

t5.2.2. It—')urthermore, define a map by assigning the trWi'a_&Ui -torsor to the trivials’y, -
orsor by

r+— V,=0logr.

Clearly, this defines a typ@., 0) connective structure compatible with the hermitian struc-
tureony. [
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Remark 5.3.6. Note the proof of Theorem 5.3.3 thét;; = 0, hence we obtain a class

;] € H (X Fas N azé;((l))
which can be associated #ovia the obvious map

DDhy — FIAY Na26% Q).
This class plays the same role féras the (global) imaginary formy (p) = 30 log p; for a
metrized line bundIl€L, p).
Remark 5.3.7 (Hermitian curving. An equivalent degree 3 cocycle can be obtained by
introducing the cochaik; € Ai’l N éi(l)(Ui) of imaginary 2-forms such that
and the imaginary 3-forn®; = Q|y, such that

dK; = Qly;,

whereQ e F1A3(X) n E3(X)(1) (global sections). We can regak} as the hermitian
curvingand(2 as the hermitian 8urvature respectively, of the typél, 0) hermitian con-
nection.

5.4. The symbdlf, L.

Given an invertible functiorf and a line bundld. we have seen there is a product
(f, Llhn. € H;hh (X, 1). We briefly give a geometric construction of the corresponding
hermitian-holomorphic gerbe.

We need to recall fronfil2] the construction of the gerls# underlying( f, L]. € is the
stackification of the following pre-stack®. For U <> X objects of the categorg?, are
non-vanishing sections df|y. If s € L|y, and non-vanishing, it is denotéd, s] as an
object of%?j. Given another non-vanishing sectignof L overU, there isg € (/; such
thats’ = sg. Morphisms from( f, s’] to (f, s] are given by sections of the Deligne torsor
(f, g1 overU. For a third non-vanishing sectiorf, with s” = s'¢g’ = sgg’, composition
of morphisms in the categofy?, corresponds to thi-theoretic property of the Deligne
torsor:

(f. 88’ 1=(f. g1 ® (f. &'

Given atrivialization ot by a collectior(s; } relative to a covellx ={U,},;, with transition
functionsg;; € 0% (U;)), the objects f, s;] and the morphisms

¢ij =1{log; £, gij}: (f. 51— (fsil
provide a decomposition &f in the sense of7]. It follows that the automorphisms
—m,-j

hijr=;; @ b ® it =g € AUL((f, silly;) = O% (Uij) (5.12)

represent the cohomology class®in H;(X, 7))~ H3(X, 0.
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Now define ahermitian structureon € as follows. To an objeatf, s] of €y we assign
(f. s1~herm((f, s]) = trivial &9, _ -torsor. (5.13)

Then, given a morphismf, g1 > ¢: (f,s'] — (f,s]in €y, with s" = sg as above, we
use the hermitian structure on the Deligne torsor underlyjfig] defined in Section 4.3,
Proposition 4.3.4. Namely

¢, herm((f, s']) — herm((f, s1),
h— h- ¢ (5.14)

whereh is a local section of herfif, s']), to be identified with one oﬁj’+ and||¢| is the
length of the non-vanishing sectigh We have the following analog of Proposition 4.3.4:

Proposition 5.4.1. The class of the gertd¢ underlying the symbdlf, L] with hermitian
structure defined by Eq$5.13)and (5.14)is given by the produatf, L], . in the group

H3 (X, Zy — Ox — &%) =13, (X, 1),

Proof. We need to find the class of ti# as in the proof of Theorem 5.2.2 and show it
coincides with( f, L] as computed in Eq. (5.3). To this end, let us use the decomposition
of ¢ given by the objectsf, s;] and morphismsp;; = {log; f, gi;}: (f, s;1 — (f, s:] for
non-vanishing sections € L|y,, as before. The class & (without extra structures) is
represented by the cochagrjikm"" already appearing in Eqg. (5.12).

Furthermore, in the hermitian Deligne torggt g;; ] overU;; the logarithm of the length
of the sectionp;; = {log; f, gi;} is given by

1 , 1
oij = 5 10gl¢; 117 = 5 logp;; = — 1ﬂ1(|09if) loggijl,

1
21—
cf. Eg. (4.11). Thus we have found the total cocycle represefingln . as in Eq. (5.3).
Indeed, by computing th€ech coboundary we find

oij — 0ik + 0ji = —m;jlog|gxl,

as desired. [J
5.5. Hermitian 2-gerbes

Let us briefly extend the considerations outlined in the previous sections to 2-gerbes over
X bound by(’% . (an extended exposition of the local geometry of 2-gerbes is to be found
in Ref.[7]. See als¢10] for the abelian case).

Recall that a 2-gerb@ overXbound by a sheaf @belian groups Hs a fibered 2-category
overX which satisfies the 2-descent condition for objects, and such that for any two objects
P andQin the fiber 2-categor¢ overU C X the fibered category Ho@®, Q) is a stack.

If fact, this fibered category turns out to beldrgerbe equivalent to the neutral ohers(H).

The properties of interest to us are the followikgis locally non-emptynamely there is a
coverlly of X such that folU C X in the cover, the object set & is non-emptyG is
locally connecteghamely any two objects can be connected by a weakly invertible 1-arrow
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(that is, invertible up to a 2-arrow); any two 1-arrows can be (locally) joined by a 2-arrow;
finally, for every 1-arrow its automorphism group is isomorphic in a specified waly to

Once the appropriate notion of isomorphism for 2-gerbes is introduced, isomorphism
classes of 2-gerbes bound Byare classified by the sheaf cohomology gradip(X, H),
see, e.g., Ref$7,10].

In what follows, we shall sed = ¢0%. Hence we can rephrase the previous statement by
saying that isomorphism classes of 2-gerbes boun@l pgre classified by the group

H3(X, 0%)=H} (X, Z(1)).

We shall need the local calculation leading to the classification, so we recall it here. Given
a 2-gerbeG, let us choose a decomposition by selecting a cdleiof X and a collection
of objectsP; in Gy,. There is a 1-arrow

fij: Pj — Pi
between their restrictions IGU,.J.. Furthermore, from the axioms there is a 2-arrow
%ijk: fij o fik = fik-

Further restricting over a 4-fold intersectiofy, , we have two 1-arrows; o fixo fi: P —

P; and f;;: P, — P; and between thertwo 2-arrows, namelyy;;; o (Idf,.j * o) and
okt o (ok * 1d 7). Since 2-arrows are strictly invertible, it follows again from the axioms
that there exists a sectidn;; of 0% overU;ji; such that

O(,'j] ] (Idfij % OCQ,'k[) = /’l,’jk/ O Wikl © (O(ijk * |dfk[)' (5.15)

This section is a 3-cocycle and the assignnent> [4] gives the classification isomor-
phism.

In analogy with what was previously done for gerbes, we are going to define a notion of
hermitian structure and of tygé&, 0) connectivityfor 2-gerbes oiX bound by . Brylinski
and McLaughlin defined eoncept of connectivityn a 2-gerbé& overXto be the datum of
a compatible class of connective structures on the gerbes KiBimD) for two objectsP,
Qinthe fiberGy . Itis possible to introduce several variants of this notion, as done in Refs.
[10,12] Thus a typgl, 0) connectivity will just be the requirement that these connective
structures take their values A% -torsors

Let us model the concept of hermitian structure on a 2-gerbe after the one for gerbes
given above in Definition 5.2.1.

Definition 5.5.1. A hermitian structuren a(y-2-gerbeG overX consists of the following
data:

1. To each objecP in the fiber 2-categoryay overU C X we assign aﬁ?j&-gerbe
herm(P) overU. (As beforeé?,’ . is the sheaf of real positive functions t).

2. This assignment must be compatible with the inverse image 2-furiét@g — Gy,
natural transformationsy; ;: j*i* = (ij)* and modificationsa; j x: ¢;; x ©
(" % @; )= @; jx o (¢ * i*) arising from the inclusions: V < U, j:W < V,
andk: Z < W, in the covenlly.
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3. For each 1-arrowf : P — Q in Gy a corresponding equivalence
f«: herm(P) — herm(Q) of &9, _ -gerbes.

For each 2-arrow: f = f’ a corresponding natural transformatien: f, = f/
between equivalences. We ask that this correspondence be compatible with compositions
of 1- and 2-arrows. Namely, for 1-arrows f': P — Q andg, ¢’: Q0 — R and for
2-arrowsz: f = f'andf: g = ¢'in Gy, whichwe compose gb«o: go f = g'o f/,

we find a diagram of natural transformations

—E0 (g of)

b’“ “(ﬁ* 2)e

g0 f,

glof, =)>(g’o ')

e(f'g’ (5.16)

of equivalences between t@’t%&-gerbesMrfP) and herniR) onU C X.

4. From the axioms, the group of automorphisms of a 1-arfon® — Q in Gy is
identified with@ ;. It follows that such an automorphism{that is, a 2-arrow fronfito
itself) can be identified with a sectiane (/;;. We then require that the induced natural
isomorphism

0. fx = fx.» Where f,: herm(P) — herm(Q)
be identified with a section cﬁ%ﬁ+ via the map
ar— lal? (5.17)

and an appropriate labeling of he¢®) and herniQ) by objects ands, respectively. In
more detail, given an arrovi,(r) — s in herm(Q), the action ofx via ., will amount
to an automorphism af We require that it béu|2.

Remark 5.5.2. The abstract nonsense of Definition 5.5.1 could have more succinctly char-
acterized by saying that the correspondence lignmalizes a Cartesian 2-functor between

G and the 2—gerbé}erbes(£§’(!+) on X, shifting to the reader the burden of unraveling the
diagrams.

We have the following analog of Theorem 5.2.2:

Theorem 5.5.3. Isomorphism classes 6f; -2-gerbes with hermitian structure in the sense
of Definition5.5.1are classified by the group

H4 (X ZW)x — Ox — 59() ~H} (X.1).

Proof. LetG be a(;-2-gerbe orXwith hermitian structure as per Definition 5.5.1. Forget-
ting the hermitian structur& will determine aclassin the grou‘@(x, Z(1)~ H3(X, 0%),
and we have briefly recalled before—cf. Eq. (5.15)—how to obtain a 3-cocycle representing

the class ofs.
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To obtain the rest of the cocycle with values in the complgg)y — Ox — ég’(
let us make the same choice for a decompositiok afith respect to the covelx: a
collection of objectsP; in Gy,, 1-arrows f;;: P; — P; between their restrictions and
2-arrowsy;j: fij o fix = fik-

We shall also need a decomposition of tﬁ%i’Jr—gerbesﬂr(Pi): to this end let us
choose objects overU; and arrows:;;: (fi;).(r;) — r; between their restriction t0;.

Let us consider a triple of objec#, P;, P, overU;;; (we are implicitly restricting to
the fiber 2-categor$y, ,.) We obtain the following diagram in hert) |y, ; :

(s (i () — 59y )

| |

i
(fik)«(ri) 3 i )Pik
ik (5.18)

The left vertical arrow in (5.18) results from the composition of two-arrows

Fi)s 0 (Fi0x 25 (fij 0 Fiie 225 (£,

resulting from diagram (5.16) in Definition 5.5.1. At the level of objects in the gerbe
herm(P;) diagram (5.16) is of course not commutative, so we obtain a septigne
Aut(r;), which we can identify with a section of the sh@Hr overU; .

Now consider a four-fold intersectidif; jx;: we have a cube determined by the objects
ri, ..., r; whose faces are built from copies of (5.18). Since this cube brings in relation
(5.15), using the mapping of th&} action spelled out in the last point in Definition 5.5.1,
we get the relation

P 1P Pij1 P = Whijutl?, (5.19)

which, after taking the appropriate logarithms, define€exh cocycle representing a
classin

H4 (ux, Z()y — Ox — ﬁ%).

Details (and diagram chasing) are straightforward and left to the reader.
Conversely, let us be given a class in

H4 (x, ZW)y — Ox — ég}) ~H3 (X @;igg’ﬁ) ,

and let us assume it is represented by the (multiplicaGe)h cocyclethjii, p;ji)- Let
just explain the construction of a corresponding 2-gerbe with hermitian structure (up to
equivalence). Again, details will be left to the reader.



126 E. Aldrovandi / Journal of Pure and Applied Algebra 200 (2005) 97—-135

We first apply the map
(Z(l)x S Oy — gg) — (Z(l)x N @X)

tothe representativ@ech cocycle to reconstructg -2-gerbeG according to Ref§7,10,12]
Recall that this is accomplished by gluing the local sta@ksbes((ﬁf,i) usingh; i . Sec-
ondly, we define a hermitian structure as follows. Assign to any olfjectver U; of the
so-determined 2-gerlig the trivial ﬁ?,m;gerbeﬁmﬂ-) = Tors(é?,ﬁ). For a triple of
such onU;jx we usep; . € f?/i,HU,-,-k as an automorphism of an objegtin herm(P;).

Checking that this structure satisfies the properties in Definition 5.5.1 and it defines a
2-gerbe with hermitian structure whose class is the one we started with is modeled after the
pattern of Refs[7] and[8] and it will be left to the reader. [J

As mentioned before, a connectivity ong-2-gerbe is in practice the assignment of
compatible connective structures on the local gerbes of morphisms. We have the following
definition (see alsf®, Section 7] for the first part):

Definition 5.5.4. Let G be a0’ -2-gerbe orX.

1. Atype (1, 0) concept of connectivitgn G is the assignment of A1A},-gerbe CoP)
to each objecP in Gy. This assignment will have to satisfy properties analogous to
those of Definition 5.5.1. Of course, in the last condition, the map (5.17) will have to
be replaced by — dloga.

2. Atype(1, 0) concept of connectivity isompatiblewith a hermitian structure if for each
objectP of Gy there is an equivalence of gerbes

herm(P) — Co(P)

satisfying the obvious compatibility conditions with the operation&gfand the re-
strictions.

The proof of the following theorem can be patterned after an appropriate generalization
of the proof of Theorem 5.3.3, so we shall omit it.

Theorem 5.5.5.Let G be a(y-2-gerbe with hermitian structure and lé (1)}, be the
complex given by3.7) for [ = 1. Equivalence classes of tygé, 0) connectivities or(s
compatible with the given hermitian structure are classified by the group

H4(X, D) },).

Furthermore the equivalence class is unique
5.6. The symbdlL, L' ],

We have seen that given two line bundleand L’ over X their cup productL, L'l .
defines aclass iﬂéh (X 1). According to Theorem 5.5.3 it corresponds to an equivalence
class of 2-gerbes with hermitian structure. Using the obvious maps of complexys, —
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Z(1)%, andZ(2)z, — Z(1)%,, the geometric 2-gerbi@ that underliesL, L'], p, is the same
one as for the standard symkdl, L] constructed by Brylinski and McLaughlin.

Recall (see Ref12] for more details) that objects Gfunderlying(L, L'] overU C X are
the non-vanishing sectiorsof L|y, denoted(s, L]. Given another non-vanishing section
s’ € L|y we have’=sg for aninvertible functiory overU. Then the category of morphisms
from (s’, L] to (s, L] is thegerbe(g, L] defined in Section 5.4. For a third non-vanishing
sections” of L overU, with s” = s’ g/, the morphism composition functor is given by the
equivalence

(8. L'1® (g, L] — (gg', L],

where on the left-hand side we have the contracted product of two (abelian) gerbes. To be
precise, it turns out thak is an appropriate “2-stackification” of the 2-pre-stack defined
here.

A calculation in Ref[12] shows that with respect to the trivializatiofys; } and{glfj} of

L andL’, respectively, the class & is represented by the cocy@%’c"-"" € Ox(Uijk),
where the cocycle; j; representsy(L).
We can define a hermitian structure @ms follows. To an objedts, L] of Gy we assign

(s, L'~ herm((s, L']) = trivial &, , -gerbe. (5.20)
Furthermore, as remarked above we have |HoqT, L], (s, L']) = (g. L']. Thus we set

Hom,, (herm((s’, L']), herm((s, L'])) = (g, L'Inn., (5.21)

where on the right-hand side we use the hermitian structure on the(@eé as defined in
Section 5.4. Onthe left-hand side of (5.21) we have the equivalences of tﬁ%gwfgerbes.

The proof of the following proposition is a straightforward generalization of the one for
Proposition 5.4.1.

Proposition 5.6.1. The class of thé';-2-gerbeG underlying the symbdlL, L'] with her-
mitian structure defined by EqSS.ZO)and(S 21)is given by the produdiL, L'l 1, in the

groupH?4 <X ZQ)y — Ox — gg’() HS (X, 1),
5.7. Comparisons and relations with other definitions

Recall from Refs[10,12] that analytic connective structures on gerbes with hépd
are classified by the grouﬁg (X, Z(2)). Similarly, for 2-gerbes with the same band, the
relevant group |SH$(X Z(2)). In the previous sections we have introduced hermitian
structures1 and typét, 0) connective structures on gerbes and 2-gerbes with gniive
define the concept of compatibility analogously to the case of line bundles in Section 4.4
as follows.

Let % be a0y -gerbe orX. Let Ca(-)" be a (holomorphic) connective structure@rin
the sense of Ref§10,12], and let t Co-)" be a connective structuom the same gerka the
sense of Section 5.3.

The relevant group classifying equipped with both types of connections is therefore
H3(X, I'(2)*), where the compIeE(Z) has been introduced in Section 4.4.
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Definition 5.7.1. We say that C6)%" and Cda-)" arecompatiblef for any objectP of G,
U C X, there is an isomorphism of torsors @“" ~ Co(P)" (after lambda-extension of

1.0
Co(P)" from Qf to A;}°).

Similarly, if GisaO -2-gerbe oIX, carrying both types of connective structures, its class

is an element of the groug*(X, I'(2)*). We can also repeat the above definition, taking
care that now for any object & overU c X, Co(P)™ =~ Co(P)" must be an equivalence
of gerbes. The next lemma immediately follows from the definitions.

Lemma 5.7.2. LetI'(2)® be the complex defined in Sectibd.

1. Classes oDy -gerbes with compatible connective structures in the sense of Definition
5.7.1are classified by the elements of the grdtf( X, I'(2)*).

2. Similarly, classes oD ; -2-gerbes with compatible connective structures are classified
by H*(X, I'(2)*).

5.7.1. Compatibility and flatness conditions

While these definitions seem to follow the pattern of line bundles analyzed in Section 4.4,
there in an important difference, namely gerbes (or 2-gerbes) satisfying the compatibility
condition of Definition 5.7.1 areot necessarily flatMoreover, in the present framework
the compatibility condition is less special than it was seen in the case of line bundles. This
can be seen by way of the following cohomological argument.

The complex(2)°® introduced in Section 4.4 is easily seen to be a quotient of the complex
D@py

D2pn — I'Q* — 0.

The kernel is complicated, but up to quasi-isomorphism, it can be reduced (by direct com-
putation) to the one-element compl@f((l) N A%;l[—4] so that we have the triangle

] L] 1
E3()NAYY—4] — D), — T2 5.
Focusing our attention to degree 3 and 4, we get the sequence

0— H2(X,R(2)/Z(2)) > H3(X, T(2)*) — E2(X)(1) N AM(x)
—~ HS (X.2) > HYX.T(2*) - 0,

where we have used Lemma 3.2.4. Moreover, the exact sequence from the proof of Lemma
4.4.3 relatingl"(2)° to I'(2)° yields the following completion of (4.15):

0— HY(X,R(2)/Z(2)) — Pic(X,V,h) > EXX)(1) —» H3(X, I'(2*)
- H3X, (2% -0
and
H4 (X, T(2*) > HYX, (2",

where we have used thgt}((l) is soft. In summary we have:
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Proposition 5.7.3. 1. The class of a0 5 -gerbe supporting both types of connective struc-
tures can be lifted to a class of compatible connective structuregpassibly equivaleit
gerbe

2. A 05 -gerbe with compatible connective structures is flat if niwial ) (1,1)-curving
is zero(cf. Sectiorb.3,Remarks$.3.6and5.3.7).

3.A 0;-2-gerbe supporting both types of connective structures is equivale2ttreebe
with compatible connective structures. Its class can be Iifteﬁgch)h (X, 2).

5.7.2. Comparing f, L] and (L, L'] with their hermitian variants

The higher symbolg f, L] and (f, L], have the same underlying gerbe, and sim-
ilarly (L, L] and (L, L'l determine the same 2-gerbe. Let us denote them, respec-
tively, by { f, L} and{L, L'}. By construction, they determine classesif(X, I'(2)*) and
H4(X, I'(2)*), respectively. The proposition specializes to this case as follows:

Corollary 5.7.4. The connective structuré®o(-)*" and Co(-)" on { f, L} are compatible
(up to E,-torsor automorphism
The analytic and hermitian connective structures onzfyerbe{L, L'} are compatible

Proof. The statement follows at once from the calculations preceding the propositidn.

Remark 5.7.5. As an alternative proof of the corollary, note that a calculation analogous to
that of the proof of Proposition 4.4.4 from the cocycle representations (5.1) and (5.3), yields
the 1-cocycle(f, gij) with values in@}((l), whereg;; are the transition functions af.
This cocycle represents the zero class (softne@}gil)), thereforer2(f, gij) =n; — n;,
and this choice is determined up to a global sectioﬁ}‘)tl).

Similarly, in the case ofL, L'} we get the 2-cocyclex(g;;, g}k) which again represents
the zero class.

6. Concluding remarks

In this paper we have put forward a definition for the concept of hermitian structure,
and associated compatible connective structure for gerbes and 2-gerbes with;bane
have presented classification results in terms of low degree hermitian holomorphic Deligne
cohomology groups. Notable examples are provided by higher versions of the classical
notion of tame symbol associated to two invertible functions. Indeed, our second main result
that there exists a modified version of the cup product in low degree Deligne cohomology
taking values in the first hermitian holomorphic Deligne complex, naturally provides the
symbols( f, L] and(L, L'] with hermitian structures according to our definition.

Two questions naturally arise. Sin¢g L] and(L, L'] also carry an analytic connective
structure, we may ask to what degree the latter and the hermitian one are compatible. Remark
5.3.5 prompts a second obvious question regarding the relation between our classification
Theorems 5.3.3 and 5.5.5 and others’, notably BrylingRi/¥roposition 6.9(1)]

We have analyzed the compatibility in cohomological terms, first for line bundles (in
the sense 0Oy -torsors) and then for gerbes and 2-gerbes with b@gidwith somewhat
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surprising results. Whereas the compatibility may be regarded as exceptional for a line
bundle—and itimplies its flathess—it is not so for gerbes (or 2-gerbes). Thus flatness is not
a necessary condition. In the specific case of the tame symbols and their generalizations,
we have found that while the compatibility ¢f, ¢] and (f, g]ln.n. (that is, their respec-

tive connections) may in general be obstructetl,L] and( f, L], can always be made
compatible, andL, L'] and(L, L"), are automatically so.

As for the relation with other notions of “hermitian gerbe” with “hermitian connective
structure” (or 2-gerbe) there appear to be subtle differences in the definitions which we can
trace to what aspect of line bundles with connection we decide to generalize. Our approach
has been to copy the conceptroétrized analytidor algebraig line bundlefamiliar from
Arakelov geometry (cf. Re{21]). On the other hand, one could describe a metri2gd
line bundle by means of thi-reduction of its associated smooth line bundle plus a unitary
connection. Whereas these two approaches are equivalent in the case of line bundles, they
seem to diverge as soon as we move on to gerbes. (and possibly matters worsen in the case of
2-gerbes) This may also serve to explain the lack of uniqgueness found by Hitchin’s student
D. Chatterjee in his thesis. Although that school’s approach to gerbes lacks the categorical
input (in fact for them a gerbe is just the “torsor cocycle” in the sengé]pthe definition
of hermitian gerbe is along Brylinski’s lines.

Another difference is the following. Our cohomological characterization via the group
thh (X, 1) =H*x, D(D)p ). k =3, 4, involves forms of degree two, which points to
a natural notion of curving naturally associated with the structures we have defined (cf.
Remarks 5.3.6 and 5.3.7). This is obviously absent in the truncated group in Remark 5.3.5.
The cohomological analysis of Section 5.7, where the gﬂe)g (X, 2) appears, suggests
that curvings can be a very nuanced structure, however dealing with them in detail falls
outside the scope of the present work.

We hope to further elucidate matters in the future in another publication.
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Appendix A. Remarks on Hodge—Tate structures

The relation between the “imaginary part” map made in Section 4.3 together with the
productZ(1)?, ® Z(1)s, — 2rn/—1® D(1)};,, and the cup produdt(1)s, ® Z(1)?, —
Z(2)2, giving rise to the tame symbol becomes more transparent from the point of view of
Hodge-Tate structures.
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A.1. A mixed Hodge structure

Let us briefly recall the following well-known MHS ofi3, see[13,4]. Consider, as
before,

1
M<2>=(x 1 ) (A.1)
z y 1

with complex entries, y, z. Consider also its canonical version

1
AP — <x 2n/—1 ) . (A.2)
z 2n/=1y (ny=1?

The MHS M5 corresponding ta®, or more preciselyd®, comprises the following
data. The integer lattice is th# span of the columns oA®, and similarly for@ and
R. Let vg, v1, v» denote the columns of @ starting from the left. The weight spaces are
W_o M@ =spar{u, ..., vo) (over the appropriate ring), and the Hodge filtration is given
by F~*M@(C) = Cleo, ... ., ex), where theg;'s are the standard basis vectorglif. The
graded quotients &, M@ are the Tate structures(0), Z(1), andZ(2). A change of
the generators; preserving the structure clearly amounts to a changa ®f by right
multiplication by a lower unipotent matrix ovér(or Q@ or R). This is the same as changing
M®@ by a matrix inHz (or the appropriate ring thereof) as in Section%.2.

The real structure underlying/® is linked to the hermitian structure on the bundle
Hc/Hz as presented in Section 4.3.1. [#] the image ofA® in GL2(C)/GL2(R) is
obtained by computing the matrix

def | - L
B:eAA1< -1 )
1

(we have dropped the superscrifj for ease of notation). The logarithm is

1 1
> log B = < mo(x) 1 ) .
m1(z) — m1(x)mo(y) mo(y) 1

We immediately recognize the expression of the hermitian form as given in Section 4.3.1.

A.2. The big period

In Ref.[17] Goncharov defines a tensor

P(M) € CegC

3These data correspond to the case- 2 of a MHS onCV defined for any integeN, cf. [4].
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associated to a MHS (technically, a framed ong) For the MHS defined by the period
matrix (A.1) it is computed as follows. Leb, f1, f2 be the dual basis tay, v1, v2. Then,
according to Ref[17],

P(MP) =3 "(f2, MPv)®qa/ fi, M yg).
k

Performing the calculation we find

PMP)=—> @1-1® ——
W (2n/=1)? ® ® (2n/—1)2
tleg—2r -2 g1 (A3)
2nv—1)2% 2nJ=1 2n/-1

Clearly, P(M@) is invariant under action (4.5) (ov€b). Moreover,P (M) belongs to
the kernell of the multiplication maf_®qC — C. As a consequence, we have:

Proposition A.2.1. The"connection forri(4.6) and the(logarithm of th¢ hermitian fiber
metric on the Heisenberg bundle correspond to the imageB(@f®) under the two
projections

I — 1/I1°=9¢ q
and
I C CeqgC — R(1),

respectively

Proof. The images under the two projections are, respectively, equal to

- ((ZR«/Z—_1)2> - 271«);—_1 a <2n\y/—_1)

and
L (r1(2) (x) To(y)) U
5 (M1Z) —T1X) T .
21/ —1)2 1 1 oLy
A.3. The extension class
The big period can be obtained as a symmetrization of an extension class of MHS.

Indeed, the weight-2 subspacaV_».#? ~ /P @ 2n/=1 = MY (1) is itself a MHS
(twisted by Zr./—1) defined by

Aa):C 271\/—_1)' (A.4)

(the data are as fow/®, replacing 2 by 1) We thus have an extension of MHS
0— /Y1) — .4 — 7(0) — 0. (A.5)
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Following the procedure explained in R§8], it is seen that the class of extension (A.5)
belongs to

ME Q)] ME ),
and it is given by the vector

X Z— Xy
— V1 — v
ond—1 1 @nJ=1)2 °

taken moduloﬂg). This computation can be refined by noticiij that.#V is itself an
extension,

(A.6)

e =

0— Z1) — MDY — 7(0) — 0
mapping (overd) to the “universal extension?
0— Q1 —C—-C*®0Q0—0, (A.7)

obtained by tensoring the standard exponential sequen@e Gyer the complex numbers,
we have

0—C— Coqgl — C*®zC=C/Q0(H®yC — 0.

Here we havgfg) =C and%q(:l) = C®gC. According to the same principle the class of
extension (A.7) lives in

AP ) #Y =CoaC/C=Co7C*. (A.8)
The image of (A.6) INC®qC is given by

= —y®x—21V—1® Zzn‘ fyl. (A.9)
Taking (A.9) moduloﬁg) =~ C we finally have

(Id@exp(@) =y ® e + 2n/—1® e~ G—)/20/=1, (A.10)

This is the (image of) the class of extension (A.5) as computed in[&etlt is easily seen
that element (A.10) is invariant under transformations (4.5).

Lemma A.3.1. There is a unique well-defined lift of the cla§s.10) to Foﬂg) =
ker(m: CgC — C). This can be obtained by adding {8.9) a (necessarily unique

see Ref[6]) element from#g) ~Cto(A.9). The liftis
27V —1Q 2nv/—1- P(M'?).

Proof. We can identifyyfg) =~C inside%ézl) viaa — a ® 2n4/—1. Thus add any such
element tee and consider the image under the multiplication map:

m(e+a®2nv—1) = —z + 2nv/—1a.
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Itis equal to zero if: = z/2n/—1, hence
= Z
e=e¢+ ——— ®2n\/—1
27/ —

——y®x+2nﬂ an F@an 2nV/-1® \/?1

is the required element.]
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