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Abstract

The tame symbol of two invertible holomorphic functions can be obtained by computing their cup
product in Deligne cohomology, and it is geometrically interpreted as a holomorphic line bundle
with connection. In a similar vein, certain higher tame symbols later considered by Brylinski and
McLaughlin are geometrically interpreted as holomorphic gerbes and 2-gerbes with abelian band and
a suitable connective structure.

In this paper we observe that the line bundle associated to the tame symbol of two invertible
holomorphic functions also carries a fairly canonical hermitian metric, hence it represents a class in
a Hermitian holomorphic Deligne cohomology group.

We put forward an alternative definition of hermitian holomorphic structure on a gerbe which
is closer to the familiar one for line bundles and does not rely on an explicit “reduction of the
structure group”. Analogously to the case of holomorphic line bundles, a uniqueness property for the
connective structure compatible with the hermitian-holomorphic structure on a gerbe is also proven.
Similar results are proved for 2-gerbes as well.

We then show the hermitian structures so defined propagate to a class of higher tame symbols
previously considered by Brylinski and McLaughlin, which are thus found to carry corresponding
hermitian-holomorphic structures. Therefore we obtain an alternative characterization for certain
higher Hermitian holomorphic Deligne cohomology groups.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of this work is two-fold. For an analytic manifoldXwe investigate geometric ob-
jects corresponding to the elements of certain low-degree Hermitian-Holomorphic Deligne
cohomology groups. These groups, denoted hereHk

Dh.h.
(X, l), for two integersk andl, were

defined in[9] and, in a slightly different fashion, later in[1]. It is already an observation
by Deligne (cf.[14]) thatH 2

Dh.h.
(X,1)�P̂icX, the group of isomorphism classes of holo-

morphic line bundles with hermitian fiber metric. Here we define an appropriate notion of
hermitian structure on a gerbe (or 2-gerbe) bound byO×X and show that the corresponding
(equivalence) classes are in bijective correspondence with the elements ofHk

Dh.h.
(X,1), for

k = 3,4.
As a second result and application, we show that the torsors and (2-)gerbes underlying the

cup products in ordinary Deligne cohomology studied by Brylinski–McLaughlin[10,12]
can be equipped in a rather natural way with the above-mentioned hermitian structures, thus
producing classes in the Hermitian-Holomorphic variant. More precisely, we modify the
cup product at the level of Deligne complexes to land into a Hermitian-Holomorphic one.
This modification is actually quite a natural one from the point of view of Mixed Hodge
Structures.

1.1. Background notions

To explain things a little bit more, letX be an analytic manifold and letA ⊆ R be a
subring—typicallyA=Z,Q or R. For any integerj, setA(j)= (2�

√−1)jA and letA(j)•D
be the Deligne complex

A(j)X ↪→ OX → �1
X → · · · → �j−1

X .

It is well known that (at the level of the derived category) there are mapsA(j)•D⊗A(k)•D →
A(j + k)•D inducing a cup product in cohomology

H
p

D(X,A(j))⊗H
q

D(X,A(k))
∪→H

p+q

D (X,A(j + k)),

where we have used the notationH
p

D(X,A(j))=Hp(X,A(j)•D) for theDeligne cohomology
groups, andH•(X,−) denotes hypercohomology.

The question of obtaining a geometric picture of the cup product in cohomology is a very
interesting one. A chief foundational example is the following. ForA= Z the product

Z(1)•D ⊗ Z(1)•D −→ Z(2)•D (1.1)

corresponds to the morphism

O×X ⊗ O×X −→ (O×X
d log−−→�1

X) (1.2)
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via the quasi-isomorphismsZ(1)•D
�→O×X[−1] andZ(2)•D

�→(O×X
d log−−→�1

X)[−1]. Deligne
gave a geometric construction of (1.2) and the ensuing cup product

O×X(X)⊗ O×X(X)
∪→H1(X,O×X

d log−−→�1
X)

in his work on tame symbols, cf.[13]: If f andgare two invertible functions onX, namely two
elements ofO×X, their cup product corresponds to aO×X-torsor, denoted(f, g], equipped with

an analytic connection. Furthermore, ifX is a Riemann surface, the complex(O×X
d log−−→�1

X)

is quasi-isomorphic toC× and the product is interpreted as theholonomyof the connection.
For X equal to a punctured diskDp centered atp, if f and g are holomorphic onDp,
meromorphic atp, the holonomy of(f, g] computes thetame symbol

(f, g)p = (−)v(f )v(g)(f v(g)/gv(f ))(p),

wherev(f ) is the valuation off at p, cf. [2,13,20]. This justifies the use of the nametame
symbolfor (f, g].

A particularly pleasant property is that whenf and 1− f are both invertible a calculation
[13] using the classical Euler’s dilogarithm Li2 shows that(f,1− f ] is isomorphic to the
trivial torsor equipped with the trivial connectiond, namely the unit element in the group

H1(X,O×X
d log−−→�1

X). From this one also builds an interpretation of the symbol associated
to f andg in terms of Mixed Hodge Structures[13].

In this particular example there appear degree 1 and 2 Deligne cohomology groups:
specifically, it is made use of the fact that invertible functions determine elements in the group
H 1
D(X,Z(1))�O×X(X), and, givenf andg, the class of the torsor with connection(f, g]

is an element ofH 2
D(X,Z(2))�H1(X,O×X

d log−−→�1
X). It is therefore natural to investigate

the geometric objects corresponding to similar cup products of higher degree. The case of
(f, L], wheref is again an invertible function andL is anO×X-torsor, so it determines a class
in H 2

D(X,Z(1))�H 1(X,O×X), was already considered in Ref.[13], where it is interpreted
in terms of a gerbeG overX.

This idea has been further pursued by Brylinski–McLaughlin[10,12]. In their study of
degree 4 characteristic classes they considered the symbols(f, L] ∈ H 3

D(X,Z(2)) and,
for a pair ofO×X-torsors,(L,L′] ∈ H 4

D(X,Z(2)). The corresponding geometric objects are
identified with a gerbe (resp. a 2-gerbe) both equipped with the appropriate analog of a
connection. Furthermore, the obvious mapZ(2)•D → Z(1)•D induces a corresponding map
Hk
D(X,Z(2)) → Hk

D(X,Z(1)) which simply forgets the connection. Therefore elements
in the groupsHk

D(X,Z(1)), for k = 3,4 correspond to equivalence classes of (2-)gerbes
bound byO×X, cf. [7,10,12]. Thus in the end several Deligne cohomology groups have a
concrete interpretation in terms of geometric data.

Hermitian-HolomorphicDeligne cohomology, as defined by Brylinski, cf.[9], is an
enhanced version of Deligne cohomology. For all positive integersl Brylinski introduces
certain complexesC(l)•, and defines the Hermitian-Holomorphic Deligne cohomology
groups as the sheaf hypercohomology groups:Hk

Dh.h.
(X, l)= Hk(X,C(l)•). The complex

C(l)• has a mapC(l)• → Z(l)•D, thus there is an obvious mapHk
Dh.h.

(X, l)→ Hk
D(X,Z(l))

forgetting the extra-structure.
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A primary example is provided by Deligne’s observation mentioned before, cf.[14], that

P̂icX�H2
(
X,Z(1)X → OX → E0

X

)
, (1.3)

whereP̂icX is the set of isomorphism classes ofO×X-torsors with hermitian metric, andE0
X

is the sheaf of smooth real-valued functions onX. The complex in (1.3) is quasi-isomorphic
to C(1)•, therefore

P̂icX�H 2
Dh.h.

(X,1).

In fact, both complexes are quasi-isomorphic to the complex(O×X ⊕ TX → C×
X)[−1],

[12,9], which encodes the reduction of the torsor structure fromO×X to TX afforded by the
hermitian metric.

Concerning higher degrees, Brylinski–McLaughlin[12,11]gave a geometric interpreta-
tion for some of the groupsHk

Dh.h.
(X, l), k=3,4 andl=1,2 in terms of classes of gerbes and

2-gerbes bound byTX and equipped with a concept of connection valued in an appropriate
Hodge filtration of the de Rham complex ofX.

1.2. Statement of the results

In this work we take on the same question of a geometric interpretation for some
Hermitian-Holomorphic Deligne cohomology groups from a holomorphic view-point which,
we believe, is complementary to that of Brylinski–McLaughlin. We define a hermitian struc-
ture on aO×X-gerbeGas the assignment of aE0

U,+-torsor (the “+” denotes positive functions)
to any objectP of GU subject to several conditions spelled out in Definition 5.2.1. We prove
that classes of gerbes with hermitian structures in this sense correspond to elements of
H 3
Dh.h.

(X,1)�H3(X,Z(1)X → OX → E0
X), in complete analogy with (1.3). Moreover

we can define a type(1,0)-connective structure onG by requiring that to any objectP of
GU be assigned aF 1A1

U -torsor, essentially repeating the steps in Ref.[12]. (hereA•U is the
smoothC-valued de Rham complex, andF 1 is the first Hodge filtration) Then a notion
of compatibility between the hermitian structure and the connective one is defined, and in
fact we prove there is only one such type(1,0) connective structure compatible with a
given hermitian structure, up to equivalence. This result is analogous to the corresponding
statement for hermitian holomorphic line bundles, that there is a unique connection—the
canonical or Griffiths connection—compatible with both structures.

Similar results are available for 2-gerbes: we define a hermitian structure for aO×X-2-
gerbeG as the assignment of aE0

U,+-gerbefor each objectP of GU , subject to several
conditions spelled out in Definition 5.5.1. Analogously to the simpler case of gerbes, we
have a concept of type(1,0) connectivity compatible with the hermitian structure and a
uniqueness result up to equivalence.

A second line of results is more specific to the tame symbols we encountered before.
Alongside with the map of complexes

Z(1)•D ⊗ Z(1)•D −→ Z(2)•D
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we define a companion map

Z(1)•D ⊗ Z(1)•D −→ 2�
√−1⊗ C(1)• (1.4)

so that it is possible to obtain a different cup product valued in Hermitian-Holomorphic
Deligne cohomology:

Hi
D(X,Z(1))⊗H

j

D(X,Z(1))
∪−→2�

√−1⊗H
i+j

Dh.h.
(X,1).

An immediate consequence is that forf andg invertible, andL,L′ line bundles, the torsor
(f, g] and the gerbe(f, L] support natural hermitian structures of the type discussed above,
in addition to the analytic connection (or connective) ones associated with the cup product
in standard Deligne cohomology. The same conclusions are valid for the 2-gerbe(L,L′].
It turns out that supporting both structures is an easy consequence of the commutativity of
the following diagram:

Hi
D(X,Z(1))⊗H

j

D(X,Z(1)) ∪−−−−−−→ 2�
√−1⊗H

i+j

Dh.h.
(X,1)

∪
�

� forget

H
i+j

D (X,Z(2))
forget−−−−−−→ H

i+j

D (X,Z(1))

Indeed, forgetting either structure, brings us back to the same underlying object.
The map (1.4) has a rather natural definition from the point of view of Mixed Hodge

Structures, whose role in the matter was mentioned in relation with the product (1.1), see
[13]. Namely, there is a “universal” MHSM(2) corresponding to an iterated extension
of Z(0) by Z(1) by Z(2), where in this caseZ(n) denotes a Hodge–Tate structure. To
M(2) we can associate a tensor—the “big period”—P(M(2)) ∈ C⊗QC, cf. [17]. The
period is in fact a multiple of the extension class ofM(2), and it belongs to the kernel
I = ker(m: C⊗QC → C) of the multiplication map. We find the map (1.4) corresponds
to the image ofP(M(2)) under the “imaginary part” projectionC⊗QC → R(1) given by
a ⊗ b �→ Im(a)Re(b). On the other hand, the standard one (1.1) involves the projection
onto the Kähler differentialsI→ I/I2 given bya ⊗ b �→ a db.

Another consequence of the previous diagram is that(f, g], (f, L], and(L,L′] come
equipped with two connection (or connective) structures. If the unitary connection in a line
bundleL is also analytic, thenL is flat. In the case of(f, g]we find there is an obstruction to
this type of compatibility. This can be cast in cohomological terms, which allows to extend
these considerations toO×X-gerbes and 2-gerbes. We find that the obstruction vanish, so
compatibility can always be achieved.

1.3. Outline of the paper

This work is organized as follows. In Section 2 we make some preliminary observations
about Deligne complexes and cohomology and collect a few needed facts. We recall the
definition of Hermitian-Holomorphic Deligne cohomology and state some of its properties
in Section 3. Alongside Brylinski’s complexC(l)•, we use a complex quasi-isomorphic to
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it, denotedD(l)•h.h., which for a line bundle directly encodes the data defining thecanonical
connection.

In Section 4 we recall the definition of the tame symbol(f, g] for two invertible functions
and some of its properties. We define the modified product (1.4) and show that through it,
the torsor associated to(f, g] also comes equipped with a hermitian structure.As mentioned
before, the product (1.4) and its relation with the standard for Deligne complexes become
more clear when analyzed in terms of Hodge Structures. In order to do this, we felt necessary
to recall a few elementary facts and calculations concerning Hodge–Tate structures that
are certainly well-known to experts. For this reason, and also because this development
lies somewhat aside this work’s main lines, we present this material in Appendix A. This
presentation relies in part on the Heisenberg group picture of the Deligne torsor, which we
have recalled in Section 4.2.

Section 5 is the main part of this work. There we redefine the notion of hermitian structure
(modeled after that of connective structure) and prove that equivalence classes of these are
classified by the groupsHk

Dh.h.
(X,1). We then apply this classification to the Hermitian

structures and the product (1.4) for the higher versions of the tame symbols considered by
Brylinski–McLaughlin.

The interplay between the analytic connection (or connective) structures arising from
standard Deligne cohomology and their hermitian counterparts defined here is analyzed in
Sections 4.4 and 5.7.

Finally, Section 6 is devoted to some concluding remarks.

2. Preliminaries

2.1. Notation and conventions

If z is a complex number, then�p(z)
def= 1

2(z + (−1)pz̄), and similarly for any other
complex quantity, e.g., complex valued differential forms. For a subringA of R and an
integerj, A(j) = (2�

√−1)j A is the Tate twist ofA. We identify C/Z(j)�C× via the
exponential mapz �→ exp(z/(2�

√−1)j−1), andC/R(j)�R(j − 1).
If X is a complex manifold,A•X and�•X denote the de Rham complexes of sheaves of

smoothC-valued and holomorphic forms, respectively. We denote byE•X the de Rham
complex of sheaves of real valued differential forms and byE•X(j) the twistE•X⊗RR(j).
We setOX ≡ �0

X as usual. When needed,Ap,q
X will denote the sheaf of smooth(p, q)-

forms. We use the standard decompositiond = �+ �̄ according to types. Furthermore, we
introduce the differential operatordc=�− �̄ (contrary to the convention, we omit the factor
1/(4�

√−1)). We have 2��̄ = dcd. The operatordc is an imaginary one and accordingly
we have the rules

d�p(�)= �p(d�), dc�p(�)= �p+1(d
c�)

for any complex form�.
An open cover ofX will be denoted byUX. If {Ui}i∈I is the corresponding collection of

open sets, we writeUij = Ui ∩ Uj , Uijk = Ui ∩ Uj ∩ Uk, and so on. More generally we
can also haveUX = {Ui → X}i∈I , where the maps are regular coverings in an appropriate
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category. In this case intersections are replaced by(n+ 1)-fold fibered productsUi0i1...in =
Ui0×X · · · ×XUin .

If F• is a complex of abelian sheaves onX, its Čech resolution with respect to a covering
UX → X is the double complex

Cp,q(F)
def= Čq(UX,Fp),

where theq-cochains with values inFp are given by
∏

Fp(Ui0...in ). TheČech coboundary
operator is denoted�. The convention we use is to put the index along theČech resolution in
thesecondplace, so if we denote byd the differential in the complexF•, the total differential
is given byD = d + (−1)p� on the componenťCq(UX,Fp) of the total simple complex.
Furthermore, recall that the Koszul sign rule causes a sign being picked whenever two
degree indices are formally exchanged. ForČech resolutions of complexes of sheaves it
leads to the following conventions. IfG• is a second complex of sheaves onX, then one
defines the cup product

∪ : Cp,q(F)⊗ Cr,s(G) −→ Čq+s(UX,Fp ⊗Gr ) ⊂ Cp+r,q+s(F⊗G)

of two elements{fi0,...,iq } ∈ Cp,q(F) and{gj0,...,js } ∈ Cr,s(G) by

(−1)qr fi0,...,iq ⊗ giq ,iq+1,...,iq+s .

For a given complex of abelian objects, sayC•, the symbol�i denotes sharp truncation at
the indexi: �iCp = 0 for p< i.

2.2. Deligne cohomology

There are several models for the complexes to use to compute Deligne cohomology
[15,2]. ForA ⊂ R and an integerj the latter is the hypercohomology

H •
D(X,A(j))= H•(X,A(j)•D).

HereA(p)•D is the Deligne complex

A(j)•D = A(j)X
™−→OX

d−→�1
X

d−→· · · d−→�j−1
X (2.1)

�−→Cone
(
A(j)X ⊕ Fj�•X

™−E→�•X
)
[−1], (2.2)

whereFj�•X in Eq. (2.2) is the Hodge (“stupid”) filtration on the de Rham complex. The

symbol
�−→ denotes a quasi-isomorphism. In view of Be˘ılinson formula for the cup product

on cones to be recalled below[3], Deligne complexes acquire a family of cup-products
(depending on a real parameter�)

A(j)•D ⊗ A(k)•D
∪�−→A(j + k)•D.
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Cup products related to different values of the parameter� are related by homotopy-
commutative diagrams, hence they induce a well-defined graded commutative cup-product
in cohomology

H
p

D(X,A(j))⊗H
q

D(X,A(k))
∪→H

p+q

D (X,A(j + k)). (2.3)

In order to explicitly compute cup products, the model given by Eq. (2.1) leads to simpler
formulas (when it can be used). Iff ∈ A(j)•D andg ∈ A(k)•D, then from Ref.[15] we
quote:

f ∪ g =
{
fg degf = 0,
f ∧ dg degf >0 and degg = k,

0 otherwise.
(2.4)

The following examples are well known and will frequently recur in the following.

Example 2.2.1.ForA=Z it is immediately verified thatZ(1)•D
�→O×X[−1] via the standard

exponential sequence, so thatHk
D(X,Z(1))�Hk−1(X,O×X). In particularH 1

D(X,Z(1))�
H 0(X,O×X), the global invertibles onX, andH 2

D(X,Z(1))�Pic(X), the Picard group of
line bundles overX.

Example 2.2.2.Z(2)•D
�→(O×X

d log−−→�1
X)[−1] .A fundamental observation by Deligne (see

Ref. [2]) is thatH 2
D(X,Z(2)) is identified with the group of isomorphism classes of holo-

morphic line bundles with (holomorphic) connection. This is easily understood from a
Čech cohomology point of view. Using the coverUX = {Ui}i∈I , a class in

H 2
D(X,Z(2))�H1(X,O×X

d log−−→�1
X)

is represented by a pair(�i , gij ) with �i ∈ �1
X(Ui) andgij ∈ O×X(Uij ) satisfying the

relations

�j − �i = d loggij , gij gjk = gik.

TheČech representative for the actual class inH 2
D(X,Z(2)) is obtained (up to a multipli-

cation by 2�
√−1) by extracting local logarithms loggij , see Ref.[15] for full details.

For real Deligne cohomology, i.e., whenA=R, other models quasi-isomorphic to those
in Eqs. (2.1) and (2.2) are available. Since the maps(

R(j)→ �•X
) �−→(R(j)→ C)

�−→R(j − 1)
�−→E•X(j − 1)

are all quasi-isomorphisms in the derived category, cf.[15], we have

R(j)•D
�−→Cone

(
Fj�•X → E•X(J − 1)

)
[−1]. (2.5)

Moreover, we can use smooth forms thanks to the fact that the inclusion�•X ↪→ A•X is
a filtered quasi-isomorphism with respect to the filtrationsFj�•X ↪→ FjA•X. HereFjA•X
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is the subcomplex ofA•X comprising forms of type(p, q) wherep is at leastj, so that
FjAn

X =⊕p� jAp,n−p
X .

Let (�1, �1) be an element of degreen in R(j)•D—this means that�1 ∈ Fj�n
X and

�1 ∈ En−1
X (j − 1)—and(�2, �2) any element inR(k)•D. A product is given by the formula

(cf. Ref.[15])

(�1, �1) ∪̃ (�2, �2)=
(
�1 ∧ �2, (−1)n �p�1 ∧ �2 + �1 ∧ �q�2

)
. (2.6)

Example 2.2.3.H 1
D(X,R(1)) is the group of real valued functions� on X such that there

exists a holomorphic one-form� such that�0�=d�. In other words, it is the group of those
real smooth functions� such that�� is holomorphic. In particular, iff is holomorphic and
invertible, then the class inH 1

D(X,R(1))determined byf is represented by(d logf, log |f |).

2.3. Cones

We recall here a variant of Be˘ılinson’s formula for the cup product on certain diagrams
of complexes (for full details see Refs.[1,3,15]).

For i = 1,2,3 consider the diagrams of complexes

Di
def= X•

i

fi−→Z•i
gi←−Y •i (2.7)

and set

C(Di )= Cone
(
X•

i ⊕ Y •i
fi−gi−−→Z•i

)
[−1], i = 1,2,3.

Suppose there are product mapsX•
1 ⊗X•

2
∪→X•

3, and similarly forY •i , andZ•i . We assume
the products to be compatible with thefi , gi only up to homotopy, namely there exist maps

h: (X1 ⊗X2)
• −→ Z•−1

3 , k: (Y1 ⊗ Y2)
• −→ Z•−1

3

such that

f3 ◦ ∪ − ∪ ◦ (f1 ⊗ f2)= d h+ hd, g3 ◦ ∪ − ∪ ◦ (g1 ⊗ g2)= d k + kd,

with obvious meaning of the symbols. The following lemma establishes a variant of
Beı̆linson’s product formula[3].

Lemma 2.3.1. For (xi, yi, zi) ∈ X•
i ⊕ Y •i ⊕ Z•−1

i , i = 1,2, and a real parameter�, the
following formula:

(x1, y1, z1)∪�(x2, y2, z2)

=
(
x1 ∪ x2, y1 ∪ y2, (−1)deg(x1)

(
(1− �)f1(x1)+ �g1(y1)

) ∪ z2

+z1 ∪
(
�f2(x2)+ (1− �)g2(y2)

)− h(x1 ⊗ x2)+ k(y1 ⊗ y2)
)

(2.8)

defines a family of products

C(D1)⊗ C(D2)
∪�→C(D3).
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These products are homotopic to one another, and graded commutative up to homotopy.
The homotopy formula is the same as that found in Ref. [3].

Proof. Direct verification. �

If the mapsfi , gi above are strictly compatible with the products, namely the homotopies
h andk are zero, (2.8) reduces to the formulas found in[3,15]. Homotopy commutativity at
the level of complexes ensures the corresponding cohomologies will have genuine graded
commutative products.

3. Hermitian holomorphic Deligne cohomology

3.1. Metrized line bundles

Let X be a complex manifold. Consider a holomorphic line bundleL onX with hermitian
fiber metric� or, equivalently, an invertible sheafL equipped with a map�:L → E0

X,+
to (the sheaf of) positive real smooth functions, see Ref.[21] for the relevant formalism.
Let P̂ic(X) denote the group of isomorphism classes of line bundles with hermitian metric.
A basic observation by Deligne (cf.[14]) is that P̂icX can be identified with the second
hypercohomology group

H2
(
X,Z(1)X

™−→OX
−�0−−→E0

X

)
. (3.1)

This is easy to see iňCech cohomology. Supposesi is a trivialization ofL|Ui
, with transition

functionsgij ∈ O×X(Uij ) determined bysj = sigij . Let�i be the value of the quadratic form
associated to� on si , namely�i = �(si). Then we have�j = �i |gij |2. Taking logarithms,
we see that

(2�
√−1cijk, loggij ,

1
2 log�i ),

where 2�
√−1cijk = loggjk − loggik + loggij ∈ Z(1), is a cocycle representing the class

of the pair(L,�).

3.1.1. Canonical connection
Recall for later use that thecanonical connection, [19] on a metrized line bundle(L,�)

is the unique connection compatible with both the holomorphic and hermitian structures.
In Čech cohomology with respect to the coverUX as above, the canonical connection on
(L,�) corresponds to a collection of(1,0) forms	i ∈ A1,0

X (Ui) satisfying the relations

	j − 	i = d loggij , (3.2)

�0(	i )= 1
2d log�i . (3.3)

The latter just means	i = � log�i , in more familiar terms. The global 2-form

c1(�)= �i ≡ �̄� log�i (3.4)
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represents the first Chern class ofL inH 2(X,R(1)).The class ofc1(�) is in fact a pure Hodge
class inH 1,1(X)—the image of the first Chern class ofL under the mapH 2

D(X,Z(1)) →
H 2
D(X,R(1)) induced byZ(1)→ R(1). It only depends on the class of(L,�) in P̂ic(X).

3.2. Hermitian holomorphic complexes

In Ref. [9] Brylinski introduced the complexes

C(l)• = Cone
(

Z(l)X ⊕ (F lA•X ∩ �2lE•X(l)) −→ E•X(l)
)
[−1]. (3.5)

Definition 3.2.1. The hypercohomology groups

H
p

Dh.h.
(X, l)

def= Hp(X,C(l)) (3.6)

are theHermitian holomorphic Delignecohomology groups.

By the remark after Eq. (2.5), the complex

R̃(l)
•
D = Cone

(
F lA•X → E•X(l − 1)

)
[−1]

also computes the real Deligne cohomology. Then consider the complex

D(l)•h.h. = Cone
(

Z(l)•D ⊕ (F lA•X ∩ �2lE•X(l)) −→ R̃(l)
•
D

)
[−1]. (3.7)

In Ref. [1] we prove

Lemma 3.2.2.The complexesC(l)• andD(l)•h.h. are quasi-isomorphic,hence we also have

H
p

Dh.h.
(X, l)= Hp(X,D(l)•h.h.).

Remark 3.2.3. The complexF lA•X ∩ �2lE•X(l) appearing in both (3.5) and (3.6) can be
rewritten in terms of the complexG(l)• of Ref. [14]. Set

G(l)• = 0−→ · · · −→ 0−→ A(l,l)
X

d−→A(l+1,l)
X ⊕ A(l,l+1)

X

d−→· · · .
Then we haveF lA•X ∩ �2lE•X(l)=G(l)• ∩ E•X(l).

For certain ranges of values of the cohomology index the groupsH
p

Dh.h.
(X, l) are fairly

ordinary. Indeed we have the following easy lemma.

Lemma 3.2.4. For p�2l − 1 we have

H
p

Dh.h.
(X, l)�Hp−1(X,R(l)/Z(l)).

Proof. Using eitherC(l)• or D(l)•h.h., we see that they are quasi-isomorphic to

Cone
(
F lA•X ∩ �2lE•X(l) −→ R(l)/Z(l)

)
[−1],
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which leads to the triangle

R(l)/Z(l)[−1] −→ D(l)•h.h. −→ F lA•X ∩ �2lE•X(l)
+1−→ .

The statement follows.�

In general these groups are interesting whenp�2l. The most important example is:

Lemma 3.2.5.

P̂ic(X)�H 2
Dh.h.

(X,1).

Proof. We have quasi-isomorphisms

Z(1)X
™−→OX

−�0−−→E0
X

�−→D(1)•h.h.
�−→C(1)•.

Indeed, note thatD(1)•h.h. can be rewritten as

Cone(Z(1)•D → R̃(1)
•
D/(F 1A•X ∩ �2E•X(1)))[−1]

and

R̃(1)
•
D/(F 1A•X ∩ �2E•X(1))

�−→Cone
(
F 1A•X/F 1A•X ∩ �2E•X(1) −�0−−→E•X

)
[−1].

By direct verification, the latter complex is quasi-isomorphic toE0
X[−1]. Thus

D(1)•h.h.
�−→Cone(Z(1)•D → E0

X[−1])[−1] �−→Z(1)X → OX → E0
X. �

Since hermitian holomorphic Deligne complexes can be expressed as cones of diagrams
of the form (2.7), they admit cup products, and hence there is a cup product for hermitian
holomorphic Deligne cohomology[9]

H
p

Dh.h.
(X, l)⊗H

q

Dh.h.
(X, k)

∪−→H
p+q

Dh.h.
(X, l + k).

3.3. Explicit cocycles

Use of the seemingly more complicated complex (3.7) in place of the one in (3.5) is
justified by the fact that the data comprising the canonical connection can be characterized
cohomologically, as follows:

Lemma 3.3.1. Let (L,�) be a metrized line bundle on X. Assume(L,�) to be trivialized
with respect to the open coverUX of X as before. The data

	i ∈ A(1,0)
X (Ui),

1
2 log�i ∈ E0

X(Ui), �i ∈ A(1,1)
X (Ui),

2�
√−1cijk ∈ Z(1)X(Uijk), loggij ∈ OX(Uij )

represent a degree2 cocycle with values inTot Č•
(
UXD(1)•h.h.

)
if and only if the relations

(3.2), (3.3), (3.4),plus those in Section3.1,defining the canonical connection are satisfied.
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Proof. One need only unravel the cone definingD(1)•h.h. as follows:

Z(1)X −−−−−−→ OX −−−−−−→ 0 −−−−−−→ · · ·�0⊕�0

�
F 1A1

X ⊕ E0
X −−−−−−→ F 1A2

X ⊕ E1
X −−−−−−→ · · ·
 E⊕0

F 1A2
X ∩ E2

X(1) −−−−−−→ · · ·

(3.8)

and carefully chase the diagram.�

On the other hand, the hermitian holomorphic Deligne complex in the form (3.5) corre-
sponds to “reducing the structure group” fromC× to T. This can be made explicit forl=1
and a line bundleL → X by choosing sectionsti of the smooth bundle corresponding to
L such that�(ti) = 1. Clearly the resulting smooth transition functions will be sections of
TX overUij . See Refs.[9] and[12] for more details.

4. Tame symbol and hermitian structure

Let X be a complex analytic manifold andU ⊂ X open. Letf and g two invertible
holomorphic functions onU. The tame symbol[13] (f, g] associated tof andg is aO×X|U -
torsor equipped with an analytic connection.

4.1. Cup product and Deligne torsor

We considerf andg as elements ofH 1
D(U,Z(1)). Then(f, g] = f ∪ g ∈ H 2

D(U,Z(2)).
Consider the coverUX of X so thatU is covered by{U ∩Ui}i∈I and choose representatives
(2�

√−1mij , logif ) and(2�
√−1nij , logig) for f andg, respectively (see[13,15]). Then,

using (2.4), the cup product is represented by the cocycle(
(2�

√−1)2mijnjk,−2�
√−1mij logj g, logif

dg

g

)
. (4.1)

Under the quasi-isomorphism with the complex(O×X → �1
X) (which essentially amounts

to a division by 2�
√−1) the cocycle (4.1) becomes(

g−mij ,− 1

2�
√−1

logif
dg

g

)
. (4.2)

In Ref.[13] the trivializing section onU ∩Ui corresponding to (4.2) is denoted{logif, g}.
Two trivializations overU ∩ Ui andU ∩ Uj are related by{logj f, g} = {logif, g} g−mij .
Furthermore, the analytic connection is defined by the rule:

∇{logif, g} = −{logif, g} ⊗
1

2�
√−1

logif
dg

g
. (4.3)
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A general sectionsof (f, g] can be written ass=hi{logi f, g}, for somehi ∈ OU(Ui), and
therefore

∇s = {logif, g} ⊗
(
dhi − 1

2�
√−1

logif
dg

g

)
. (4.4)

4.2. Heisenberg group

An equivalent approach to the Deligne symbol is via the complex three-dimensional
Heisenberg group, see Refs.[5,20,22]. LetHC denote the group of complex unipotent 3×3
lower triangular matrices. Let

HZ =
{(1

m1 1
m2 n1 1

)
|m1, n1 ∈ Z(1),m2 ∈ Z(2)

}
⊂ HC.

The quotientHC/HZ is aC/Z(2)-bundle overC/Z(1)× C/Z(1) via the projection map

p:

[1
x 1
z y 1

]
�→ ([x], [y]),

wherex, y, z ∈ C, and the brackets denote the appropriate equivalence classes.
(
The

CC/Z(2) -action is by multiplication with a matrix of the form
(1

0 1
z 0 1

)
.
)

The twisting ofHC/HZ is analogous to that of the Deligne torsor in Section 4.1: the right
action ofHZ onHC amounts to:

x �→ x +m1, y �→ y + n1, z �→ z+m1 y +m2. (4.5)

Moreover, the complex form

�= 1

2�
√−1

(dz− xdy) (4.6)

is invariant under the action ofHZ and defines aC/Z(2)-connection form on the total space
HC/HZ.

The invertible functionsf andg onU define a map(f, g):U → C××C×. Then the tame
symbol(f, g] is obtained as the pull-back:(

f, g ] = (f, g)∗
(
HC/HZ

)
,

and the section{logif, g} corresp onds to the class of the matrix( 1
logif 1

0 logig 1

)
.

Furthermore, the pull-back of the connection form�onHC/HZ along the section{logi f, g}
is the same form as the one in (4.1). More generally, a sections as given at the end of
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Section 4.1 corresponds to the class of the matrix( 1
logif 1
hi logig 1

)
,

Pulling back (4.6) along the section gives (4.4).

4.3. Hermitian product structure

Consider the “imaginary part” map

C⊗ C −→ R(1)
a ⊗ b �−→ − �1(a)�0(b) ≡ −√−1Im(a)Re(b), (4.7)

Similarly, we have:

OX ⊗ OX −→ E0
X(1) f ⊗ g �−→ −�1(f )�0(g). (4.8)

Definition 4.3.1. Define the map(
Z(1)X → OX

)
⊗
(

Z(1)X → OX

)
−→

(
Z(2)X → OX

−�1−→E0
X(1)

)
�−→2�

√−1⊗
(

Z(1)X → OX
−�0−→E0

X

)
(4.9)

by using (4.8) in place of the mapOX ⊗ OX → �1
X, f ⊗ g �→ f dg, in (2.4).

Proposition 4.3.2.The product map(4.9) is well defined, namely it is a map of complexes.
Furthermore, it is homotopy graded commutative.

Proof. The fact that (4.9) is a map of complexes is a direct verification. After Ref.[15],
consider the map

h(f ⊗ g)= fg, f, g ∈ OX,

and zero otherwise. It provides the required homotopy.�

The target complex of the product map in Eq. (4.9) is the complex encoding hermitian
structures appearing in Section 3.1. In other words, up to quasi-isomorphism, we have a
product

Z(1)•D ⊗ Z(1)•D −→ 2�
√−1⊗D(1)•h.h..

Remark 4.3.3. The map (4.8) provides an explicit homotopy map for the homotopy com-
mutative diagram

Z(1)•D ⊗ Z(1)•D −−−−−−→ Z(2)•D�
�

R(1)•D ⊗ R(1)•D −−−−−−→ R(2)•D
where model (2.5) forR(k)•D is used (see[15]).
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Now, in view of Proposition 4.3.2, we have a graded commutative product at the level
of cohomology groups. In particular, letf, g be two invertible holomorphic functions on
U ⊂ X.

Proposition 4.3.4.The Deligne torsor underlying(f, g] admits a hermitian fiber metric.

Proof. View f andg as elements ofH 1
D(U,Z(1)). Taking the product according to (4.9)

yields an element in

H 2
Dh.h.

(U,1)�P̂ic(U)

that is, a holomorphic line bundle with hermitian fiber metric (up to isomorphism).
Taking the image of the tame symbol(f, g]under the mapH •

D(U,Z(2))→ H •
D(U,Z(1))

= Pic(U) induced byZ(2)•D → Z(1)•D forgets the analytic connection and retains just
the line bundle. Similarly, the mapH 2

Dh.h.
(U,1) → H •

D(U,Z(1)) = Pic(U) induced by
D(1)•h.h. → Z(1)•D forgets the hermitian structure. Clearly both map to the same underlying
line bundle. �

Using aČech cover we can representf andg as in Section 4.1. Then the cocycle corre-
sponding to their product inH 2

Dh.h.
(U,1) is(

2�
√−1mij njk,−mij logj g,− 1

2�
√−1

�1(logif ) log |g|
)

. (4.10)

This allows us to identify the representative of the hermitian metric, or rather its logarithm,
as

1

2
log�i =−

1

2�
√−1

�1(logi f ) log |g|. (4.11)

It follows that if s is the local section at the end of Section 4.1 then

log�(s)= 1

2�
√−1

(�1(hi)− �1(logif ) log |g|). (4.12)

4.3.1. Remarks on the Heisenberg bundle
The hermitian metric can be constructed from the more global point of view afforded by

the use of the Heisenberg group recalled in Section 4.2. The hermitian metric on the bundle
HC/HZ → C× × C× is given by the map� : HC/HZ → R+ defined by

�:

[1
x 1
z y 1

]
�−→ exp

1

2�
√−1

(�1(z)− �1(x)�0(y)). (4.13)

Indeed, using the explicit action (4.5), one checks (4.13) is invariant and provides the
required quadratic form. In particular, the quantity

− 1

2�
√−1

�1(x)�0(y)
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is immediately shown to behave as the logarithm of the local representative of a hermitian
metric. Thus the hermitian holomorphic line bundle represented by the cocycle (4.10) is the
pull-back of(HC/HZ,�) via the map(f, g):U → C× × C×.

4.3.2. Relations with mixed Hodge structures
Both structures, namely the standard cup productZ(1)•D ⊗ Z(1)•D → Z(2)•D given by

(2.4), and the modified oneZ(1)•D⊗Z(1)•D → 2�
√−1⊗D(1)•h.h. of Definition 4.3.1, can

be obtained by taking projections of a common object in two different ways.
Let s be a local section of the pull-back

(f, g] = (f, g)∗(HC/HZ)

as at the end of Section 4.1. (The local expression in terms of matrices is given at the end
of Section 4.2.) Equivalently,s can be considered as a (local) lift of the map(f, g) : X →
C× × C× to HC/HZ.

LetM(2)
X be the resulting variation of Mixed Hodge Structures onX obtained by pulling

back the universal MHSM(2) onHC/HZ via s.

Lemma 4.3.5(see Goncharov[17]). The periodP(M(2)
X ) ∈ OX⊗QOX of M(2)

X is
given by

P(M(2)
X )= h

(2�
√−1)2 ⊗ 1− 1⊗ h

(2�
√−1)2

+ 1⊗ logf logg

(2�
√−1)2 −

logg

2�
√−1

⊗ logf

2�
√−1

.

Proof. Expression is computed in the appendix for the universal case.�

Notice that the period actually belongs to the kernel of the multiplication mapa⊗b → ab.
Let us now use the mapOX⊗QOX → OX⊗COX. LetIX be the kernel of the multipli-

cation map (overC). Then�1
X/C�IX/I2

X. The calculations for the following proposition
are done in the universal case in the appendix.

Proposition 4.3.6.Expressions(4.4) and (4.12)respectively correspond to the images of
P(M(2)

X ) under the projectionsIX ⊂ OX⊗COX → �1
X/C, sendinga ⊗ b − ab ⊗ 1 to

a db, andIX ⊂ OX⊗COX → E0
X given by(4.8).

4.4. Comparisons

In the previous sections we have shown that the Deligne torsor(f, g] associated to two
invertible functionsf andg naturally acquires two structures: the analytic connection∇
described in Section 4.1 via the standard cup product in Deligne cohomology, and the
hermitian structure described in Section 4.3 via the modified cup product (4.9). We wish to
briefly compare the two structures.

First, observe that using the canonical connection (cf. Section 3.1.1) a pair(L,�) can
also be thought of as a triple(L,�,∇�), where∇� is the canonical connection determined
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by �. Equivalently, we can just consider the pair(L,∇�). Also, let us stress that the canon-
ical connection is only asmoothconnection and is in general far from being analytic (or
algebraic).

Thus our question can be reformulated as follows: for a given line bundleL equipped
with an analytic connection∇ and a hermitian fiber metric�, how do the pairs(L,∇) and
(L,∇�) compare?

The answer is the following well-known

Lemma 4.4.1.Consider both∇ and∇h assmoothconnections. Then:

1. ∇ − ∇h determines a global section of A1,0
X , and

2. this global section is zero, that is, ∇ = ∇h, if and only if L is unitary flat, namely it
defines an element ofH 1(X,R/Z).

Proof. It is a well-known fact that the difference of two connections is a global one-form.
Working in a local setting, lets ∈ L|U be a local section, and let‖s‖ be its length with
respect to the metric. Then∇s = � ⊗ s, for � ∈ �1

X(U), whereas∇�s = � log‖s‖ ⊗ s,
and� log‖s‖ gives a local(1,0)-form representative of∇�, cf. Section 3.1.1. Clearly, the
difference�− � log‖s‖ gives a global section ofA1,0

X .
As for the second point, one would have�̄� log‖s‖= 0, but this representsc1(L), hence

the conclusion. �

In a situation when the two connections agree, that is, the connection is simultaneously
analytic and it is the canonical connection associated to a hermitian structure, we say they
arecompatible. The line bundle supporting it is necessarily flat.

Interestingly enough, the previous lemma can be recast into entirely cohomological terms.
This is advantageous in dealing with the special caseL= (f, g] of special interest to us, as
well as to address the very same question in the case of gerbes later on in this paper.

In the previous lemma we have compared∇ and∇� by mapping their respective local
representatives inA1,0

X . It will be more convenient to use the sheaf of imaginary 1-forms
instead, namely consider�1 : �1

X → E1
X(1) and d : E0

X(1) → E1
X(1). Consider the

complex


(2)• def=
(

Z(2)
™→OX

−�1◦d−−−−→E1
X(1)

)
,

and the obvious maps of complexes

� : Z(2)•D −→ 
(2)• and � : 2�
√−1⊗D(1)•h.h. −→ 
(2)•.

As usual, the cone:

�(2)• def= Cone(�− �)[−1],
characterizes the elements inZ(2)•D and 2�

√−1⊗D(1)•h.h. which agree in
(2)•. A tedious
but straightforward direct verification yields:
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Lemma 4.4.2.We have the quasi-isomorphism:

�(2)• �−→
(

Z(2)
™→OX

(d,−�1)−−−−→�1
X ⊕ E0

X(1) �1+d−−−−→E1
X(1)

)
. (4.14)

Dropping the last term in (4.14), we obtain the truncation

�̃(2)• def=
(

Z(2)
™→OX

(d,−�1)−−−−−−→�1
X ⊕ E0

X(1)
)

,

which clearly characterizes the elements inZ(2)•D and 2�
√−1⊗D(1)•h.h. which agree in

2�
√−1⊗Z(1)•D. (in other words,̃�(2)• can be obtained by replacing
(2)• by Z(1)•D in

the previous paragraphs). In particular, let us denote by Pic(X,∇, h) the second hyperco-
homology groupH2(X, �̃(2)•), namely the subgroup ofH 2

D(X,Z(2))× P̂ic(X) of classes
of pairs(L,∇) and(L,�) mapping to the same element of Pic(X)�H 2

D(X,Z(1)). Then
Lemma 4.4.1 has the following reformulation:

Lemma 4.4.3.There is an exact sequence:

0−→ H 1(X,R/Z) −→ Pic(X,∇, h) −→ E1(X)(1), (4.15)

whereE1(X)(1) are the global sections ofE1
X(1). Thus compatible connections are neces-

sarily flat.

Proof. The complex�̃(2)• is a quotient of�(2)•, namely we have the exact sequence:

0−→ E1
X(1)[−3] −→ �(2)• −→ �̃(2)• −→ 0,

and from the resulting long exact cohomology sequence:

0→ H2(X,�(2)•)→ H2(X, �̃(2)•)→ E1(X)(1)→ · · · .
It was noted above thatH2(X, �̃(2)•)�Pic(X,∇, h), whereas for�(2)• we have

H2(X,�(2)•)�H 1(X,R(2)/Z(2)).

The latter isomorphism follows either from a direct computation, or noticing that�(2)• is
a quotient ofD(2)•h.h. (see Eq. (3.7)) and

H2(X,�(2)•)�H 2
Dh.h.

(X,2)

and then using Lemma 3.2.4.�

4.4.1. Comparing(f, g] and(f, g]h.h.
Suppose nowL is the Deligne torsor determined by two invertible functionsf

andg. Clearly, the symbols(f, g] and (f, g]h.h. taken together determine an element of
Pic(X,∇, h), since the underlying torsor in Pic(X)�H 2

D(X,Z(1)) is the same. This ele-
ment can be represented by the cocycle(

(2�
√−1)2mijnjk,−2�

√−1mij logj g, logif
dg

g
⊕−�1(logif ) log |g|

)
with values in�̃(2)•.
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Following Goncharov[18] let us define for any two invertiblesf andg the 1-form

r2(f, g)
def= �1(d logf ) log |g| − log |f |�1(d logg). (4.16)

This is clearly globally defined wheref andg are invertible.
We finally obtain the following comparison.

Proposition 4.4.4.The analytic connection in(f, g] and the canonical one associated to
the hermitian structure in(f, g]h.h. are compatible if and only ifr2(f, g)= 0 in E1(X)(1).

Proof. Let �i = logif dg/g and�i =−�1(logif ) log |g|. The connecting homomorphism
from �̃(2)• to E1

X(1), that is the last map to the right in the sequence (4.15), amounts to
computing�1(�i )+ d�i . A straightforward calculation yields

�1(�i )+ d�i =−r2(f, g). �

5. Hermitian holomorphic gerbes and 2-gerbes

5.1. Higher tame symbols

Brylinski and McLaughlin considered higher degree versions of the tame symbol con-
struction[10,12], namely cup products of higher degree Deligne cohomology classes:(f, L]
for f a holomorphic invertible function andL a holomorphic line bundle, and(L,L′] for a
pair of holomorphic line bundles. The geometric interpretation of the symbols so obtained,
also put forward in Refs.[10,12], is that(f, L] is a gerbe onX with band (≡ lien) O×X and
a holomorphic connective structure. A similar statement holds for the 2-gerbe(L,L′].

5.1.1. Cup products
From the point of view of cohomology classes, one computes the relevant cup products.

Using (2.4), we find that(f, L] ∈ H 3
D(X,Z(2)) is represented by the cocycle(

g
−mij

jk ,− 1

2�
√−1

logif d loggij

)
, (5.1)

having made the standard choices for logif and the transition functionsgij of L with
respect to the choice of a coverUX. Similarly, if g′ij are the transition functions ofL′, and

2�
√−1cijk representsc1(L) with respect to the coverUX, then(L,L′] ∈ H 4

D(X,Z(2)) is
represented by the cocycle(

g′kl
−cijk ,− 1

2�
√−1

loggij d logg′jk
)

. (5.2)

5.1.2. Hermitian variant
If we use the product

Z(1)•D ⊗ Z(1)•D −→ D(1)•h.h.
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introduced in Section 4.3, forf, L andL′ as above we have

H 1
D(X,Z(1))⊗H 2

D(X,Z(1)) −→ H 3
Dh.h.

(X,1),

f ⊗ [L] �−→ (f, L]h.h..
Using the saměCech data as before, the symbol(f, L]h.h. is represented by the cocycle(

g
−mij

jk ,− 1

2�
√−1

�1(logif )�0(loggij )

)
. (5.3)

Similarly, with L andL′ we have the product

H 2
D(X,Z(1))⊗H 2

D(X,Z(1)) −→ H 4
Dh.h.

(X,1),

[L] ⊗ [L′] �−→ (L,L′]h.h.
and the representing cocycle(

g′kl
−cijk ,− 1

2�
√−1

�1(loggij )�0(logg′jk)
)

. (5.4)

Similarly to the proof of Proposition 4.3.4, the maps of complexesZ(2)•D → Z(1)•D
andD(1)•h.h. → Z(1)•D induce corresponding maps on the symbols(f, L] and(f, L]h.h.,
moreover their images agree inH 3

D(X,Z(1)). An identical statement holds for(L,L′] and
(L,L′]h.h..
5.2. Gerbes with Hermitian structure

Let G be a gerbe onX with bandO×X [16]. After [7,8], its class is an element of
H 3
D(X,Z(1))�H 2(X,O×X). Let E0

X,+ be the sheaf of real positive smooth functions on
X.

Definition 5.2.1. A hermitian structureonG consists of the following data:

1. For each objectP in GU , is assigned aE0
U,+-torsor herm(P ) (a R+-principal bundle).

The assignment must be compatible with the restriction functorsi∗:GU → GV arising
from i:V ↪→ U in the coverUX of X.

2. For each morphismf : P → Q in GU a corresponding morphismf∗ : herm(P ) →
herm(Q) of E0

U,+-torsors.1 This map must be compatible with compositions of mor-
phisms inGU and with the restriction functors.
For an objectP of GU , an automorphism
 ∈ Aut(P ) is identified with a section ofO×X
overU. We then require that


∗: herm(P )
�−→herm(P ),

h �−→ h · |
|2, (5.5)

where the latter is theE0
U,+-action on the torsor herm(P ).

1A E0
U,+-torsor will in general be automatically trivializable. However, in this context it is convenient to

“forget” the actual trivializing map.
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Theorem 5.2.2.Equivalence classes ofO×X-gerbes with hermitian structure are classified
by the group

H3(X,Z(1)X → OX → E0
X).

Proof. LetGbe anO×X-gerbe onXwith hermitian structure as per Definition 5.2.1. Choose a
full decomposition (see[7]) with objectsPi of GUi

and isomorphismsfij :Pj |Uij
→ Pi |Uij

with respect to a coverUX of X. By a standard procedure (see Refs.[7,8]) these data
determine a cochaingijk ∈ Aut(Pi)|Uijk

�O×X|Uijk
satisfying the cocycle condition and

determining a class inH 2(X,O×X). Furthermore, choose sectionsri of the torsors herm(Pi)

aboveUi . From condition 2 in Definition 5.2.1 we have that there must exist�ij ∈ E0
X,+|Uij

such that:

fij ∗(rj )= ri�ij . (5.6)

On the 3-skeleton of the cover we have that on one hand

fij ∗ ◦ fjk∗(rk)= fij ∗(rj )�jk = ri�ij �jk, (5.7)

whereas on the other hand, sincefij ◦ fjk = gijk ◦ fik, we have

(fij ◦ fjk)∗(rk)= gijk∗ ◦ fik∗(rk)= gijk∗(ri�ik)= ri |gijk|2�ik. (5.8)

Equating the right-hand sides of Eqs. (5.7) and (5.8), and extracting the appropriate loga-
rithms, we see we have obtained aČech cocycle representing a class in

Ȟ3(UX,Z(1)X → OX → E0
X). (5.9)

Conversely, let a class inH 3
Dh.h.

(X,1) be given, and assume we represent it via the choice

of UX by a degree 2̌Cech cocycle with values in the complex

Z(1)X → OX → E0
X,

which we write as

(2�
√−1cijkl, loggijk,

1
2 log�ij ).

This cocycle determines, via the mapD(1)•h.h. → Z(1)•D, a cocycle{gijk} ∈ Č2(UX,O×X)

which can be used, according to Refs.[7,8], to glue the local stacksTors(OUi
) into a global

G, in fact a gerbe. Given aO×Ui
-torsorPi , namely an object ofGUi

�Tors(OUi
), define a

hermitian structure by

herm(Pi)= trivial E0
Ui,+-torsor.

Then use�ij to glue herm(Pi) and herm(Pj ) overUij , namelydefinean isomorphism via
Eq. (5.6). Since the isomorphismsPk → Pi andPk → Pj → Pi differ by the equivalence
determined bygijk, we see using (5.5) that the condition

�ij �jk = |gijk|2�ik,

ensuing from the cocycle condition, ensures the compatibility of this definition
overUijk. �
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Corollary 5.2.3. Using the quasi-isomorphism

D(1)•h.h.
�−→
(

Z(1)X → OX → E0
X

)
,

the class of a gerbe with hermitian structure is in fact inH 3
Dh.h.

(X,1).

We will see (cf. Section 5.3) this group also automatically classifies a special type of
connective structure onG.

5.3. Hermitian connective structure

The structure defined in Section 5.2 can be supplemented by a variant of Brylinski’s
connective structure[8] by taking into account the first Hodge filtration as in Ref.[9]. Let
G be anO×X gerbe overX.

Definition 5.3.1. A type (1,0) connective structureonG is the assignment to each object
P of GU of a F 1A1

U -torsor Co(P ) compatible with restriction functors and morphisms of
objects. In particular, for
 ∈ Aut(P ), we require that


∗: Co(P )
�−→Co(P ),

∇ �−→ ∇ + d log
, (5.10)

where∇ is a section of Co(P ) overU.2

Definition 5.3.2. Let G be equipped with a hermitian structure. A type(1,0) connective
structure onG is compatiblewith the hermitian structure if for each objectP of G there is
an isomorphism of torsors

herm(P ) −→ Co(P )

r �−→ ∇r

such that for a positive function� onU

r · � �−→ ∇r + � log�.

(In other words,∇r·� = ∇r + � log�.)

Connective structures of type(1,0) are classified as follows.

Theorem 5.3.3.Let againD(1)•h.h. be the complex given by(3.7) for l = 1. Equivalence
classes of connective structures on aO×X-gerbeG compatible with a given hermitian struc-
ture are classified by the group

H3(X,D(1)•h.h.).

2 Note thatd log
 is holomorphic, hence of type(1,0).
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We have the following analog of the existence and uniqueness of the canonical connection
on an invertible sheaf.

Corollary 5.3.4. A connective structure compatible with a hermitian structure on a gerbe
G is uniquely determined up to equivalence.

Proof. It is an immediate consequence of the fact that the groups in Theorems 5.2.2 and
5.3.3, being computed from quasi-isomorphic complexes, are actually the same (and equal
to H 3

Dh.h.
(X,1).) �

Remark 5.3.5. The groupH3(X,D(1)•h.h.)�H 3
Dh.h.

(X,1) is notequal to Brylinski’s

H3
(
X,Z(1)→ E0

X(1)→ E1
X(1)

)
,

cf. Ref.[9, Proposition 6.9(1)]. (In fact there is an epimorphism

C(1)• → (Z(1)→ E0
X(1)→ E1

X(1))

with non-trivial kernel) It follows that the notion of “hermitian gerbes with hermitian con-
nective structure” in loc. cit. is not identical to our notion ofO×X-gerbe with hermitian
structure and compatible type(1,0) connective structure.

Proof of Theorem 5.3.3.Choose a coverUX as usual and let(Pi, fij , ri) be a decompo-
sition ofG and its hermitian structure as in the proof of Theorem 5.2.2.

If G has a compatible type(1,0) connective structure, we have a map herm(GUi
) # ri �→

∇i ∈ herm(GUi
). For every isomorphismfij the compatibility condition from Definition

5.3.2 determines a form

	ij = � log�ij ∈ F 1A1
X(Uij )

satisfying the condition

	jk − 	ik + 	ij = d loggijk. (5.11)

The imaginary 2-form�ij
def= �̄	ij=�̄� log�ij then is a cocycle with values inF 1A2

X∩E2
X(1).

Altogether,gijk, 1
2 log�ij ,	ij and�ij determine a cocycle of total degree 3 in theČech res-

olution Č•(UX,D(1)•h.h.).
Conversely, given a degree 3 cocycle with values inD(1)•h.h., a gerbeG with hermitian

structure can be obtained by gluing trivialO×Ui
-torsors andE0

Ui,+ torsors as in Theorem

5.2.2. Furthermore, define a map by assigning the trivialF 1A1
Ui

-torsor to the trivialE0
Ui,+-

torsor by

r �−→ ∇r ≡ � logr.

Clearly, this defines a type(1,0) connective structure compatible with the hermitian struc-
ture onG. �
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Remark 5.3.6. Note the proof of Theorem 5.3.3 thatd�ij = 0, hence we obtain a class

[�ij ] ∈ H3
(
X,F 1A•X ∩ �2E•X(1)

)
which can be associated toG via the obvious map

D(1)•h.h. −→ F 1A•X ∩ �2E•X(1).

This class plays the same role forG as the (global) imaginary formc1(�)= �̄� log�i for a
metrized line bundle(L,�).

Remark 5.3.7(Hermitian curving). An equivalent degree 3 cocycle can be obtained by
introducing the cochainKi ∈ A1,1

X ∩ E2
X(1)(Ui) of imaginary 2-forms such that

�̄� log�ij =Kj −Ki ,

and the imaginary 3-form�i ≡ �|Ui
such that

dKi = �|Ui
,

where� ∈ F 1A3(X) ∩ E3(X)(1) (global sections). We can regardKi as the hermitian
curvingand� as the hermitian 3-curvature, respectively, of the type(1,0) hermitian con-
nection.

5.4. The symbol(f, L]h.h.
Given an invertible functionf and a line bundleL we have seen there is a product

(f, L]h.h. ∈ H 3
Dh.h.

(X,1). We briefly give a geometric construction of the corresponding
hermitian-holomorphic gerbe.

We need to recall from[12] the construction of the gerbeC underlying(f, L]. C is the
stackification of the following pre-stackC0. ForU ↪→ X objects of the categoryC0

U are
non-vanishing sections ofL|U . If s ∈ L|U , and non-vanishing, it is denoted(f, s] as an
object ofC0

U . Given another non-vanishing sections′ of L overU, there isg ∈ O×U such
that s′ = sg. Morphisms from(f, s′] to (f, s] are given by sections of the Deligne torsor
(f, g] over U. For a third non-vanishing sections′′, with s′′ = s′g′ = sgg′, composition
of morphisms in the categoryC0

U corresponds to theK-theoretic property of the Deligne
torsor:

(f, gg′]�(f, g] ⊗ (f, g′].
Given a trivialization ofL by a collection{si} relative to a coverUX={Ui}i∈I , with transition
functionsgij ∈ O×X(Uij ), the objects(f, si] and the morphisms

�ij = {logif, gij }: (f, sj ] → (f, si]
provide a decomposition ofC in the sense of[7]. It follows that the automorphisms

hijk = �ij ⊗ �jk ⊗ �−1
ik = g

−mij

jk ∈ Aut((f, si]|Uijk
)�O×X(Uijk) (5.12)

represent the cohomology class ofC in H 3
D(X,Z(1))�H 2(X,O×X).
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Now define ahermitian structureonC as follows. To an object(f, s] of CU we assign

(f, s]�herm((f, s])= trivial E0
U,+-torsor. (5.13)

Then, given a morphism(f, g] # �: (f, s′] → (f, s] in CU , with s′ = sg as above, we
use the hermitian structure on the Deligne torsor underlying(f, g] defined in Section 4.3,
Proposition 4.3.4. Namely

�∗: herm((f, s′]) −→ herm((f, s]),
h �−→ h · ‖�‖2, (5.14)

whereh is a local section of herm((f, s′]), to be identified with one ofE0
U,+ and‖�‖ is the

length of the non-vanishing section�. We have the following analog of Proposition 4.3.4:

Proposition 5.4.1.The class of the gerbeC underlying the symbol(f, L] with hermitian
structure defined by Eqs.(5.13)and (5.14) is given by the product(f, L]h.h. in the group

H3
(
X,Z(1)X → OX → E0

X

)
�H 3

Dh.h.
(X,1).

Proof. We need to find the class of theC as in the proof of Theorem 5.2.2 and show it
coincides with(f, L]h.h. as computed in Eq. (5.3). To this end, let us use the decomposition
of C given by the objects(f, si] and morphisms�ij = {logif, gij }: (f, sj ] → (f, si] for
non-vanishing sectionssi ∈ L|Ui

, as before. The class ofC (without extra structures) is

represented by the cochaing
−mij

jk already appearing in Eq. (5.12).
Furthermore, in the hermitian Deligne torsor(f, gij ] overUij the logarithm of the length

of the section�ij = {logif, gij } is given by

�ij ≡ 1

2
log‖�ij‖2 ≡ 1

2
log�ij =−

1

2�
√−1

�1(logif ) log |gij |,
cf. Eq. (4.11). Thus we have found the total cocycle representing(f, L]h.h. as in Eq. (5.3).
Indeed, by computing thěCech coboundary we find

�ij − �ik + �jk =−mij log |gjk|,
as desired. �

5.5. Hermitian 2-gerbes

Let us briefly extend the considerations outlined in the previous sections to 2-gerbes over
X bound byO×X. (an extended exposition of the local geometry of 2-gerbes is to be found
in Ref. [7]. See also[10] for the abelian case).

Recall that a 2-gerbeG overXbound by a sheaf ofabelian groups His a fibered 2-category
overX which satisfies the 2-descent condition for objects, and such that for any two objects
P andQ in the fiber 2-categoryGU overU ⊂ X the fibered category Hom(P,Q) is a stack.
If fact, this fibered category turns out to be anH-gerbe equivalent to the neutral oneTors(H).
The properties of interest to us are the following:G is locally non-empty, namely there is a
coverUX of X such that forU ⊂ X in the cover, the object set ofGU is non-empty;G is
locally connected, namely any two objects can be connected by a weakly invertible 1-arrow
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(that is, invertible up to a 2-arrow); any two 1-arrows can be (locally) joined by a 2-arrow;
finally, for every 1-arrow its automorphism group is isomorphic in a specified way toH.

Once the appropriate notion of isomorphism for 2-gerbes is introduced, isomorphism
classes of 2-gerbes bound byH are classified by the sheaf cohomology groupH 3(X,H),
see, e.g., Refs.[7,10].

In what follows, we shall setH=O×X. Hence we can rephrase the previous statement by
saying that isomorphism classes of 2-gerbes bound byO×X are classified by the group

H 3(X,O×X)�H 4
D(X,Z(1)).

We shall need the local calculation leading to the classification, so we recall it here. Given
a 2-gerbeG, let us choose a decomposition by selecting a coverUX of X and a collection
of objectsPi in GUi

. There is a 1-arrow

fij :Pj → Pi

between their restrictions toGUij
. Furthermore, from the axioms there is a 2-arrow

�ijk: fij ◦ fjk $⇒ fik.

Further restricting over a 4-fold intersectionUijkl , we have two 1-arrowsfij ◦fjk◦fkl :Pl →
Pi andfil :Pl → Pi and between themtwo 2-arrows, namely�ij l ◦ (Idfij

∗ �jkl) and
�ikl ◦ (�ijk ∗ Idfkl

). Since 2-arrows are strictly invertible, it follows again from the axioms
that there exists a sectionhijkl of O×X overUijkl such that

�ij l ◦ (Idfij
∗ �jkl)= hijkl ◦ �ikl ◦ (�ijk ∗ Idfkl

). (5.15)

This section is a 3-cocycle and the assignmentG �→ [h] gives the classification isomor-
phism.

In analogy with what was previously done for gerbes, we are going to define a notion of
hermitian structure and of type(1,0) connectivityfor 2-gerbes onXbound byO×X. Brylinski
and McLaughlin defined aconcept of connectivityon a 2-gerbeG overX to be the datum of
a compatible class of connective structures on the gerbes HomU(P,Q) for two objectsP,
Q in the fiberGU . It is possible to introduce several variants of this notion, as done in Refs.
[10,12]. Thus a type(1,0) connectivity will just be the requirement that these connective
structures take their values inF 1A1

X-torsors.
Let us model the concept of hermitian structure on a 2-gerbe after the one for gerbes

given above in Definition 5.2.1.

Definition 5.5.1. A hermitian structureon aO×X-2-gerbeG overXconsists of the following
data:

1. To each objectP in the fiber 2-categoryGU over U ⊂ X we assign aE0
U,+-gerbe

herm(P ) overU. (As before,E0
U,+ is the sheaf of real positive functions onU).

2. This assignment must be compatible with the inverse image 2-functorsi∗: GU → GV ,
natural transformations
i,j : j∗i∗ ⇒ (ij)∗ and modifications�i,j,k: 
ij ,k ◦
(h∗ ∗ 
i,j )�
i,jk ◦ (
j,k ∗ i∗) arising from the inclusionsi:V ↪→ U , j :W ↪→ V ,
andk:Z ↪→ W , in the coverUX.
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3. For each 1-arrowf : P → Q in GU a corresponding equivalence

f∗ : herm(P )→ herm(Q) of E0
U,+-gerbes.

For each 2-arrow� : f ⇒ f ′ a corresponding natural transformation�∗ : f∗ ⇒ f ′∗
between equivalences.We ask that this correspondence be compatible with compositions
of 1- and 2-arrows. Namely, for 1-arrowsf, f ′ : P → Q andg, g′ : Q → R and for
2-arrows� : f ⇒ f ′ and� : g ⇒ g′ in GU , which we compose as�∗� : g◦f ⇒ g′ ◦f ′,
we find a diagram of natural transformations

� ( f,g)

� ( f ′,g′)

(�*�)*

g′   f ′

�**�*

**

g   f * *

(g′   f ′ )*

(g   f )*

(5.16)

of equivalences between theE0
U,+-gerbes herm(P ) and herm(R) onU ⊂ X.

4. From the axioms, the group of automorphisms of a 1-arrowf : P → Q in GU is
identified withO×U . It follows that such an automorphism� (that is, a 2-arrow fromf to
itself) can be identified with a sectiona ∈ O×U . We then require that the induced natural
isomorphism

�∗ : f∗ $⇒ f∗, wheref∗ : herm(P ) −→ herm(Q)

be identified with a section ofE0
U,+ via the map

a �−→ |a|2 (5.17)

and an appropriate labeling of herm(P ) and herm(Q) by objectsr ands, respectively. In
more detail, given an arrowf∗(r) → s in herm(Q), the action of� via �∗ will amount
to an automorphism ofs. We require that it be|a|2.

Remark 5.5.2. The abstract nonsense of Definition 5.5.1 could have more succinctly char-
acterized by saying that the correspondence herm(·) realizes a Cartesian 2-functor between
G and the 2-gerbeGerbes(E0

X,+) on X, shifting to the reader the burden of unraveling the
diagrams.

We have the following analog of Theorem 5.2.2:

Theorem 5.5.3. Isomorphism classes ofO×X-2-gerbes with hermitian structure in the sense
of Definition5.5.1are classified by the group

H4
(
X,Z(1)X → OX → E0

X

)
�H 4

Dh.h.
(X,1).

Proof. LetG be aO×X-2-gerbe onXwith hermitian structure as per Definition 5.5.1. Forget-
ting the hermitian structure,Gwill determine a class in the groupH 4

D(X,Z(1))�H 3(X,O×X),
and we have briefly recalled before—cf. Eq. (5.15)—how to obtain a 3-cocycle representing
the class ofG.
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To obtain the rest of the cocycle with values in the complexZ(1)X → OX → E0
X

let us make the same choice for a decomposition ofG with respect to the coverUX: a
collection of objectsPi in GUi

, 1-arrowsfij :Pj → Pi between their restrictions and
2-arrows�ijk: fij ◦ fjk ⇒ fik.

We shall also need a decomposition of theE0
Ui,+-gerbes herm(Pi): to this end let us

choose objectsri overUi and arrows	ij : (fij )∗(rj )→ ri between their restriction toUij .
Let us consider a triple of objectsPi, Pj , Pk overUijk (we are implicitly restricting to

the fiber 2-categoryGUijk
.) We obtain the following diagram in herm(Pi)|Uijk

:

	ij

	ik

�ij kri

( fij)*(	jk)

( fik)*(rk)

( fij)*( fik)*(rk) ( fij)*(rj )

(5.18)

The left vertical arrow in (5.18) results from the composition of two-arrows

resulting from diagram (5.16) in Definition 5.5.1. At the level of objects in the gerbe
herm(Pi) diagram (5.16) is of course not commutative, so we obtain a section�ijk ∈
Aut(ri), which we can identify with a section of the sheafE0

U,+ overUijk.
Now consider a four-fold intersectionUijkl : we have a cube determined by the objects

ri, . . . , rl whose faces are built from copies of (5.18). Since this cube brings in relation
(5.15), using the mapping of theO×X action spelled out in the last point in Definition 5.5.1,
we get the relation

�jkl�
−1
ikl�ij l �

−1
ijk = |hijkl |2, (5.19)

which, after taking the appropriate logarithms, defines aČech cocycle representing a
class in

Ȟ4
(
UX,Z(1)X → OX → E0

X

)
.

Details (and diagram chasing) are straightforward and left to the reader.
Conversely, let us be given a class in

H4
(
X,Z(1)X → OX → E0

X

)
�H3

(
X,O×X

|·|→E0
X,+

)
,

and let us assume it is represented by the (multiplicative)Čech cocycle(hijkl,�ijk). Let
just explain the construction of a corresponding 2-gerbe with hermitian structure (up to
equivalence). Again, details will be left to the reader.
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We first apply the map(
Z(1)X → OX → E0

X

)
−→

(
Z(1)X → OX

)
to the representativěCech cocycle to reconstruct aO×X-2-gerbeGaccording to Refs.[7,10,12].
Recall that this is accomplished by gluing the local stacksGerbes(O×Ui

) usinghijkl . Sec-
ondly, we define a hermitian structure as follows. Assign to any objectPi overUi of the
so-determined 2-gerbeG the trivialE0

Ui,+-gerbe herm(Pi) = Tors(E0
Ui,+). For a triple of

such onUijk we use�ijk ∈ E0
Ui,+|Uijk

as an automorphism of an objectri in herm(Pi).
Checking that this structure satisfies the properties in Definition 5.5.1 and it defines a

2-gerbe with hermitian structure whose class is the one we started with is modeled after the
pattern of Refs.[7] and[8] and it will be left to the reader.�

As mentioned before, a connectivity on aO×X-2-gerbe is in practice the assignment of
compatible connective structures on the local gerbes of morphisms. We have the following
definition (see also[9, Section 7], for the first part):

Definition 5.5.4. Let G be aO×X-2-gerbe onX.

1. A type(1,0) concept of connectivityon G is the assignment of aF 1A1
U -gerbe Co(P )

to each objectP in GU . This assignment will have to satisfy properties analogous to
those of Definition 5.5.1. Of course, in the last condition, the map (5.17) will have to
be replaced bya �→ d loga.

2. A type(1,0) concept of connectivity iscompatiblewith a hermitian structure if for each
objectP of GU there is an equivalence of gerbes

herm(P ) −→ Co(P )

satisfying the obvious compatibility conditions with the operations ofGU and the re-
strictions.

The proof of the following theorem can be patterned after an appropriate generalization
of the proof of Theorem 5.3.3, so we shall omit it.

Theorem 5.5.5.Let G be aO×X-2-gerbe with hermitian structure and letD(1)•h.h. be the
complex given by(3.7) for l = 1. Equivalence classes of type(1,0) connectivities onG
compatible with the given hermitian structure are classified by the group

H4(X,D(1)•h.h.).

Furthermore, the equivalence class is unique.

5.6. The symbol(L,L′ ]h.h.
We have seen that given two line bundlesL andL′ overX their cup product(L,L′]h.h.

defines a class inH 4
Dh.h.

(X,1).According to Theorem 5.5.3 it corresponds to an equivalence
class of 2-gerbes with hermitian structure. Using the obvious maps of complexesD(1)•h.h. →
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Z(1)•D andZ(2)•D → Z(1)•D, the geometric 2-gerbeG that underlies(L,L′]h.h. is the same
one as for the standard symbol(L,L′] constructed by Brylinski and McLaughlin.

Recall (see Ref.[12] for more details) that objects ofG underlying(L,L′]overU ⊂ X are
the non-vanishing sectionss of L|U , denoted(s, L]. Given another non-vanishing section
s′ ∈ L|U we haves′=sg for an invertible functiongoverU. Then the category of morphisms
from (s′, L] to (s, L] is thegerbe(g, L] defined in Section 5.4. For a third non-vanishing
sections′′ of L overU, with s′′ = s′ g′, the morphism composition functor is given by the
equivalence

(g, L′] ⊗ (g′, L] −→ (gg′, L],
where on the left-hand side we have the contracted product of two (abelian) gerbes. To be
precise, it turns out thatG is an appropriate “2-stackification” of the 2-pre-stack defined
here.

A calculation in Ref.[12] shows that with respect to the trivializations{gij } and{g′ij } of

L andL′, respectively, the class ofG is represented by the cocycleg′kl
−cijk ∈ O×X(Uijkl),

where the cocyclecijk representsc1(L).
We can define a hermitian structure onG as follows. To an object(s, L′] of GU we assign

(s, L′]�herm((s, L′])= trivial E0
U,+-gerbe. (5.20)

Furthermore, as remarked above we have HomU((s′, L′], (s, L′])�(g, L′]. Thus we set

HomU(herm((s′, L′]),herm((s, L′]))= (g, L′]h.h., (5.21)

where on the right-hand side we use the hermitian structure on the gerbe(g, L′] as defined in
Section 5.4. On the left-hand side of (5.21) we have the equivalences of the twoE0

U,+-gerbes.
The proof of the following proposition is a straightforward generalization of the one for

Proposition 5.4.1.

Proposition 5.6.1.The class of theO×X-2-gerbeG underlying the symbol(L,L′] with her-
mitian structure defined by Eqs.(5.20)and(5.21)is given by the product(L,L′]h.h. in the

groupH4
(
X,Z(1)X → OX → E0

X

)
�H 4

Dh.h.
(X,1).

5.7. Comparisons and relations with other definitions

Recall from Refs.[10,12], that analytic connective structures on gerbes with bandO×X
are classified by the groupH 3

D(X,Z(2)). Similarly, for 2-gerbes with the same band, the
relevant group isH 4

D(X,Z(2)). In the previous sections we have introduced hermitian
structures1 and type-(1,0) connective structures on gerbes and 2-gerbes with bandO×X. We
define the concept of compatibility analogously to the case of line bundles in Section 4.4
as follows.

LetG be aO×X-gerbe onX. Let Co(·)an be a (holomorphic) connective structure onG in
the sense of Refs.[10,12], and let Co(·)h be a connective structureon the same gerbein the
sense of Section 5.3.

The relevant group classifyingG equipped with both types of connections is therefore
H3(X, �̃(2)•), where the complex̃�(2)• has been introduced in Section 4.4.
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Definition 5.7.1. We say that Co(·)an and Co(·)h arecompatibleif for any objectP of GU ,
U ⊂ X, there is an isomorphism of torsors Co(P )an�Co(P )h (after lambda-extension of
Co(P )an from �1

U to A1,0
U ).

Similarly, if G is aO×
X -2-gerbe onX, carrying both types of connective structures, its class

is an element of the groupH4(X, �̃(2)•). We can also repeat the above definition, taking
care that now for any object ofG overU ⊂ X, Co(P )an�Co(P )h must be an equivalence
of gerbes. The next lemma immediately follows from the definitions.

Lemma 5.7.2. Let�(2)• be the complex defined in Section4.4.

1. Classes ofO×
X -gerbes with compatible connective structures in the sense of Definition

5.7.1are classified by the elements of the groupH3(X,�(2)•).
2. Similarly, classes ofO×

X -2-gerbes with compatible connective structures are classified
byH4(X,�(2)•).

5.7.1. Compatibility and flatness conditions

While these definitions seem to follow the pattern of line bundles analyzed in Section 4.4,
there in an important difference, namely gerbes (or 2-gerbes) satisfying the compatibility
condition of Definition 5.7.1 arenot necessarily flat! Moreover, in the present framework
the compatibility condition is less special than it was seen in the case of line bundles. This
can be seen by way of the following cohomological argument.

The complex�(2)• introduced in Section 4.4 is easily seen to be a quotient of the complex
D(2)•h.h.:

D(2)•h.h. −→ �(2)• −→ 0.

The kernel is complicated, but up to quasi-isomorphism, it can be reduced (by direct com-
putation) to the one-element complexE2

X(1) ∩ A1,1
X [−4] so that we have the triangle

E2
X(1) ∩ A1,1

X [−4] −→ D(2)•h.h. −→ �(2)• +1−→ .

Focusing our attention to degree 3 and 4, we get the sequence

0→ H 2(X,R(2)/Z(2))→ H3(X,�(2)•)→ E2(X)(1) ∩ A1,1(X)

→ H 4
Dh.h.

(X,2)→ H4(X,�(2)•)→ 0,

where we have used Lemma 3.2.4. Moreover, the exact sequence from the proof of Lemma
4.4.3 relating�̃(2)• to �(2)• yields the following completion of (4.15):

0→ H 1(X,R(2)/Z(2))→ Pic(X,∇, h)→ E1(X)(1)→ H3(X,�(2)•)
→ H3(X, �̃(2)•)→ 0

and

H4(X,�(2)•)
�→H4(X, �̃(2)•),

where we have used thatE1
X(1) is soft. In summary we have:
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Proposition 5.7.3. 1. The class of aO×
X -gerbe supporting both types of connective struc-

tures can be lifted to a class of compatible connective structures on a(possibly equivalent)
gerbe.

2. A O×
X -gerbe with compatible connective structures is flat if the(trivial ) (1,1)-curving

is zero(cf. Section5.3,Remarks5.3.6and5.3.7).
3.AO×

X -2-gerbe supporting both types of connective structures is equivalent to a2-gerbe
with compatible connective structures. Its class can be lifted toH 4

Dh.h.
(X,2).

5.7.2. Comparing(f, L] and(L,L′] with their hermitian variants
The higher symbols(f, L] and (f, L]h.h. have the same underlying gerbe, and sim-

ilarly (L,L′] and (L,L′]h.h. determine the same 2-gerbe. Let us denote them, respec-
tively, by {f,L} and{L,L′}. By construction, they determine classes inH3(X, �̃(2)•) and
H4(X, �̃(2)•), respectively. The proposition specializes to this case as follows:

Corollary 5.7.4. The connective structuresCo(·)an andCo(·)h on {f,L} are compatible
(up toE1

U -torsor automorphism).
The analytic and hermitian connective structures on the2-gerbe{L,L′} are compatible.

Proof. The statement follows at once from the calculations preceding the proposition.�

Remark 5.7.5.As an alternative proof of the corollary, note that a calculation analogous to
that of the proof of Proposition 4.4.4 from the cocycle representations (5.1) and (5.3), yields
the 1-cocycler2(f, gij ) with values inE1

X(1), wheregij are the transition functions ofL.
This cocycle represents the zero class (softness ofE1

X(1)), thereforer2(f, gij )= �j − �i ,
and this choice is determined up to a global section ofE1

X(1).
Similarly, in the case of{L,L′} we get the 2-cocycler2(gij , g

′
jk) which again represents

the zero class.

6. Concluding remarks

In this paper we have put forward a definition for the concept of hermitian structure,
and associated compatible connective structure for gerbes and 2-gerbes with bandO×

X . We
have presented classification results in terms of low degree hermitian holomorphic Deligne
cohomology groups. Notable examples are provided by higher versions of the classical
notion of tame symbol associated to two invertible functions. Indeed, our second main result
that there exists a modified version of the cup product in low degree Deligne cohomology
taking values in the first hermitian holomorphic Deligne complex, naturally provides the
symbols(f, L] and(L,L′] with hermitian structures according to our definition.

Two questions naturally arise. Since(f, L] and(L,L′] also carry an analytic connective
structure, we may ask to what degree the latter and the hermitian one are compatible. Remark
5.3.5 prompts a second obvious question regarding the relation between our classification
Theorems 5.3.3 and 5.5.5 and others’, notably Brylinski’s[9, Proposition 6.9(1)].

We have analyzed the compatibility in cohomological terms, first for line bundles (in
the sense ofO×

X -torsors) and then for gerbes and 2-gerbes with band-O×
X , with somewhat
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surprising results. Whereas the compatibility may be regarded as exceptional for a line
bundle—and it implies its flatness—it is not so for gerbes (or 2-gerbes). Thus flatness is not
a necessary condition. In the specific case of the tame symbols and their generalizations,
we have found that while the compatibility of(f, g] and (f, g]h.h. (that is, their respec-
tive connections) may in general be obstructed,(f, L] and(f, L]h.h. can always be made
compatible, and(L,L′] and(L,L′]h.h. are automatically so.

As for the relation with other notions of “hermitian gerbe” with “hermitian connective
structure” (or 2-gerbe) there appear to be subtle differences in the definitions which we can
trace to what aspect of line bundles with connection we decide to generalize. Our approach
has been to copy the concept ofmetrized analytic(or algebraic) line bundlefamiliar from
Arakelov geometry (cf. Ref.[21]). On the other hand, one could describe a metrizedO×

X -
line bundle by means of theT-reduction of its associated smooth line bundle plus a unitary
connection. Whereas these two approaches are equivalent in the case of line bundles, they
seem to diverge as soon as we move on to gerbes. (and possibly matters worsen in the case of
2-gerbes) This may also serve to explain the lack of uniqueness found by Hitchin’s student
D. Chatterjee in his thesis. Although that school’s approach to gerbes lacks the categorical
input (in fact for them a gerbe is just the “torsor cocycle” in the sense of[7]) the definition
of hermitian gerbe is along Brylinski’s lines.

Another difference is the following. Our cohomological characterization via the group
Hk
Dh.h.

(X,1)�Hk(X,D(1)•h.h.), k = 3,4, involves forms of degree two, which points to
a natural notion of curving naturally associated with the structures we have defined (cf.
Remarks 5.3.6 and 5.3.7). This is obviously absent in the truncated group in Remark 5.3.5.
The cohomological analysis of Section 5.7, where the groupH 4

Dh.h.
(X,2) appears, suggests

that curvings can be a very nuanced structure, however dealing with them in detail falls
outside the scope of the present work.

We hope to further elucidate matters in the future in another publication.
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Appendix A. Remarks on Hodge–Tate structures

The relation between the “imaginary part” map made in Section 4.3 together with the
productZ(1)•D ⊗ Z(1)•D → 2�

√−1⊗D(1)•h.h., and the cup productZ(1)•D ⊗ Z(1)•D →
Z(2)•D giving rise to the tame symbol becomes more transparent from the point of view of
Hodge–Tate structures.
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A.1. A mixed Hodge structure

Let us briefly recall the following well-known MHS onC3, see[13,4]. Consider, as
before,

M(2) =
(1
x 1
z y 1

)
(A.1)

with complex entriesx, y, z. Consider also its canonical version

A(2) =
(1
x 2�

√−1
z 2�

√−1y (2�
√−1)2

)
. (A.2)

The MHSM2 corresponding toM(2), or more preciselyA(2), comprises the following
data. The integer lattice is theZ span of the columns ofA(2), and similarly forQ and
R. Let v0, v1, v2 denote the columns ofA(2) starting from the left. The weight spaces are
W−2kM

(2)= span〈vk, . . . , v2〉 (over the appropriate ring), and the Hodge filtration is given
by F−kM(2)(C)= C〈e0, . . . , ek〉, where theei ’s are the standard basis vectors inC2. The
graded quotients GrW

−2kM
(2) are the Tate structuresZ(0), Z(1), andZ(2). A change of

the generatorsvi preserving the structure clearly amounts to a change ofA(2) by right
multiplication by a lower unipotent matrix overZ (or Q or R). This is the same as changing
M(2) by a matrix inHZ (or the appropriate ring thereof) as in Section 4.2.3

The real structure underlyingM(2) is linked to the hermitian structure on the bundle
HC/HZ as presented in Section 4.3.1. In[4] the image ofA(2) in GL2(C)/GL2(R) is
obtained by computing the matrix

B
def= AĀ−1

(1
−1

1

)
,

(we have dropped the superscript(2) for ease of notation). The logarithm is

1

2
logB =

( 1
�0(x) 1

�1(z)− �1(x)�0(y) �0(y) 1

)
.

We immediately recognize the expression of the hermitian form as given in Section 4.3.1.

A.2. The big period

In Ref. [17] Goncharov defines a tensor

P(M) ∈ C⊗QC

3 These data correspond to the caseN = 2 of a MHS onCN defined for any integerN, cf. [4].
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associated to a MHS (technically, a framed one)M. For the MHS defined by the period
matrix (A.1) it is computed as follows. Letf0, f1, f2 be the dual basis tov0, v1, v2. Then,
according to Ref.[17],

P(M(2))=
∑
k

〈f2,M
(2)vk〉⊗Q〈fk,M

(2)−1
v0〉.

Performing the calculation we find

P(M(2))= z

(2�
√−1)2 ⊗ 1− 1⊗ z

(2�
√−1)2

+ 1⊗ xy

(2�
√−1)2 −

y

2�
√−1

⊗ x

2�
√−1

. (A.3)

Clearly,P(M(2)) is invariant under action (4.5) (overQ). Moreover,P(M(2)) belongs to
the kernelI of the multiplication mapC⊗QC → C. As a consequence, we have:

Proposition A.2.1. The“connection form” (4.6) and the(logarithm of the) hermitian fiber
metric on the Heisenberg bundle correspond to the images ofP(M(2)) under the two
projections

I −→ I/I2 = �1
C/Q

and

I ⊂ C⊗QC −→ R(1),

respectively.

Proof. The images under the two projections are, respectively, equal to

−d

(
z

(2�
√−1)2

)
+ x

2�
√−1

d

(
y

2�
√−1

)
and

1

(2�
√−1)2 (�1(z)− �1(x)�0(y)). �

A.3. The extension class

The big period can be obtained as a symmetrization of an extension class of MHS.
Indeed, the weight−2 subspaceW−2M

(2)�M(1) ⊗ 2�
√−1 ≡ M(1)(1) is itself a MHS

(twisted by 2�
√−1) defined by

A(1) =
(

1
y 2�

√−1

)
. (A.4)

(the data are as forM(2), replacing 2 by 1) We thus have an extension of MHS

0−→M(1)(1) −→M(2) −→ Z(0) −→ 0. (A.5)
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Following the procedure explained in Ref.[6], it is seen that the class of extension (A.5)
belongs to

M(1)
C (1)/M(1)

Q (1),

and it is given by the vector

e =− x

2�
√−1

v1 − z− xy

(2�
√−1)2 v2 (A.6)

taken moduloM(1)
Q . This computation can be refined by noticing[6] thatM(1) is itself an

extension,

0−→ Z(1) −→M(1) −→ Z(0) −→ 0

mapping (overQ) to the “universal extension”H(1)

0−→ Q(1) −→ C −→ C× ⊗Q −→ 0, (A.7)

obtained by tensoring the standard exponential sequence byQ. Over the complex numbers,
we have

0−→ C −→ C⊗QC −→ C×⊗ZC�C/Q(1)⊗QC −→ 0.

Here we haveH(1)
Q =C andH(1)

C =C⊗QC. According to the same principle the class of
extension (A.7) lives in

H(1)
C /H(1)

Q �C⊗QC/C�C⊗ZC×. (A.8)

The image of (A.6) inC⊗QC is given by

ẽ =−y ⊗ x − 2�
√−1⊗ z− xy

2�
√−1

. (A.9)

Taking (A.9) moduloH(1)
Q �C we finally have

(Id ⊗ exp)(ẽ)= y ⊗ e−x + 2�
√−1⊗ e−(z−xy)/2�

√−1. (A.10)

This is the (image of) the class of extension (A.5) as computed in Ref.[6]. It is easily seen
that element (A.10) is invariant under transformations (4.5).

Lemma A.3.1. There is a unique well-defined lift of the class(A.10) to F 0H(1)
C =

ker(m: C⊗QC → C). This can be obtained by adding to(A.9) a (necessarily unique,

see Ref. [6]) element fromH(1)
Q �C to (A.9). The lift is

2�
√−1⊗ 2�

√−1 · P(M(2)).

Proof. We can identifyH(1)
Q �C insideH(1)

C via a �→ a ⊗ 2�
√−1. Thus add any such

element tõe and consider the image under the multiplication map:

m(ẽ + a ⊗ 2�
√−1)=−z+ 2�

√−1a.
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It is equal to zero iffa = z/2�
√−1, hence

˜̃e = ẽ + z

2�
√−1

⊗ 2�
√−1

= − y ⊗ x + 2�
√−1⊗ xy

2�
√−1

+ z

2�
√−1

⊗ 2�
√−1− 2�

√−1⊗ z

2�
√−1

is the required element.�
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