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1. Introduction

Coupled systems of nonlinear differential equations on networks have been used to model a wide
variety of physical, natural, and artificial complex dynamical systems: from biological and artificial
neural networks [1,7,10,19], coupled systems of nonlinear oscillators on lattices [2,9], to complex
ecosystems [28,33] and the spread of infectious diseases in heterogeneous populations [8,34]. A math-
ematical description of a network is a directed graph consisting of vertices and directed arcs connect-
ing them. At each vertex, the local dynamics are given by a system of differential equations called
vertex system. The directed arcs indicate inter-connections and interactions among vertex systems. In
a model system, a vertex can be a single neuron, an oscillator, an ecological community or a patch,
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or a homogeneous group in a heterogeneous host population for an infectious disease; interactions
among vertices can be in the form of synaptic connections among neurons, physical connections
among oscillators, dispersal among patches, and cross infections among different host groups. The re-
sulting system is a large-scale coupled system of nonlinear differential equations. Many mathematical
questions have been investigated for coupled systems, from emergence of patterns, synchronization
and clustering, to phase transitions and bifurcations. We refer the reader to [9,19] for introductions
to mathematical studies of these problems.

A general approach to the investigation of coupled systems on networks is to determine the col-
lective dynamics based on individual vertex dynamics, often assumed to be simple, and couplings.
Of particular interest is to investigate in what degree and fashion the dynamical behaviors are de-
termined by the architecture of the network encoded in the directed graph. From the viewpoint of
stability and control of complex dynamical systems, it is of significance to investigate the global-
stability problem. Assume that, when isolated, each vertex system has a globally stable equilibrium,
the interest is to determine whether the coupled system has a globally stable equilibrium when ver-
tices are connected according to a directed graph. The method of Lyapunov functions is standard for
establishing global stability, especially for large systems. One can formulate the global-stability prob-
lem as follows: assuming that, when isolated, each vertex system has a globally defined Lyapunov
function V i , under what conditions of the couplings and the network does the coupled system have a
globally defined Lyapunov function V , when the vertices are connected? Moreover, is there a system-
atic approach to the construction of V from individual V i?

In this paper, we develop a general approach to the construction of a global Lyapunov function V
for the coupled system in the form

V (x) =
n∑

i=1

ci V i,

where ci � 0 are suitable constants. Using Kirchhoff’s Matrix Tree Theorem in graph theory, we
present, in Theorem 3.1, a systematic way of deriving constants ci , based on properties of V i and
structures of the underlying graph. As we will show, the approach is sufficiently general to be ap-
plicable to a variety of coupled systems including coupled oscillators, patchy ecological models with
dispersal, and multi-group epidemic models. We also show that our approach can be applied to cou-
pled systems of delayed differential equations. Our approach is shown to work with several well
known types of Lyapunov functions in the literature, from the traditional energy-type functions to
functions of form x − x∗ ln x that are well known in mathematical ecology and epidemiology lit-
erature. In all examples considered in this paper, our approach allows significant improvements of
existing results in the literature.

Concepts from graph theory related to our development are reviewed in the next section. We
also prove two useful combinatorial identities based on Kirchhoff’s Matrix Tree Theorem. Our main
results are presented in Section 3. In Sections 4–8, our main results are applied to several well-known
coupled systems in the literature to demonstrate their applicability and effectiveness.

2. Graph theoretical results

In this section, we prove several combinatorial identities that we will use in later sections. We
begin by recalling some definitions from graph theory. We refer the reader to [17,36] for detailed
discussions.

A directed graph or digraph G = (V , E) contains a set V = {1,2, . . . ,n} of vertices and a set E of
arcs (i, j) leading from initial vertex i to terminal vertex j. A subgraph H of G is said to be spanning
if H and G have the same vertex set. A digraph G is weighted if each arc ( j, i) is assigned a positive
weight aij . In our convention, aij > 0 if and only if there exists an arc from vertex j to vertex i in G .
The weight w(H) of a subgraph H is the product of the weights on all its arcs.

A directed path P in G is a subgraph with distinct vertices {i1, i2, . . . , im} such that its set of arcs
is {(ik, ik+1): k = 1,2, . . . ,m − 1}. If im = i1, we call P a directed cycle. A connected subgraph T is
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Fig. 1. (a) A rooted tree. (b) A unicyclic graph.

a tree if it contains no cycles, directed or undirected. A tree T is rooted at vertex i, called the root,
if i is not a terminal vertex of any arcs, and each of the remaining vertices is a terminal vertex of
exactly one arc. A subgraph Q is unicyclic if it is a disjoint union of rooted trees whose roots form
a directed cycle. Note that every vertex of Q is the terminal vertex of exactly one arc. A rooted tree
and a unicyclic graph are depicted in Fig. 1.

Given a weighted digraph G with n vertices, define the weight matrix A = (aij)n×n whose entry
aij equals the weight of arc ( j, i) if it exists, and 0 otherwise. For our purpose, we denote a weighted
digraph as (G, A). A digraph G is strongly connected if, for any pair of distinct vertices, there exists a
directed path from one to the other. A weighted digraph (G, A) is strongly connected if and only if
the weight matrix A is irreducible [5]. The Laplacian matrix of (G, A) is defined as

L =

⎡
⎢⎢⎢⎣

∑
k �=1 a1k −a12 · · · −a1n

−a21
∑

k �=2 a2k · · · −a2n

...
...

. . .
...

−an1 −an2 · · · ∑
k �=n ank

⎤
⎥⎥⎥⎦ . (2.1)

Let ci denote the cofactor of the i-th diagonal element of L. The following result is standard in graph
theory, and customarily called Kirchhoff’s Matrix Tree Theorem. We refer the reader to [21,30] for its
proof.

Proposition 2.1. Assume n � 2. Then

ci =
∑

T ∈Ti

w(T ), i = 1,2, . . . ,n, (2.2)

where Ti is the set of all spanning trees T of (G, A) that are rooted at vertex i, and w(T ) is the weight of T .
In particular, if (G, A) is strongly connected, then ci > 0 for 1 � i � n.

Theorem 2.2. Assume n � 2. Let ci be given in Proposition 2.1. Then the following identity holds:

n∑
i, j=1

ciai j F i j(xi, x j) =
∑

Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

Frs(xr, xs). (2.3)

Here Fij(xi, x j),1 � i, j � n, are arbitrary functions, Q is the set of all spanning unicyclic graphs of (G, A),
w(Q) is the weight of Q, and CQ denotes the directed cycle of Q.

Proof. For a spanning tree T rooted at vertex i,

w(T )aij = w(Q),
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Fig. 2. A unicyclic graph is formed by adding a directed arc ( j, i) to a tree rooted at i.

where Q is the unicyclic graph obtained from T by adding an arc ( j, i) from vertex j to the root
vertex i, see Fig. 2. As a consequence,

w(T )aij F i j(xi, x j) = w(Q)Fij(xi, x j), and ( j, i) ∈ E(CQ).

When we perform this operation in all possible ways to all rooted trees in G , we obtain all unicyclic
graphs in G , and each unicyclic graph Q is created as many times as the number of arcs in its
cycle CQ . The identity (2.3) follows from (2.2) if we reorganize the double sum on the left-hand side
as a sum over all unicyclic graphs in G . �
Theorem 2.3. Assume n � 2. Let ci be given in Proposition 2.1. Then the following identity holds:

n∑
i, j=1

ciai j Gi(xi) =
n∑

i, j=1

ciai j G j(x j), (2.4)

where Gi(xi), 1 � i � n, are arbitrary functions.

Proof. Using Theorem 2.2, we know that both sides of (2.4) are equal to

∑
Q∈Q

w(Q)
∑

k∈V (CQ)

Gk(xk),

where V (CQ) is the vertex set of CQ . �
3. Coupled systems of differential equations on networks

Given a network represented by digraph G with n vertices, n � 2, a coupled system can be built
on G by assigning each vertex its own internal dynamics and then coupling these vertex dynamics
based on directed arcs in G . Assume that each vertex dynamics is described by a system of differential
equations

u′
i = f i(t, ui), (3.1)

where ui ∈ Rmi and f i : R × Rmi → Rmi . Let gij : R × Rmi × Rm j → Rmi represent the influence of
vertex j on vertex i, and gij ≡ 0 if there exists no arc from j to i in G . Then we obtain the following
coupled system on graph G

u′
i = f i(t, ui) +

n∑
j=1

gij(t, ui, u j), i = 1,2, . . . ,n. (3.2)
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Here functions f i , gij are such that initial-value problems to (3.1) and (3.2) have unique solutions.
Many large-scale dynamical systems from science and engineering can be represented as coupled
systems on networks in the form of (3.2). Several examples are considered in Sections 4–8.

We assume that each vertex system (3.1) has a globally stable equilibrium and possesses a global
Lyapunov function V i . Our objective is to investigate if the coupled system (3.2) has a globally stable
equilibrium, and if a global Lyapunov function V can be systematically constructed for system (3.2)
using individual V i . Such an investigation is significant for the stability and control of large-scale
dynamical systems.

Let Di ⊂ Rmi be an open set. For a Lipschitz function V i : R × Di → R, we define the Lyapunov
derivative with respect to system (3.2) as

•
V i(t, ui) := ∂V i(t, ui)

∂t
+ ∂V i(t, ui)

∂ui

(
f i(t, ui) +

n∑
j=1

gij(t, ui, u j)

)
. (3.3)

Let D = D1 × D2 × · · · × Dn ⊂ Rm , m = m1 + m2 + · · · + mn , and u = (u1, u2, . . . , un). For a Lipschitz
function V : R × D → R, we define

•
V (t, u) := ∂V (t, u)

∂t
+

n∑
i=1

∂V (t, u)

∂ui

(
f i(t, ui) +

n∑
j=1

gij(t, ui, u j)

)
. (3.4)

Let V i(t, ui) be a Lyapunov function for each vertex system (3.1). We are particularly interested in
constructing Lyapunov functions for coupled system (3.2) of form

V (t, u) =
n∑

i=1

ci V i(t, ui). (3.5)

The following result gives a general and systematic approach for such construction.

Theorem 3.1. Assume that the following assumptions are satisfied.

(1) There exist functions V i(t, ui), F i j(t, ui, u j), and constants ai j � 0 such that

•
V i(t, ui) �

n∑
j=1

aij F i j(t, ui, u j), t > 0, ui ∈ Di, i = 1,2, . . . ,n. (3.6)

(2) Along each directed cycle C of the weighted digraph (G, A), A = (aij),

∑
(s,r)∈E(C)

Frs(t, ur, us) � 0, t > 0, ur ∈ Dr, us ∈ Ds. (3.7)

(3) Constants ci are given in (2.2).

Then the function V (t, u) in (3.5) satisfies
•
V (t, u) � 0 for t > 0 and u ∈ D, namely, V is a Lyapunov function

for (3.2).

Proof. Using (3.3), (3.4), and assumption (1), we obtain
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•
V (t, u) =

n∑
i=1

ci
•
V i(t, ui) �

n∑
i, j=1

ciai j F i j(t, ui, u j).

Applying Theorem 2.2 with weighted digraph (G, A), we obtain

n∑
i, j=1

ciai j F i j(t, ui, u j) =
∑

Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

Frs(t, ur, us). (3.8)

Since w(Q) > 0 and along directed cycle C Q

∑
(s,r)∈E(CQ)

Frs(t, ur, us) � 0,

by assumption (2), we arrive at
•
V (t, u) � 0, completing the proof of Theorem 3.1. �

A weighted digraph (G, A) is said to be balanced if w(C) = w(−C) for all directed cycles C [31].
Here, −C denotes the reverse of C and is constructed by reversing the direction of all arcs in C . For a
unicyclic graph Q with cycle C Q , let Q̃ be the unicyclic graph obtained by replacing C Q with −CQ .
Suppose that (G, A) is balanced. Then w(Q) = w(Q̃). In the right-hand side of relation (3.8), we can
further pair Q with Q̃ and obtain

n∑
i, j=1

ciai j F i j(t, ui, u j) = 1

2

∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

[
Frs(t, ur, us) + Fsr(t, us, ur)

]
. (3.9)

The same proof shows that the conclusion of Theorem 3.1 holds if the assumption (2) is replaced by
the following:

(2′) Along each directed cycle C
∑

(s,r)∈E(C)

(
Frs(t, ur, us) + Fsr(t, us, ur)

)
� 0, t > 0, ur ∈ Dr, us ∈ Ds. (3.10)

We thus have the following result.

Theorem 3.2. Suppose that (G, A) is balanced. Then the conclusion of Theorem 3.1 holds if condition (3.7) is
replaced by (3.10).

Consider a Volterra predator–prey system

x′
i = xi

(
ei +

n∑
j=1

pijx j

)
, i = 1,2, . . . ,n, (3.11)

where xi ∈ R+ represents population density of the i-th species, ei ∈ R, pii � 0, and pij p ji < 0 if
pij �= 0, i �= j [13]. Suppose that (3.11) admits a positive equilibrium E∗ = (x∗

1, x∗
2, . . . , x∗

n), x∗
i > 0,

i = 1,2, . . . ,n. Let

V i(xi) = xi − x∗
i − x∗

i ln
xi

x∗ .

i
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Differentiating V i along (3.11) gives

•
V i = eixi +

n∑
j=1

pijxix j − ei x
∗
i −

n∑
j=1

pijx
∗
i x j =

n∑
j=1

pij
(
xi − x∗

i

)(
x j − x∗

j

)

=
n∑

j=1

aij F i j(xi, x j),

where aij = |pij| and Fij(xi, x j) = sgn(pij)(xi −x∗
i )(x j −x∗

j ). In particular, Fij(xi, x j) = −F ji(x j, xi), i �= j,
and condition (3.10) is satisfied. Let ci be given in (2.2). Then, by Theorem 3.2, V (x1, x2, . . . , xn) =∑n

i=1 ci V i(xi) is a Lyapunov function for (3.11) provided that (G, A) is balanced. This extends an
earlier result on global Lyapunov functions for (3.11) in [31]. We remark that [31] contains extensive
applications of graph theory to global analysis of Volterra systems.

Conditions (3.7) of Theorem 3.1 and (3.10) of Theorem 3.2 can be readily verified if there exist
functions Gi(t, ui), i = 1,2, . . . ,n, such that

Fij(t, ui, u j) � Gi(t, ui) − G j(t, u j), 1 � i, j � n. (3.12)

We thus have the following corollary.

Corollary 3.3. The conclusion of Theorem 3.1 or Theorem 3.2 holds if condition (3.7) or (3.10) is replaced
by (3.12).

If each V i satisfies a stronger condition

•
V i(t, ui) � −bi V i(t, ui) +

n∑
j=1

aij F i j(t, ui, u j), t > 0, ui ∈ Di, 1 � i � n, (3.13)

for constants bi � 0, then a stronger conclusion can be drawn for V . The following result can be
proved the same way as Theorems 3.1 and 3.2.

Theorem 3.4. Assume that the following assumptions hold.

(1) There exist V i(t, ui), F i j(t, ui, u j), ai j � 0, and bi � 0 such that (3.13) holds.
(2) Either (3.7) or (3.12) holds, or if (G, A) is balanced and (3.10) holds.
(3) Constants ci are given in (2.2).

Then the function V (t, u) in (3.5) satisfies

•
V (t, u) � −bV (t, u) for t > 0, u ∈ D,

where b = min{b1,b2, . . . ,bn}.

To demonstrate that mere existence of Lyapunov functions V i for each vertex system is not suffi-
cient for the existence of V , we consider the following example, which shows that two asymptotically
stable linear systems can be coupled through linear diffusion to form an unstable system.
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Example. Let A = ( −2 3
−1 1

)
. Two eigenvalues of A are − 1

2 ±
√

3
2 i, and the zero solution of the vertex

systems

(
x′

i
y′

i

)
= A

(
xi
yi

)
, i = 1,2,

is globally asymptotically stable. Consider the following linearly coupled system

(
x′

1
y′

1

)
= A

(
x1
y1

)
+

(
x2 − x1

0

)
,

(
x′

2
y′

2

)
= A

(
x2
y2

)
+

(
x1 − x2

0

)
, (3.14)

whose coefficient matrix

⎛
⎜⎝

−3 3 1 0
−1 1 0 0
1 0 −3 3
0 0 −1 1

⎞
⎟⎠

has a positive eigenvalue
√

13−3
2 , and thus the zero solution to the coupled system (3.14) is unstable.

In the rest of the paper, to demonstrate the applicability and effectiveness of the approach de-
scribed in our main results, we consider the global-stability problem for several classes of coupled
systems. We show that Lyapunov functions for these coupled systems can be systematically con-
structed from well-known Lyapunov functions for individual vertex systems. In all the cases consid-
ered, our approach allows significant improvements of the best known results in the literature.

4. Coupled oscillators on a network

Given a weighted digraph (G, A) with n vertices, A = (aij), n � 2, a coupled system of nonlinear
oscillators on G can be built as follows: each vertex i is assigned a nonlinear oscillator described by

ẍi + αi ẋi + f i(xi) = 0, (4.1)

where αi � 0 is the damping coefficient, f i : R → R is the nonlinear restoring force, and the influence
from vertex j to vertex i is provided in the form aij(ẋi − ẋ j) [12]. Here weight constants aij � 0, and
aij = 0 if and only if no arc exists from j to i in G . We arrive at a coupled system of second order
differential equations

ẍi + αi ẋi + f i(xi) +
n∑

j=1

aij(ẋi − ẋ j) = 0, i = 1,2, . . . ,n,

or in the form of first order systems

ẋi = yi,

ẏi = −αi yi − f i(xi) −
n∑

j=1

aij(yi − y j). (4.2)
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Assume that there exists x∗
i such that f i(xi) = 0 iff xi = x∗

i , and the potential energy Fi(xi) =∫ xi f i(s)ds has a global minimum at xi = x∗
i . Then it is standard that, if αi > 0, the total energy

V i(xi, yi) = y2
i

2
+ Fi(xi) (4.3)

is a global Lyapunov function for the global asymptotic stability of xi = x∗
i for vertex system (4.1).

It can be verified that E∗ = (x∗
1,0, x∗

2,0, . . . , x∗
n,0) is an equilibrium of the coupled system (4.2). We

investigate conditions under which E∗ is globally asymptotically stable.

Theorem 4.1. Assume (G, A) is strongly connected. Suppose that there exists k such that αk > 0. Then E∗ is
globally asymptotically stable in R2n.

Proof. We want to verify that V i(xi, yi) in (4.3) satisfies the assumptions of Theorem 3.1. Differenti-
ating V i along (4.2) gives

•
V i = −αi y2

i −
n∑

j=1

aij(yi − y j)yi

= −αi y2
i +

n∑
j=1

aij

(
−1

2
(yi − y j)

2 + 1

2
y2

j − 1

2
y2

i

)

�
n∑

j=1

aij

(
1

2
y2

j − 1

2
y2

i

)
.

Let

Fij(yi, y j) = 1

2
y2

j − 1

2
y2

i .

We have

•
V i �

n∑
j=1

aij F i j(yi, y j),

and along every directed cycle C of the weighted digraph (G, A),

∑
(s,r)∈E(C)

Frs(yr, ys) =
∑

(s,r)∈E(C)

(
1

2
y2

s − 1

2
y2

r

)
= 0.

Assumptions (1) and (2) of Theorem 3.1 have been verified. Let ci be the cofactor of the i-th diagonal
element in the Laplacian matrix of (G, A), as given in (2.2). Then, by Theorem 3.1,

V (x1, y1, . . . , xn, yn) =
n∑

i=1

ci V i(xi, yi)

is a Lyapunov function for (4.2), namely,
•
V � 0 for all (x1, y1, . . . , xn, yn) ∈ R2n .
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To show E∗ is globally asymptotically stable, we examine the largest compact invariant set where
•
V = 0. Since (G, A) is strongly connected, ci > 0 for 1 � i � n. Therefore,

•
V = 0 implies that αi y2

i = 0
and aij(yi − y j)

2 = 0 for all 1 � i, j � n. As a consequence, yi = 0 if αi > 0; and yi = y j if aij > 0,
or if there exists an arc from j to i in (G, A). By our assumption, there exists k such that αk > 0,
thus yk = 0. Let l �= k denote any vertex of (G, A). Then, by the strong connectivity of (G, A), there
exists a directed path P from l to k. Applying the relation yi = y j to each arc ( j, i) of P , we ob-

tain that yl = yk . Hence,
•
V = 0 implies yi = 0 for all i. From the second equation of (4.2), we

have 0 = ẏi = − f i(xi), and thus xi = x∗
i . This implies that the largest compact invariant subset of

{(x1, y1, . . . , xn, yn) ∈ R2n | •
V = 0} is the singleton {E∗}. Therefore, by the LaSalle Invariance Princi-

ple [24], E∗ is globally asymptotically stable in R2n . �
Theorem 4.1 shows that in a strongly connected network, the existence of one damped oscillator

is sufficient to stop all oscillations in coupled system (4.2).

5. A single-species ecological model with dispersal

Consider the following system that describes the growth and dispersal of a single species among n
patches (n � 2)

x′
i = xi f i(xi) +

n∑
j=1

dij(x j − αi jxi), i = 1,2, . . . ,n. (5.1)

Here xi ∈ R+ represents population density of the species in patch i, f i ∈ C1(R+,R) represents the
density dependent growth rate in patch i, constant dij � 0 is the dispersal rate from patch j to patch i,
and constants αi j � 0 can be selected to represent different boundary conditions in the continuous
diffusion case [27]. Hastings [18] studied the local stability of a positive equilibrium of (5.1). Sufficient
conditions for uniqueness and global stability of the positive equilibrium were derived in Beretta and
Takeuchi [3] and in Lu and Takeuchi [27]. In this section, we interpret (5.1) as a coupled system on
a network. Using Theorem 3.1, we prove a global-stability result that is stronger than those in [3]
and [27].

A digraph G with n vertices can be constructed for system (5.1) as follows: each vertex represents
a patch, a directed arc ( j, i) is assigned if the dispersal rate dij from patch j to patch i is positive,
and no such arc exists if dij = 0. The dynamics at each vertex are defined by the scalar ordinary
differential equation x′

i = xi f i(xi). The coupling among vertices are provided by the dispersal among
patches. We remark that the dispersal network G is strongly connected if and only if the dispersal
matrix (dij) is irreducible.

Theorem 5.1. Assume that the following assumptions hold.

(1) Dispersal matrix (dij) is irreducible.
(2) f ′

i (xi) � 0, xi > 0, i = 1,2, . . . ,n, and there exists k such that f ′
k(xk) �≡ 0 in any open interval of R+ .

(3) System (5.1) is uniformly persistent.
(4) Solutions of (5.1) are uniformly ultimately bounded.

Then system (5.1) has a globally asymptotically stable positive equilibrium E∗ in Rn+ .

Proof. Uniform persistence, together with uniform ultimate boundedness of all solutions, implies that
(5.1) has at least one positive equilibrium [6,32]. Let E∗ = (x∗

1, x∗
2, . . . , x∗

n), x∗
i > 0, i = 1,2, . . . ,n, denote

a positive equilibrium of (5.1). Then x∗
i satisfies
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f i
(
x∗

i

) = −
n∑

j=1

dij

( x∗
j

x∗
i

− αi j

)
. (5.2)

We show that E∗ is globally asymptotically stable in Rn+ , and thus is unique.
Set V i(xi) = xi − x∗

i + x∗
i ln xi

x∗
i

. It can be verified that V i(xi) > 0 for all xi > 0 and V i(xi) = 0 if and

only if xi = x∗
i . Direct calculation and (5.2) yield

•
V i = (

xi − x∗
i

)[
f i(xi) +

n∑
j=1

dij

(
x j

xi
− αi j

)]

= (
xi − x∗

i

)[−
n∑

j=1

dij

( x∗
j

x∗
i

− αi j

)
+ (

f i(xi) − f i
(
x∗

i

)) +
n∑

j=1

dij

(
x j

xi
− αi j

)]

= (
xi − x∗

i

)(
f i(xi) − f i

(
x∗

i

)) +
n∑

j=1

dijx
∗
j

(
x j

x∗
j

− xi

x∗
i

+ 1 − x∗
i x j

xi x∗
j

)
. (5.3)

Let aij = dij x∗
j , Fij(xi, x j) = x j

x∗
j
− xi

x∗
i

+ 1 − x∗
i x j

xi x∗
j

, and Gi(xi) = − xi
x∗

i
+ ln xi

x∗
i

. Then we have

•
V i �

n∑
j=1

aij F i j(xi, x j),

and

Fij(xi, x j) = Gi(xi) − G j(x j) + 1 − x∗
i x j

xi x∗
j

+ ln
x∗

i x j

xix∗
j

� Gi(xi) − G j(x j).

Here we use two facts: (xi − x∗
i )( f i(xi) − f i(x∗

i )) � 0, and 1 − a + ln a � 0 for a > 0 with equality
holding iff a = 1. We have shown that V i , Fij , Gi , and aij satisfy the assumptions of Theorem 3.1 and
Corollary 3.3. Therefore,

V (x1, . . . , xn) =
n∑

i=1

ci V i(xi)

as defined in Theorem 3.1 is a Lyapunov function for (5.1), namely,
•
V � 0 for all (x1, . . . , xn) ∈ Rn+ . Us-

ing the strong connectivity of (G, A) and a similar argument as in Section 4, we can show that
•
V = 0

if and only if xi = x∗
i for all i. By the classical Lyapunov stability theory, E∗ is globally asymptotically

stable in Rn+ . This completes the proof of Theorem 5.1. �
Theorem 5.1 contains an earlier result in Lu and Takeuchi [27], in which the global stability of E∗

was proved under much stricter conditions that f ′
i (xi) < 0 in (0,+∞) for all i.
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6. An n-patch predator–prey model

In this section, we consider a predator–prey model in which preys disperse among n patches
(n � 2),

x′
i = xi(ri − bixi − ei yi) +

n∑
j=1

dij(x j − αi j xi),

y′
i = yi(−γi − δi yi + εi xi), i = 1,2, . . . ,n.

(6.1)

Here, xi , yi denote the densities of preys and predators on the patch i, respectively. The parameters
in the model are nonnegative constants, and ei , εi are positive. The dispersal constants dij , αi j are
similarly defined as in the previous section. We refer the reader to [13,23] for interpretations of
predator–prey models and parameters. When n = 2, Kuang and Takeuchi [23] proved the uniqueness
and global stability of a positive equilibrium by constructing a Lyapunov function. In this section, we
regard (6.1) as a coupled system on a network. Using a Lyapunov function for single-patch predator–
prey models [20] and our main result Theorem 3.1, we establish that a positive equilibrium of the
n-patch model (6.1) is globally asymptotically stable in R2n+ as long as it exists.

A digraph G with n vertices for system (6.1) can be constructed similarly as in the previous section.
Each vertex represents a patch and ( j, i) ∈ E(G) if and only if dij > 0. At each vertex of G , the vertex
dynamics is described by a predator–prey system. The coupling among these predator–prey systems
are provided by dispersal among prey populations.

Theorem 6.1. Assume (dij) is irreducible. If there exists k such that bk > 0 or δk > 0, then, whenever a positive
equilibrium E∗ exists, it is unique and globally asymptotically stable in the positive cone R2n+ .

Proof. Let E∗ = (x∗
1, y∗

1, . . . , x∗
n, y∗

n), x∗
i , y∗

i > 0 for 1 � i � n, denote the positive equilibrium. Consider
a Lyapunov function in [20] for a single-patch predator–prey model

V i(xi, yi) = εi
(
xi − x∗

i ln xi
) + ei

(
yi − y∗

i ln yi
)
.

We show that V i satisfies the assumptions of Theorem 3.1. Following similar steps as in (5.3) we can
verify

•
V i = −εibi

(
xi − x∗

i

)2 − eiδi
(

yi − y∗
i

)2 +
n∑

j=1

dijεi x
∗
j

(
x j

x∗
j

− xi

x∗
i

+ 1 − x jx∗
i

x∗
j xi

)
.

Set aij = dijεi x∗
j , Fij(xi, x j) = x j

x∗
j
− xi

x∗
i

+ 1 − x∗
i x j

xi x∗
j

, and Gi(xi) = − xi
x∗

i
+ ln xi

x∗
i

. Then, as in the previous

section, V i , Fij , Gi , and aij satisfy the assumptions of Theorem 3.1 and Corollary 3.3. Therefore, the
function V (x1, y1, . . . , xn, yn) = ∑n

i=1 ci V i(xi, yi) as defined in Theorem 3.1 is a Lyapunov function

for (6.1), and
•
V � 0 for all (x1, y1, . . . , xn, yn) ∈ R2n+ . Using a similar argument as in Section 4, we can

show that the only compact invariant set on which
•
V = 0 is the singleton {E∗}. The LaSalle Invariance

Principle [24] implies that E∗ is globally asymptotically stable in R2n+ . This also implies that E∗ is
unique in R2n+ , completing the proof of Theorem 6.1. �

The existence requirement for E∗ in Theorem 6.1 can be satisfied through persistence analysis,
which only involves dynamics on the boundary. Theorem 6.1 generalizes a global-stability result
in [23] from 2 patches to arbitrary n patches.
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7. A multi-group epidemic model with nonlinear incidence

In this section, we consider a coupled n-group epidemic model in which nonlinear couplings are
provided by inter-group cross infections. The model

S ′
i = Λi − dS

i Si −
n∑

j=1

βi j f i j(Si, I j),

E ′
i =

n∑
j=1

βi j f i j(Si, I j) − (
dE

i + εi
)

Ei, i = 1,2, . . . ,n,

I ′i = εi Ei − (
dI

i + γi
)

Ii,

(7.1)

describes the spread of an infectious disease in a heterogeneous population, which is partitioned into
n homogeneous groups. Each group i is further compartmentalized into Si , Ei , and Ii , which denote
the subpopulations that are susceptible to the disease, infected but non-infectious, and infectious,
respectively. The nonlinear coupling term βi j f i j(Si, I j) represents the cross infection from group j to
group i. All parameters in (7.1) are nonnegative constants. For detailed discussions of the model and
interpretations of parameters, we refer the reader to [15,34]. Let G be a digraph with n vertices, in
which each vertex represents a group. An arc ( j, i) exists if and only if βi j > 0, namely, if the disease
can be transmitted from group j to group i. System (7.1) can thus be regarded as a coupled system
on G . We note that G is strongly connected if and only if transmission matrix (βi j) is irreducible.

Assume that εi > 0 and d∗
i > 0, where d∗

i = min{dS
i ,dE

i ,dI
i +γi}. Based on biological considerations,

we assume that f i j(0, I j) = 0, f i j(Si,0) = 0, and f i j(Si, I j) > 0 for Si > 0, I j > 0. We also assume that
f i j(Si, I j) are sufficiently smooth. For each i, adding the three equations in (7.1) gives (Si + Ei + Ii)

′ �
Λi −d∗

i (Si + Ei + Ii). Hence lim supt→∞(Si + Ei + Ii) � Λi/d∗
i . Similarly, from the Si equation we obtain

lim supt→∞ Si � Λi/dS
i . Therefore, omega limit sets of system (7.1) are contained in the following

bounded region in the nonnegative cone of R3n

Γ =
{
(S1, E1, I1, . . . , Sn, En, In) ∈ R3n+

∣∣∣ Si � Λi

dS
i

, Si + Ei + Ii � Λi

d∗
i

, 1 � i � n

}
. (7.2)

It can be verified that region Γ is positively invariant. System (7.1) always has the disease-free
equilibrium P0 = (S0

1,0,0, . . . , S0
n,0,0), on the boundary of Γ , where S0

i = Λi/dS
i . An equilibrium

P∗ = (S∗
1, E∗

1, I∗1, . . . , S∗
n, E∗

n, I∗n) in the interior Γ̊ of Γ is called an endemic equilibrium, where S∗
i , E∗

i ,
I∗i > 0 satisfy the equilibrium equations

Λi = dS
i S∗

i +
n∑

j=1

βi j f i j
(

S∗
i , I∗j

)
, (7.3)

(
dE

i + εi
)

E∗
i =

n∑
j=1

βi j f i j
(

S∗
i , I∗j

)
, (7.4)

εi E∗
i = (

dI
i + γi

)
I∗i . (7.5)

In the rest of this section we consider the following basic assumptions on functions f i j(Si, I j):

(H1) 0 < limI j→0+ f i j(Si ,I j)

I j
= Cij(Si) � +∞, 0 < Si � S0

i ;

(H2) f i j(Si, I j) � Cij(Si)I j for sufficiently small I j ;
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(H3) f i j(Si, I j) � Cij(Si)I j for all I j > 0;
(H4) Cij(Si) < Cij(S0

i ), 0 < Si < S0
i .

Classes of f i j(Si, I j) satisfying (H1)–(H4) include common incidence functions such as f i j(Si, I j) =
I j Si , f i j(Si, I j) = I

p j

j Sqi
i , and f i j(Si, I j) = I

p j
j

I j+A j

S
qi
i

Si+Bi
.

Assume that f i j(Si, I j) satisfies (H1), and let

R0 = ρ(M0) (7.6)

denote the spectral radius of the matrix

M0 = M
(

S0
1, S0

2, . . . , S0
n

) =
(

βi jεiCi j(S0
i )

(dE
i + εi)(dI

i + γi)

)
1�i, j�n

.

If Cij(S0
i ) = +∞ for some i and j, we set R0 = +∞. The parameter R0 is referred to as the basic

reproduction number. Its biological significance is that if R0 < 1 the disease dies out while if R0 > 1
the disease becomes endemic [11,35]. The following results for system (7.1) are standard and can be
proved the same way as in [14,34].

Proposition 7.1. Assume that B = (βi j) is irreducible and fi j(Si, I j) satisfies (H1).

(1) If R0 � 1 and assumptions (H2) and (H4) hold, then for system (7.1), P0 is locally asymptotically stable.
(2) If R0 � 1 and assumptions (H3) and (H4) hold, then P0 is the unique equilibrium and it is globally asymp-

totically stable in Γ .
(3) If R0 > 1, then P0 is unstable and system (7.1) is uniformly persistent. Furthermore, there exists an en-

demic equilibrium P∗ for system (7.1).

A mathematical challenging question for system (7.1) is that whether the endemic equilibrium P∗
is unique when R0 > 1, and whether P∗ is globally asymptotically stable when it is unique. We have
the following result.

Theorem 7.2. Assume that B = (βi j) is irreducible and fi j(Si, I j) satisfies (H1). If R0 > 1 and fi j(Si, I j)

satisfies the following conditions

(
Si − S∗

i

)(
f ii

(
Si, I∗i

) − f ii
(

S∗
i , I∗i

))
> 0, Si �= S∗

i , (7.7)

(
f i j(Si, I j) f ii

(
S∗

i , I∗i
) − f i j

(
S∗

i , I∗j
)

f ii
(

Si, I∗i
))

·
(

f i j(Si, I j) f ii(S∗
i , I∗i )

I j
− f i j(S∗

i , I∗j ) f ii(Si, I∗i )

I∗j

)
� 0, Si, I j > 0, (7.8)

then there exists a unique endemic equilibrium P∗ for system (7.1), and P∗ is globally asymptotically stable
in Γ̊ .

Proof. The case n = 1 is proved in [22]. We only consider n � 2. Let P∗ = (S∗
1, E∗

1, I∗1, . . . , S∗
n, E∗

n, I∗n),
S∗

i , E∗
i , I∗i > 0 for 1 � i � n, denote an endemic equilibrium which exists from Proposition 7.1(3).

We prove that P∗ is globally asymptotically stable in Γ̊ . In particular, this implies that the endemic
equilibrium is unique. Let
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V i(Si, Ei, Ii) =
Si∫

S∗
i

f ii(ξ, I∗i ) − f ii(S∗
i , I∗i )

f ii(ξ, I∗i )
dξ + Ei − E∗

i ln Ei + dE
i + εi

εi

(
Ii − I∗i ln Ii

)
,

a Lyapunov function for a single-group model considered in [22]. We verify that V i satisfies the
assumptions of Theorem 3.1. Using equilibrium equations (7.3)–(7.5), we obtain

•
V i =

(
1 − f ii(S∗

i , I∗i )

f ii(Si, I∗i )

)(
Λi − dS

i Si −
n∑

j=1

βi j f i j(Si, I j)

)
+

(
1 − E∗

i

Ei

)(
n∑

j=1

βi j f i j(Si, I j)

− (
dE

i + εi
)

Ei

)
+ dE

i + εi

εi

(
1 − I∗i

I i

)(
εi Ei − (

dI
i + γi

)
Ii
)

=
(

1 − f ii(S∗
i , I∗i )

f ii(Si, I∗i )

)(
dS

i S∗
i +

n∑
j=1

βi j f i j
(

S∗
i , I∗j

) − dS
i Si −

n∑
j=1

βi j f i j(Si, I j)

)

+
(

1 − E∗
i

Ei

)(
n∑

j=1

βi j f i j(Si, I j) −
n∑

j=1

βi j f i j
(

S∗
i , I∗j

) Ei

E∗
i

)

+
n∑

j=1

βi j

f i j(S∗
i , I∗j )

εi E∗
i

(
1 − I∗i

I i

)(
εi Ei − εi E∗

i I i

I∗i

)

= − dS
i

f ii(Si, I∗i )

(
Si − S∗

i

)(
f ii

(
Si, I∗i

) − f ii
(

S∗
i , I∗i

)) +
n∑

j=1

βi j f i j
(

S∗
i , I∗j

)(
3 − f ii(S∗

i , I∗i )

f ii(Si, I∗i )

+ f i j(Si, I j) f ii(S∗
i , I∗i )

f i j(S∗
i , I∗j ) f ii(Si, I∗i )

− f i j(Si, I j)E∗
i

f i j(S∗
i , I∗j )Ei

− Ii

I∗i
− Ei I∗i

E∗
i I i

)
. (7.9)

Let aij = βi j f i j(S∗
i , I∗j ), Gi(Ii) = − Ii

I∗i
+ ln Ii

I∗i
, and

Fij(Si, Ei, Ii, I j) = 3 − f ii(S∗
i , I∗i )

f ii(Si, I∗i )
+ f i j(Si, I j) f ii(S∗

i , I∗i )

f i j(S∗
i , I∗j ) f ii(Si, I∗i )

− f i j(Si, I j)E∗
i

f i j(S∗
i , I∗j )Ei

− Ii

I∗i
− Ei I∗i

E∗
i I i

.

Then, by condition (7.7),

•
V i �

n∑
i, j=1

aij F i j(Si, Ei, Ii, I j).

Let Φ(a) = 1 − a + ln a. Then Φ(a) � 0 for a > 0 and equality holds only at a = 1. Furthermore,

Fij = Gi(xi) − G j(x j) + Φ

(
f ii(S∗

i , I∗i )

f ii(Si, I∗i )

)
+ Φ

(
Ei I∗i
E∗

i I i

)
+ Φ

( I j f i j(S∗
i , I∗j ) f ii(Si, I∗i )

I∗j f i j(Si, I j) f ii(S∗
i , I∗i )

)

+ Φ

(
f i j(Si, I j)E∗

i

f i j(S∗
i , I∗j )Ei

)
+

(
f i j(Si, I j) f ii(S∗

i , I∗i )

f i j(S∗
i , I∗j ) f ii(Si, I∗i )

− 1

)(
1 − I j f i j(S∗

i , I∗j ) f ii(Si, I∗i )

I∗j f i j(Si, I j) f ii(S∗
i , I∗i )

)

� Gi(xi) − G j(x j) +
(

f i j(Si, I j) f ii(S∗
i , I∗i )

f i j(S∗, I∗) f ii(Si, I∗)
− 1

)(
1 − I j f i j(S∗

i , I∗j ) f ii(Si, I∗i )

I∗ f i j(Si, I j) f ii(S∗, I∗)

)
.

i j i j i i
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Under condition (7.8), we can show that V i , Fij , Gi , aij satisfy the assumptions of Theorem 3.1 and
Corollary 3.3. Therefore, the function V = ∑n

i=1 ci V i(Si, Ei, Ii) as defined in Theorem 3.1 is a Lyapunov

function for (7.1), namely,
•
V � 0 for all (S1, E1, I1, . . . , Sn, En, In) ∈ Γ̊ . It can be verified similarly as

in Section 4 that the only compact invariant set where
•
V = 0 is the singleton {P∗}. By the LaSalle

Invariance Principle [24], P∗ is globally asymptotically stable in Γ̊ . This completes the proof of Theo-
rem 7.2. �
Remarks.

1. Condition (7.7) holds if f ii(Si, I∗i ) is strictly monotonically increasing with respect to Si .
2. In the special case f i j(Si, I j) = hi(Si)g j(I j), condition (7.8) becomes

(
g j(I j) − g j

(
I∗j

))( g j(I j)

I j
− g j(I∗j )

I∗j

)
� 0. (7.10)

If g j(I j) is C1 for I j > 0, then a sufficient condition for (7.10) is

0 � g′
j(I j) � g j(I j)

I j
, I j > 0. (7.11)

Furthermore, if g j(I j) is monotonically increasing and concave down, then (7.11) holds, so does
(7.10).

3. In the special case f i j(Si, I j) = Si I j , system (7.1) becomes the standard multi-group SEIR model
studied in [15]. Theorem 7.2 generalizes Theorem 1.1 in [15].

4. When n = 1, Theorem 7.2 contains earlier results on single-group SEIR models, see [22,25,26] and
references therein.

8. A multi-group epidemic model with time delays

In this section, we demonstrate that the general approach described in Section 3 can also be
applied to establish global stability of coupled systems of delay differential equations. We consider a
multi-group epidemic model with time delays that is described by the following system of functional
differential equations

S ′
i = Λi − dS

i Si −
n∑

j=1

βi j Si I j(t − τ j),

I ′i =
n∑

j=1

βi j Si I j(t − τ j) − (
dI

i + γi
)

Ii, i = 1,2, . . . ,n.

(8.1)

The parameters in (8.1) are nonnegative and interpreted the same as in (7.1). Here the time delays τi
are the result of disease latency. Similarly to (7.1), we regard (8.1) as a coupled system of differential
equations on a digraph G with n vertices. In G , ( j, i) ∈ E(G) if and only if βi j > 0. The vertex dynamics
at each vertex is defined by a system of delay differential equations describing a single-group SIR
model with latency [4],

S ′
i = Λi − dS

i Si − βii Si Ii(t − τi),

I ′ = β S I (t − τ ) − (
dI + γ

)
I , i = 1,2, . . . ,n.

(8.2)

i ii i i i i i i
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The coupling between vertices i and j are provided by cross infections βi j Si I j(t − τ j) and
β ji S j Ii(t − τi). For each vertex system (8.2), a Lyapunov functional is considered in [29]

V i
(

Si, Ii(·)
) = Si − S∗

i − S∗
i ln

Si

S∗
i

+ Ii − I∗i − I∗i ln
Ii

I∗i

+
n∑

j=1

βi j S∗
i

τ j∫
0

(
I j(t − r) − I∗j − I∗j ln

I j(t − r)

I∗j

)
dr. (8.3)

We will use V i and our approach in Section 3 to construct a global Lyapunov functional for sys-
tem (8.1).

Denote τ = max{τi: i = 1,2, . . . ,n}. Let C be the Banach space of continuous functions on [−τ ,0]
with uniform norm. We consider system (8.1) in the phase space

X =
n∏

k=1

(R × C). (8.4)

We consider nonnegative initial conditions for system (8.1)

Si(0) = si,0, Ii0 = φi, i = 1,2, . . . ,n, (8.5)

where si,0 ∈ R+ and φi ∈ C satisfies φi(s) � 0 for −τi � s � 0. It can be verified that solutions with
initial condition (8.5) remain nonnegative. Furthermore, from the first equation of (8.1) we obtain
Si(t)′ � Λi − dS

i Si(t). Hence, lim supt→∞ Si(t) � Λi

dS
i

. For each i, adding the two equations in (8.1)

gives (Si(t) + Iit(0))′ � Λi − d∗
i (Si(t) + Iit(0)), which implies that lim supt→∞(Si(t) + Iit(0)) � Λi

d∗
i

,

where d∗
i = min{dS

i ,dI
i + γi}. Therefore, the following set is positively invariant for system (8.1)

Θ =
{(

S1, I1(·), . . . , Sn, In(·)
) ∈ X

∣∣∣ 0 � Si � Λi

dS
i

, 0 � Si + Ii(0) � Λi

d∗
i

,

Ii(s) � 0, s ∈ (−τi,0], i = 1, . . . ,n

}
. (8.6)

Let

Θ̊ =
{(

S1, I1(·), . . . , Sn, In(·)) ∈ X
∣∣∣ 0 < Si <

Λi

dS
i

, 0 < Si + Ii(0) <
Λi

d∗
i

,

Ii(s) > 0, s ∈ (−τi,0], i = 1, . . . ,n

}
. (8.7)

It can be shown that Θ̊ is the interior of Θ . In Θ , system (8.1) has the disease-free equilibrium
P0 = (S0

1,0, . . . , S0
n,0), where S0

i = Λi

dS
i

, and an endemic equilibrium P∗ = (S∗
1, I∗1, . . . , S∗

n, I∗n) satisfies

S∗
i , I∗i > 0 and

Λi =
n∑

j=1

βi j S∗
i I∗j + dS

i S∗
i ,

n∑
j=1

βi j S∗
i I∗j = (

dI
i + γi

)
I∗i .



18 M.Y. Li, Z. Shuai / J. Differential Equations 248 (2010) 1–20
Using the method in [11], it can be verified that the basic reproduction number R0 = ρ(M0) for (8.1)
is the spectral radius of the matrix

M0 =
(

βi j S0
i

dI
i + γi

)
n×n

.

The following result is standard and its proof is omitted.

Proposition 8.1. Assume that B = (βi j) is irreducible.

(1) If R0 � 1, then P0 is the unique equilibrium for system (8.1) and it is globally asymptotically stable in Θ .
(2) If R0 > 1, then P0 is unstable and there exists a unique endemic equilibrium P∗ for system (8.1).

Our main result in this section is given in the following.

Theorem 8.2. Assume that B = (βi j) is irreducible. If R0 > 1, then (8.1) has a unique endemic equilibrium P∗ ,
and P∗ is globally asymptotically stable in Θ̊ .

Proof. The case n = 1 is proved in [29]. We consider the case n � 2. Let P∗ = (S∗
1, I∗1, . . . , S∗

n, I∗n),
where S∗

i , I∗i > 0 for 1 � i � n, denote the unique endemic equilibrium of system (8.1). Let V i be
defined in (8.3). We show that V i satisfies the assumptions of Theorem 3.1. Notice that

τ j∫
0

∂

∂t

(
I j(t − r) − I∗j − I∗j ln

I j(t − r)

I∗j

)
dr = −

τ j∫
0

∂

∂r

(
I j(t − r) − I∗j − I∗j ln

I j(t − r)

I∗j

)
dr.

Similar steps as in (7.9) lead to

•
V i = −dS

i

Si

(
Si − S∗

i

)2 +
n∑

j=1

βi j S∗
i I∗j

(
2 − S∗

i

Si
− Ii

I∗i
− Si I j(t − τ j)I∗i

S∗
i I∗j I i

+ I j

I∗j
+ ln

I j(t − τ j)

I j

)
.

Let aij = βi j S∗
i I∗j , Gi(Ii) = − Ii

I∗i
+ ln Ii

I∗i
, Φ(a) = 1 − a + ln a, and

Fij
(

Si, Ii, I j(·)
) = 2 − S∗

i

Si
− Ii

I∗i
− Si I j(t − τ j)I∗i

S∗
i I∗j I i

+ I j

I∗j
+ ln

I j(t − τ j)

I j
.

Then
•
V i �

∑
i j ai j F i j(Si, Ii, I j(·)), and

Fij = Gi(Ii) − G j(I j) + Φ

(
S∗

i

Si

)
+ Φ

(
Si I j(t − τ j)I∗i

S∗
i I∗j I i

)
� Gi(Ii) − G j(I j).

Therefore, V i, Fij, Gi,aij satisfy the assumptions of Corollary 3.3, and the functional V =∑n
i=1 ci V i(Si, Ii(·)) as defined in Theorem 3.1 is a Lyapunov functional for (8.1), namely,

•
V � 0 for

all (S1, I1(·), . . . , Sn, In(·)) ∈ Θ̊ . Using a similar argument as in Section 4, we can show that the only

compact invariant set where
•
V = 0 is singleton {P∗}. By the LaSalle–Lyapunov Theorem for delayed

systems (see [24, Theorem 3.4.7] or [16, Theorem 5.3.1]), we conclude that P∗ is globally attractive in
Θ̊ if R0 > 1. Furthermore, it can be verified that P∗ is locally stable using the same proof as that for
Corollary 5.3.1 in [16]. This completes the proof of Theorem 8.2. �
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Remarks.

1. When τi = 0, i = 1,2, . . . ,n, system (8.1) becomes the standard multi-group SIR model without
delays studied in [14]. Theorem 8.2 generalizes Theorem 3.3 in [14].

2. When n = 1, Theorem 8.2 gives a global-stability result of McCluskey [29] for a single-group SIR
model with delay.
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