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Abstract 

The Tillotson equation of state (EOS), which was originally developed for the hypervelocity impact of metals, was augmented with an 
additional region in expansion to provide full coverage of the density-energy space and a new cavitation model for liquids.  This EOS was 
implemented into CTH, Sandia National Laboratories Eulerian, finite-volume, shock physics code, for the general purpose of simulating 
hypervelocity impacts of metals, geologic materials, and liquids; however, the salient features of this EOS in both compression and 
expansion are evaluated for water given the ubiquity of available data.  Addition of a cavitation model allows for treatment of liquid spall 
when the local pressure drops below the vapor pressure in events such as underwater blasts and high speed projectiles or fragments in 
liquids.  The EOS is evaluated by comparing the response to previously published dynamic compression experiments.  Additionally, the 
model results are compared against the Mie-Gruneisen and SESAME equations of state already in the CTH database.   
© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Hypervelocity Impact Society. 

Keywords: shock physics; cavitation; vapor dome; CTH; Tillotson EOS 

Nomenclature 

a Tillotson parameter 
A Bulk modulus (kbar) 
b  Tillotson parameter 
B Tillotson parameter (kbar) 
c Sound speed (cm/s) 
C Specific heat (erg/gK) 
E Internal energy (erg/g) 
H Enthalpy (erg/g) 
IC Initial condition 
k Specific heat ratio 
L Length (cm) 
P Pressure (kbar) 
R Ideal gas constant (erg/gK) 
u Flyer velocity (cm/s) 
T Temperature (K) 
x Quality 
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X Dimension (cm) 
Y Dimension (cm) 
 
Greek symbols 

 Tillotson parameter 
 Tillotson parameter 

STP Gruneisen parameter 
 Compression, / 0 

 Strain, -1 
 density (g/cm3) 

 
Subscripts 
0  Initial condition 
1 Eqn. (1) 
2 Eqn. (2) 
3 Eqn. (3) 
C Cold state 
cav cavitation 
CV Complete vaporization 
e Electronic term 
f liquid state 
g gaseous state 
H Hugoniot 
IV Incipient vaporization 
l liquid 
T Thermal state 
V Volume 

1. Introduction 

The Tillotson Equation of State (EOS) was formulated originally for hypervelocity impact, recognizing that melting or 
vaporization can occur in the target or the flyer [1].  Under these extreme impact conditions, material response can span 
from low pressures, where strength effects dominate to very high pressures, where changes in chemical or electronic 
structure can occur.  High states of expansion following shock compression can also be produced as relief waves arrive from 
free surfaces. Hence, the intent of the original Tillotson EOS was to present a simple model that included phase change 
processes by incorporating both low-pressure and high-pressure regions as part of the thermodynamic description.  
McQueen and Walsh [2] demonstrated that for metals shocked up to 2 Mb, mixed phases such as solid-solid phase 
transitions in Fe, Bi, and Sn, can occur upon shocking, and melting or incipient vaporization can occur upon release, 
especially for softer metals such as Cd, Pb, and Zn.  A number of the metals described by this McQueen and Walsh [2] 
reference were characterized for hypervelocity impact by Tillotson [1]; however, at the higher impact velocities, the 
standard Mie-Gruneisen EOS was generalized to include high temperature effects, where the Gruneisen coefficient was 
assumed to be dependent upon two thermodynamic state variables specific volume (or density) and internal energy.  
Although the solid-solid phase transformations can be included upon shock, as demonstrated by Ahrens [3] by augmenting 
the internal energy, no phase transformations are included upon compression in the original model; the material remains in 
the original solid phase and does not cross additional phase boundaries. 

There are a number of limitations with the Mie-Gruneisen EOS [4].  Although widely used for many shock compression 
analyses of simple compressible substances, when the Hugoniot is used as the reference state, it is not valid for highly 
compressed states, nor is it applicable for expanded liquid or vapor states. When dissociation or thermal electronic 
excitation processes occur, the Gruneisen coefficient is no longer a single function of density, but must also include internal 
energy.  Generally, this coefficient is a weak function of density with the exception of changes in electronic configuration or 
phase changes.  

The Tillotson EOS surface has separate regions for compression and expansion.  The compression region has validity to 
high pressures, where thermal electronic processes are permitted through a generalization of the Mie-Gruneisen EOS to fit 
Thomas-Fermi theoretical results [5].  In expansion, the EOS surface approaches ideal gas behavior at low densities.  At 
energies below the sublimation energy, the gas-solid mixing region is approximated; however, liquid-gas, solid-liquid, and 
polymorphic solid-solid coexistence regions are not included. 
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The Thomas-Fermi statistical model, used to capture ionization effects, is valid in the high density asymptotic limit for 
metals.  According to Asay and Kerley [6], this model has been used to compute the high pressure and temperature region 
of many existing tabular SESAME tables.  At high densities, Fermi statistics are used to compute the energy of an average 
configuration of non-interacting atoms, versus calculations for isolated ones, since electron-electron interactions are nearly 
independent of configuration for metals. 

Thomas-Fermi statistics only become important for temperatures far exceeding an electon volt and pressures well above 
a Megabar.  Examples of situations where these extreme states can be reached include hypervelocity impacts of meteorites, 
space debris, or other flying objects onto planetary land mass or oceans, stars, or spacecraft.  For example, thin layers 
designed to protect a spacecraft from hypervelocity meteor impact by designing the first target material to vaporize upon 
impact and have debris shielded from the spacecraft by a second target material represents a concept called a Whipple 
shield, named after the scientist who first designed it before the first US mission to space [7].  A debris cloud is formed 
from spall in both the target and projectile from intersecting rarefaction waves, as shown schematically by the impact of 
right circular cylinder into a thin plate [8]. A body of literature has been devoted entirely to debris cloud experiments and 
simulation [8-10]. 

The diameter and depth of impact craters on the earth, the ejecta near the crater, and other forensic information are often 
used in conjunction with a hydrocode to estimate impactor dimensions and flight conditions [10].  Depending upon these 
impact conditions, it could be determined that a considerable fraction of the energy was transferred to the atmosphere and 
some of the ejecta exceeded the escape velocity of the earth.  For impacts into oceans, this could potentially cause tsunamis, 
endangering the lives of nearby island communities.  At the impact plane, prompt vaporization of the liquid could occur, 
and at low pressure regions, such as those formed by colliding rarefaction waves, liquid spall or cavitation could also occur. 
(Cavitation is defined as the study of gaseous cavities that grow and collapse in a liquid [11]). In underwater explosions 
[12], vaporization or ionization occurs near the interface formed between the water and the explosive detonation products, 
and cavitation occurs locally as a result of release to pressures at or below the vapor pressure of water.  Hence, it is valuable 
to have an equation of state with separate regions of compression and release.  Since a vapor cannot support tension, a 
cavitation model is needed to capture the effects of liquid spall, where gaseous cavities are introduced as the fluid tears, and 
to prevent the development of unphysical negative pressures in this flow regime.   

The remainder of this report contains a mathematical description of the original Tillotson EOS, with new improvements 
to the model that extends the -E phase space and presents a solution strategy applicable to multidimensional hydrocode 
calculations.  Furthermore, a new cavitation model, comparison of the model predictions to a subset of experimental data, a 
discussion of the results, and summarizing conclusions and recommendations for future research are also given.  

2. Equation of State Modeling 

2.1. Tillotson EOS 

The Tillotson EOS represents an analytic thermodynamic P- -E surface which is applicable to the prediction of the 
shock and release of materials undergoing hypervelocity impacts [1].  This EOS represents an improvement over the 
classical Mie-Gruneisen equation of state for compressed states by assuming a Gruneisen coefficient  as a function of both 
density and energy, whereas the classical description, derived from microstructural atomic lattice models [4], features  as a 
function of density.  The linear shock velocity Hugoniot is recovered at low pressures (and energy) and the Thomas-Fermi 
atomistic model is asymptotically reached at high pressures (and energy) during shock compression.  For compressed states 
this pressure is given by 

 

2
2

0 1
, BAE

EE

baEP     0,0 E . (1) 

In expansion, the revised Tillotson EOS is represented by four separate regions, identified by the individual liquid (or 
solid) or gaseous phase and a mixed phase region.  In the first expansive region, the material density is less than the 
reference/initial density, but greater than the density at incipient vaporization.  Likewise, the energy is less than the internal 
energy at incipient vaporization, so it remains a liquid (solid).  Hence, for cold expanded states, the EOS is given by 
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For hot expanded states where the material has completely vaporized, a separate expression for the pressure is given by  
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As the density approaches zero, the second term in the above expression vanishes and the material approaches the 
classical Thomas-Fermi limit [5], 
 

eee EP     CVEE,0 , (4) 

where e equals 2/3 for a free electron gas and 0.5 for a real gas.  The pressure P3 given in Eqn. (3) is chosen to match the 
value P2 in Eqn. (2) at the initial density; however, at slightly smaller densities, the pressures become discontinuous.  
Although Tillotson [1] cautions about the discontinuity, no expressions are given to rectify the discontinuity.  In later 
citations [13, 14] for example, a mixing region between the gas and liquid (solid) was defined as 
 

IVCV

CVIV

EE

PEEPEE
EP 23,     CVIVIV EEE,0 . (5) 

It should be noted that the mixing region does not represent a vapor dome for the case of liquid/vapor mixture.  As 
demonstrated later, above the critical point, there is just a fluid, a critical fluid, which is liquid/vapor mixture.  By no means 
does the model intend to match critical behavior; it should be treated as a mixture between two phases using a simple 
mixing rule.  Specifically capturing the coexistence regions in the model would require implementing separate solid-liquid 
and liquid-vapor equations of state, as exemplified by Royce for the Gray EOS [15] for metals.  Finally, for representing 
low energy expansion states in the Tillotson model, an additional term was added such that 
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Tillotson [1] uses this exact form to estimate the density at incipient vaporization; however, it is not identified as a separate 
region in the original paper.  The internal energy E is comprised of contributions from the liquid (solid) at zero-Kelvin, and 
thermal and electronic contributions [5], as given below 
  

TETEETE eTC ,,, , (7) 

where TCE VT and 0eE (small relative to the other terms) for the range of temperatures and pressures in this paper.  In 
compression, the cold curve is defined as 
 

2
1 , CC EP

d

dE     0,: 0 CEIC , (8) 

where this equation is solved numerically for the cold curve using a fourth-order Runge-Kutta scheme.  The same 
methodology is used to solve the cold curve in expansion, with the exception that the right hand side of the equation is a 
piecewise function of Eqns. (2, 3, 5, 6).  These equations are implemented in the Eulerian shock physics code CTH [16].  In 
the literature, it is not clear how energy is treated in the Tillotson EOS, or if the EOS was evaluated at states other than 
along the Hugoniot.  In some references, only the compressed states given by Eqn. (1) or a linearized version of this 
relationship is implemented in the computational tool [12, 17].   
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For evaluating the Tillotson EOS in CTH, the results from a 1D impact simulation, giving Hugoniot end states, were 
compared against other models in CTH (Mie-Gruneisen and a tabular SESEME EOS) and published compression data for 
water.  For brevity, the equations for Hugoniot pressure and energy are omitted from this paper; the reader is directed to 
Ahren
curve, as given in the following equation 

 

V

CH
H

C

EE
TT 0     0 . (9) 

To evaluate the shock states in CTH along the Hugoniot, a simple set of one-dimensional (1D) simulations in which a 
flyer (water) of thickness L = 3 cm impacted a target of thickness 2L for flyer velocities u up to 9×105 cm/s, as shown in 
Fig. 1.  The shock states were evaluated at the impact surface.  This setup has the dual purpose of evaluating spall leading to 
cavitation at the spall plane located the mid-plane within the target. 

Comparison of the analytical Hugoniot pressure, CTH shock states predicted with the Tillotson, Mie-Gruneisen and 
SESAME equations of state, and measurements of the Hugoniot pressure up to 400 kbar are plotted in Fig. 2.  

 

 

Fig. 1. Schematic of impact configuration in CTH for evaluating shock Hugoniot end states and release using Tillotson equation of state. 

Fig. 2. Comparison of analytical, CTH output for two common models, and measurements of the (a) pressure and (b) temperature along the shock 
Hugoniot for water. 

(a) (b) 
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The analytical Hugoniot curve and the Tillotson EOS pass through the data, giving a similar fit to that of Walsh and Rice 
[18], as shown in Fig. 2(a). The tabular EOS for water [19] follows the Hugoniot curve, then changes slope, which is 
indicative of predicted phase change.  Unfortunately, the SESAME EOS for water has a number of deficiencies, mainly 
being sparsely populated and providing a poor representation of the two-phase saturated region.  It is also inadequate for 
modeling cavitation, where the flow could expand to extremely low pressures (e.g. 0.006 bar).  Both the Mie-Gruneisen and 
Tillotson equations of state assume a constant specific heat; the primary difference between these equations of state are the 

ent, where the Tillotson EOS assumes a more general form having a dependence 
on both energy and density.  Beyond 100 kbar, the slope of the Mie-Gruneisen Hugoniot pressure increases, and this EOS 
predicts higher pressures for the same compression.  All of the equations of state provide a good match with the pressure 
data, given the scatter in the points.  In comparing the temperatures in Fig. 2(b), it is clear that the tabular equation of state, 
which has variable specific heat, provides the best fit to the temperature measurements [20].  According to Cowperthwaite 
and Shaw [20], specifying specific heat as a function of temperature is adequate for predicting the correct thermal response.  
The Mie-Gruneisen also predicts the measured temperature response up to 1500 K; however, the excellent match to the data 
is a consequence of slightly overpredicting the hydrodynamic response and not representative of improved physics, as in the 
SESAME EOS.  Beyond a compression of ratio of two, both the Mie-Gruneisen and SESAME EOS intersect and overshoot 
the temperature Hugoniot; yet, the Tillotson EOS continues to track the Hugoniot curve computed according to Eqn. (9). 
Hence, one area of improvement for both the Mie-Gruneisen and Tillotson equations of state to provide the best match to 
the data is to reformulate with a variable specific heat.  This is very important for liquids, where shock temperatures are 
sensitive to specific heat and specific heat increases with pressure, as explained by Cowperthwaite and Shaw [20].  The 
Mie-Gruneisen EOS in terms of specific heat as a function of temperature was presented by Baer et al. [21]. 

2.2. Cavitation Modeling 

An engineering approach to modeling cavitation is to consider a simple model where water is assumed to cavitate if the 
pressure falls below a certain cutoff value, equal to the vapor pressure [22].  This type of approach introduces a 
discontinuity across the vapor bubble.  More sophisticated approaches are available, such as assuming a baratropic flow 
where the density across the bubble is assumed to be a function of pressure only to a multiphase approach, where separate 
equations are solved for liquid and vapor regions.  A detailed overview of the variety of available methods for modeling 
cavitation is summarized by Saurel and Petipas [23]. 

In the model presented herein, cavitation is assumed to occur only upon release for densities less than 0 and positive 
pressures. The model reproduces states along the isotherm (T = Tcav) within the vapor dome [24] between the endpoint on 
the saturated liquid line ( cav, Pcav) and the corresponding endpoint on the saturated vapor line, as shown in Fig. 3.  
 

 

 

Fig. 3. Pressure-density diagram for water showing liquid and vapor phases, and saturated states for cavitation model.  Vapor dome data from Van Wylen 
and Sonntag [24]. 
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 The Tillotson EOS uses a separate EOS for release instead of simply reflecting about the shock Hugoniot and releasing 
to 0.  Hence, the cutoff values for pressure and the energy, which will be a function of density and cavitation temperature, 
are given by   

 
cavPEP ,     0 , (10) 

 
TCETE VC,     cavTT,0 . (11) 

The sound speed in the cavitated region is defined by  
[25], such that  
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Additional tests of the model with 1D spall simulations of water (see Fig. 1) were conducted at impact speeds of 2×105 
cm/s, 3 ×105 cm/s, and 8×105 
mid-plane were plotted to assess whether spall leading to cavitation had been predicted by the Tillotson EOS model.  These 
results are provided in Fig. 4.   

According to the figure above, cavitation occurs at the spall plane from initial flyer impacts at 2×105 cm/s and 3×105 
cm/s.  For these release states, only a minute mass fraction of vapor is formed, which is consistent with the formation of 
initially small bubbles.  At the higher impact velocity of 8×105 cm/s, the internal energy is greater than the energy required 
for complete vaporization and the fluid releases into a superheated region. 

 

Fig. 4. Release paths from shock Hugoniot end states due to water-water impacts at 2×105 cm/s, 3×105 cm/s, and 8×105 cm/s.   
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Table 1. Tillotson Equation of State Parameters for Water 

 

Table 2. Cavitation Parameters for Water 

 

2.3. Underwater Explosion Modeling and Results 

Understanding the fluid-structure interaction on underwater or free surface structures due to underwater explosions is 
generally complicated by resolving the wide range of length and time scales from the formation and collapse of small 
bubbles to the dynamic behavior of ships, submarines, and other submerged structures of interest in the far-field [26].  Small 
scale experiments and complementary modeling provide a cost-effective solution to developing a predictive capability 
towards gaining confidence in estimating the damage of underwater structures from complex shock and bubble interactions.  
A simple experiment where an explosive charge is placed in a well instrumented water-filled can has been used over the 
years for model validation experiments, as described by Wardlaw et. al [12, 27].  These experiments are used to evaluate the 
Tillotson EOS and cavitation model implemented in CTH; however, a complete model validation is not presented herein, 
just a description of how the new model improves the prediction of cavitation and bubble dynamics.  Apart from 
understanding underwater fluid-structure interactions from underwater explosions, having a model that is applicable to 
hypervelocity impacts and high-speed projectiles, as well as biological applications such as the low-speed impacts on the 
human head leading to Traumatic Brain Injury (TBI), where bubble collapse in the head might be a contributor to 
irreversible damage and bruising, is an emerging field study that can benefit from implementation of a cavitation model in a 
shock physics code [28, 29].     

Results from the CTH simulations of the hydrobulge test case is shown in the panel plot of Fig. 5, where the dynamics of 
the initial bubble formation is captured.  Vapor bubble growth begins at the water/wall interface, as the shock wave releases 
from the surface, causing initial deformation from blast loading.   

In Fig. 6, release paths are shown from two tracers (X, Y) = (0.88, 0) cm and (2.64, 0) cm located at the midplane 
between the explosive and the wall (X, Y coordinates are shown in Fig. 5).  The one at (2.64, 0) cm cycles between release 
to the cavitation vapor pressure (Pcav) and compression to a state near or on the Hugoniot, as vapor bubbles are formed and 
collapsed.  At the other location which is nearest to the explosive, a vapor bubble is repeatedly compressed, where the 
pressure oscillates around the critical point for water, and release states are computed on both sides of the saturated liquid 
line of the vapor dome. Given that the densities are less than that for the cavitated release states, the vapor volume is greater.   

IV a b A B E0 EIV ECV

(g/cm3) (g/cm3) (--) (--) kbar kbar 1012erg/g (--) (--) 1012erg/g 1012erg/g

0.998 0.958 0.7 0.15 21.8 132.5 0.07 10 5 0.00419 0.025

cav Pcav Tcav k R CV Hfg

(g/cm3) (g/cm3) kbar (K) (--) erg/g-K erg/g-K 1012erg/g

0.998 0.995 5.00E-05 305.9 1.33 4.62E+06 3.69E+07 2.42E-02

 

Fig. 5. Panel plot demonstrating the underwater detonation of a 2.8 g PETN charge initiated on top and the subsequent bulging and vapor bubble 
development on the interior surface an Aluminum tube over 44.5 s.  
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Fig. 6. Release paths from shock Hugoniot end states into water for hydrobulge simulation.  Some of the release states cross the vapor dome to below 10-4 
kbar simulating cavitation.  Other release state into superheated liquid/vapor mixture region.  

Although a cavitation model is needed to capture vapor formation at pressures at or below the vapor pressure of water, 
additional expanded states are captured by this modified Tillotson equation of state.  Hence, models that use the same EOS 
for shock and release, where cavitation is assumed to occur for slightly compressed states at the vapor pressure of water, 
underpredict the vapor volume [12, 27].  It is the rapid collapse of these vapor bubbles which create intense pressure pulses 
that could potentially lead to structural damage of nearby underwater structures. 

3. Conclusions and Recommendations 

The Tillotson EOS and a cavitation model for water were implemented into CTH.  This work represents an extension 
beyond the originally published phase space by incorporation of four separate expansion regions as well as the originally 
published compressive region.  Shock Hugoniot pressure and temperature measurements are compared to the computations, 
and the model is generally within good agreement over the measurement range.  The temperatures are underpredicted due to 
the assumption of constant specific heat; however, one area of future work would be to extend the model for variable 
specific heat.  The Tillotson equation of state includes liquid (solid) regions, a vapor region, and a mixed region that is 
obtained by applying a simple mixture rule.   

Cavitation behavior was modeled via a pressure cutoff model, where the flow is assumed to be cavitated if the pressure 
falls below the vapor pressure of water at the vapor temperature.  In a numerical spall experiment, the model was shown to 
cavitate as expected, as illustrated by release paths from the Hugoniot.  This same technique was also used to evaluate more 
complex bubble dynamics and fluid-structure interactions in an explosively-driven, water-filled can.  Here, not all of the 
vapor that formed was assumed to have come from cavitation, but from release to a superheated liquid/vapor mixture.  
Models that only have the compressive region of the Tillotson EOS will predict release along a reflected Hugoniot to the 
reference state (assuming a single shock and release). Athough the water vapor dome was shown for convenience, the 
Tillotson EOS does not explicitly model gas-liquid and liquid-solid coexistence regions.  The Tillotson EOS is also used for 
hypervelocity impacts into metals and geologic materials.  Model fits for some of these materials are included in CTH, and 
for brevity, a demonstration of their fit to available shock Hugoniot and release adiabat data are not given herein.  It should 
be noted that many geologic materials are porous and can undergo polymorphic phase transformations in both compression 
and expansion from hypervelocity impact.  Approaches that account for phase change in hydrocode modeling of 
compression and release in metals and geologic materials is described in a number of references cited herein [3, 4, 13, 30].  
This modified Tillotson EOS model assumes single phase behavior upon compression.  
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