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Abstract

Generic programming allows you to write a function once, and use it many times at
different types. A lot of good foundational work on generic programming has been
done. The goal of this paper is to propose a practical way of supporting generic
programming within the Haskell language, without radically changing the language
or its type system. The key idea is to present generic programming as a richer
language in which to write default method definitions in a class declaration.

On the way, we came across a separate issue, concerning type-class overloading
where higher kinds are involved. We propose a simple type-class system extension
to allow the programmer to write richer contexts than is currently possible.

1 Introduction

A generic, or polytypic, function is one that the programmer writes once,
but which works over many different data types. The standard examples are
parsing and printing, serialising, taking equality, ordering, hashing, and so on.
There is lots of work on generic programming [2,8,1,6].

In this paper we present the design and implementation of an extension to
Haskell that supports generic programming. At first sight it might seem that
Haskell’s type classes are in competition with generic programming — after
all, both concern functions that work over many data types. But we have
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found that they can be combined very gracefully, offering a smooth upward
extension to Haskell.

On the way we describe an orthogonal, but complementary idea. Haskell
allows one to define higher-order kinded data types for which it is impossible
to define, for example, an equality instance. This seems unfortunate: one
part of the language is more powerful than another. We describe a modest
extension of Haskell’s type-class system that removes this difficulty.

More specifically, our contributions are these:

✷ We present the language design for an extension to Haskell that supports
generic programming (Sections 2–6). Generic functions appear solely in
class declarations.

✷ We describe an entirely separate extension that lets one write certain in-
stance declarations for higher-order kinded data types that are simply in-
expressible in Haskell 98 (Section 7).

✷ We discuss the implementation of both parts.

The first part of this paper is a follow-up to [4]; the new achievements are
detailed in Section 8.

2 Setting the scene

In this section we set the context for our proposal. We begin by reviewing
Haskell’s type-class overloading mechanism.

2.1 A brief review of type class overloading

Haskell supports overloading, based on type classes. For example, the Prelude
defines the class Eq :

class Eq t where

( ), (� ) :: t → t → Bool .
This defines two overloaded top-level functions, ( ) and (� ), whose types are

( ), (� ) :: (Eq t) ⇒ t → t → Bool .
Before we can use ( ) on values of, say Int , we must explain how to take
equality over Int values:

instance Eq Int where

( ) = eqInt

(� ) = neInt .

Here we suppose that eqInt :: Int → Int → Bool , and similarly neInt are
provided from somewhere. The instance declarations says “the ( ) function
at type Int is implemented by eqInt”.
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How can we take equality of pairs of values? Presumably by comparing
their components; but that requires equality over the component types:

instance (Eq a,Eq b) ⇒ Eq (a, b) where

(x1, y1) (x2, y2) = (x1 x2) ∧ (y1 y2)

(x1, y1) � (x2, y2) = (x1 � x2) ∨ (y1 � y2).
It is a bit annoying to keep having to write code for the (� ) method, because
it is simply the negation of the code for the ( ) method, so Haskell allows you
to write a default method in the class declaration:

class Eq t where

( ), (� ) :: t → t → Bool
x1 � x2 = not (x1 x2).

Now, if you give an instance declaration for Eq that lacks a definition for (� ),
Haskell “fills in” the missing method definition with code copied from the class
declaration. So we can write:

instance (Eq a,Eq b) ⇒ Eq (a, b) where

(x1, y1) (x2, y2) = (x1 x2) ∧ (y1 y2)

and get just the same effect as before. You can even specify a default method
for both methods:

class Eq t where

( ), (� ) :: t → t → Bool
x1 x2 = not (x1 � x2)
x1 � x2 = not (x1 x2).

In an instance declaration, you can now either give a definition for ( ), or a
definition for (� ), or both. If you specify neither, then you will get an infinite
loop, unfortunately!

If you give an instance declaration without specifying code for method op,
and the class has no default method for op, then invoking the method will halt
the program with an error message. It is not a compile-time error; sometimes
a method just doesn’t make sense for a particular instance type.

2.2 Overloading is not generic programming

Haskell as it stands does not support generic, or polytypic, programming. In
particular, suppose you define a new data type:

dataWibble = Wag Int |Wug Bool .
It is “obvious” how to take equality over Wibble, and support for generic
programming would allow us to specify this “obvious” precisely. In Haskell,
however, you have to give an explicit instance declaration, containing the code
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for equality:

instance Eq Wibble where

(Wag i1) (Wag i2) = i1 i2
(Wug b1) (Wug b2) = b1 b2
w1 w2 = False.

Cranking out this sort of boilerplate code is so tiresome that Haskell provides
special support — the so-called “deriving” mechanism — for a handful of
built-in classes. In particular, for Eq you say

dataWibble = Wag Int |Wug Bool deriving (Eq).

The “deriving (Eq)” part tells Haskell to generate the “obvious” code for
equality. What “obvious” means is specified informally in an Appendix of
the language definition [15]. This is all rather ad hoc, and in particular it
only works for a fixed set of built-in classes (Eq , Ord , Enum, Bounded , Read ,
Show , and Ix ).

2.3 Generalising default methods

What we seek, then, is an automatic mechanism that “fills in” a suitable im-
plementation for the methods of an instance declaration. But wait a minute!
That’s what a default method does! Indeed so but, as we have already re-
marked, default methods as they stand are too weak. If we write merely:

instance Eq Wibble

we would, as remarked earlier, just get an infinite loop. We have to provide
some real code somewhere! What we want is a richer language in which to
write default methods. That is what we turn our attention to now.

3 Generic definitions

From a language-design point of view, our story is this: providing a richer
language for default method definitions in a class declaration gives an elegant
way to extend Haskell with the power of generic programming. We will justify
this statement more fully in Section 9, but first we must present our design.
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3.1 Two examples

We adopt with minor changes the proposal in [4]. Two examples will serve to
give the idea. First, here is the Eq class augmented with generic equality:

class Eq t where

( ), (� ) :: t → t → Bool
-- generic default method

( ){1}Unit Unit = True

( ){a + b}(Inl x1) (Inl x2) = x1 x2
( ){a + b}(Inr y1) (Inr y2) = y1 y2
( ){a + b} = False

( ){a ∗ b}(x1 :∗: y1) (x2 :∗: y2) = x1 x2 ∧ y1 y2

-- vanilla, non-generic default method

(� ) x1 x2 = not (x1 x2).

This new class declaration contains an ordinary, default declaration for (� ),
just as before. The new feature is a generic definition for equality, distin-
guished by the curly braces on the left hand side, which enclose a type argu-
ment. We will study such generic definitions in more detail in Section 4.2. For
now, we simply observe that a generic definition works by induction over the
structure of the type (written in curly braces) at which the class is instanti-
ated.

Now we can give an instance declaration like this:

instance Eq Wibble

without giving code for either method. Both methods will be “filled in” from
the class declaration. The ordinary, non-generic default method, (� ), is filled
in verbatim. The generic default method, ( ), is specialised in a way we will
describe, to give essentially the code in Section 2.2. That is, the effect of the
instance declaration is exactly as if we had written

instance Eq Wibble where

(Wag i1) (Wag i2) = i1 i2
(Wug b1) (Wug b2) = b1 b2
w1 w2 = False

w1 � w2 = not (w1 w2).

Here is another example. The class Binary has methods showBin and readBin
that respectively convert a value to a list of bits and vice versa:

data Bit = 0 | 1
type Bin = [Bit ]

class Binary t where

showBin :: t → Bin
readBin :: Bin → (t ,Bin).
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A real implementation might have a more sophisticated representation for Bin
but that is a separate matter. We can give generic definitions for showBin
and readBin like this:

showBin{1}Unit = [ ]

showBin{a + b}(Inl x ) = 0 : showBin x

showBin{a + b}(Inr y) = 1 : showBin y

showBin{a ∗ b}(x :∗: y) = showBin x ++ showBin y

readBin{1}bs = (Unit , bs)

readBin{a + b}[ ] = error "readBin"

readBin{a + b}(0 : bs) = let (x , bs ′) = readBin bs

in (Inl x , bs ′)
readBin{a + b}(1 : bs) = let (y , bs ′) = readBin bs

in (Inr y , bs ′)
readBin{a ∗ b}bs = let (x , bs1) = readBin bs

(y , bs2) = readBin bs1
in ((x :∗: y), bs2).

Notice that readBin produces a value of the unknown type t , whereas showBin
and ( ) both consume such values. Again, we can make Wibble an instance
of Binary by saying simply

instance Binary Wibble.

3.2 Instances and deriving

Though all of this sounds simple enough, it has interesting and important
consequences:

✷ Though an instance declaration for a class with generic methods is now
rather brief, it must still be given. It is not the case, for example, that all
types become instances of Eq when one gives a generic default method in
the class declaration for Eq .

✷ It is not necessary for the instance declaration to appear in the same mod-
ule as the data type declaration, or the class declaration. By contrast, in
Haskell 98 a deriving clause must be attached to the data type declara-
tion. This separation is useful, because the class might not even be defined
in the scope where the type is declared.

✷ The compiler only fills in a method definition if the programmer omits it.
For example, if we said

instance Eq Wibble where

(Wag ) (Wag ) = True

w2 w2 = False,

then this programmer-supplied code is, of course, used. This is one way
in which our proposal differs from others. In most generic-programming
systems, a generic function works generically over all types. In our design,
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the programmer can override the generic definition on a type-by-type basis.
This ability is absolutely crucial to support abstract data types. For

example, a set may be represented as a balanced tree in more than one
way, and equality must take account of this fact. Simply using a generic
equality function would take equality of representations, which is simply
wrong in this case. In a similar way, we can also use ordinary instance
declarations to specify what a generic operation should do on primitive
types, such as Char , Int , Double. In particular, if you want to define a
method for types involving function-spaces, you simply supply an instance
declaration for “→”.

✷ A deriving clause can now be seen as shorthand (albeit now not so much
shorter) for an instance declaration. There is a difference, though. Con-
sider

data Tree a = Node a [Tree a ] deriving (Eq).

In our design, the deriving clause is shorthand for

instance (Eq a) ⇒ Eq (Tree a)

Note that in an instance declaration we must explicitly specify the context
(Eq a), which is inferred automatically by the deriving mechanism. We
discuss this issue in more detail in Section 4.4.

3.3 Generic representation types

The arguments in braces on the left hand side of a generic definition are types.
The idea is, of course, that these generic definitions can be specialised for any
particular type. Suppose, for example, we have a data type List , and we make
List an instance of Binary :

data List a = Cons a (List a) | Nil
instance (Binary a) ⇒ Binary (List a).

How is the compiler to fill in the missing method definitions?

First, we define the generic representation type for List , which we will call
List◦:

type List◦ a = (a ∗ List a) + 1.

We will have more to say about representation types in Section 6.2, but for
now we can just think of List◦ as a type that is more-or-less isomorphic to
List , but one that uses only a small, fixed set of type constructors, namely
unit, sums, and products. Notice also that List◦ is not a recursive type; it
mentions List on the right hand side, not List◦. So our generic representation
types give a representation for just the “top level” of a recursive type.

The unit, sum, and product types are defined like this:

data 1 = Unit

data a + b = Inl a | Inr b
data a ∗ b = a :∗: b.
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Of course, 1 is not a legal Haskell type constructor, and nor are infix (+) and
(∗). We give them special syntax to distinguish them from their “normal”
counterparts, (), Either a b, and (a, b), and extend the syntax of types to
accommodate them.

In our example, a List is a sum (+) of two types: a product (∗) of the
element type a and a List , and the unit type (1). To make the isomorphism
explicit, let us write functions that convert to and fro 3 :

to-List :: ∀a .List◦ a → List a
to-List (Inl (x :∗: xs)) = Cons x xs

to-List (Inr Unit) = Nil

from-List :: ∀a .List a → List◦ a
from-List (Cons x xs) = Inl (x :∗: xs)
from-List Nil = Inr Unit .

3.4 The generic instances

The idea is that by regarding a List as a List◦, the generic code explains what
to do. The generic method for showBin, for example, says what to do if the
argument is a sum, what to do if it is a product, and what to do if it is a unit
type.

It’s useful to imagine re-expressing these default methods as three ordinary
instance declarations:

instance Binary 1 where

showBin Unit = [ ]

readBin bs = (Unit , bs)

instance (Binary a,Binary b) ⇒ Binary (a + b) where

showBin (Inl x ) = 0 : showBin x

showBin (Inr y) = 1 : showBin y

readBin [ ] = error "readBin"

readBin (0 : bs) = let (x , bs ′) = readBin bs

in (Inl x , bs ′)
readBin (1 : bs) = let (y , bs ′) = readBin bs

in (Inr y , bs ′)

instance (Binary a,Binary b) ⇒ Binary (a ∗ b) where
showBin (x :∗: y) = showBin x ++ showBin y

readBin bs = let (x , bs1) = readBin bs

(y , bs2) = readBin bs1
in ((x :∗: y), bs2).

3 In this paper we will make quantification explicit, even though Haskell 98 does not offer
explicit quantification. So, in this example, we write an explicit ∀ in the type signature for
to-List . Some of our types become quite complicated, so it helps to be absolutely certain
where quantification is taking place.
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We describe these instance declarations for generic representation types as
generic instance declarations. They are not written explicitly by the pro-
grammer, but instead are derived by the compiler from a class declaration
that has generic default methods. We discuss generic instance declarations
further in Section 4.3.

3.5 Filling in the missing methods

We are now ready to say more precisely how the compiler fills in the missing
methods. In this section we sketch the idea using an example, while Section 6
deals with the general case.

When the programmer writes

instance (Binary a) ⇒ Binary (List a)

the compiler will fill in the method declarations as follows:

showBin xs = showBin (from-List xs)

readBin bs = case readBin bs of

(xs , bs ′) → (to-List xs , bs ′).

Let us focus on the definition for showBin. It works in two stages:

(i) First, from-List :: ∀a .List a → List◦ a converts the input list of type
List a into a value of type List◦ a.

(ii) Second, we call the overloaded showBin function to complete the job,
using the methods of the generic instance declarations.

At first this looks utterly bizarre. We are defining showBin in terms of
showBin. But look at the definition one would write by hand:

instance (Binary a) ⇒ Binary (List a) where

showBin Nil = 0 : [ ]

showBin (Cons x xs) = 1 : showBin x ++ showBin xs .

The first call is to showBin at the list element type; the second is a recursive
call to the same showBin at the list type.

Something similar happens with the generic definition. Here showBin is
called on an argument of type List◦ a. This is a sum type, so the sum instance
of Binary kicks in (Section 3.4). It in turn will call showBin, once at type 1,
and once at type a ∗ List a. The former has an instance declaration, while
the latter uses the product instance and makes calls to showBin at type a
and List a. But the former is just like the showBin x in the hand-written
instance, while the latter is like the showBin xs . So everything works out.

Let us return briefly to the first step above. In the case of showBin it was
fairly simple to convert the argument to its generic representation type. On
the other hand readBin was a bit more complicated because it returned a pair,
only one component of which had to be converted. How, in general, does the
compiler perform this conversion? We devote the whole of Section 5 to this
topic. First, though, we elaborate on the programmer-visible aspects of our
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design.

4 Discussion and elaboration

We have now sketched the bones of our design. In this section we elaborate
on some of the details.

4.1 Constructor names and record labels

Annoyingly, unit, sum, and product are not quite enough. Consider, for ex-
ample, the standard Haskell class Show . To be able to give generic definitions
for showsPrec, the names of the constructors, and their fixities, must be made
accessible.

To this end we provide an additional generic representation type, of the
form c of a where c is a value variable of type ConDescr and a is a type
variable. The type ConDescr is a new primitive type that comprises all con-
structor names. To manipulate constructor names the following operations
among others can be used — for an exhaustive list see [4].

data ConDescr -- abstract

data Fixity = Nofix | Infix Int | Infixl Int | Infixr Int
conName :: ConDescr → String -- primitive

conArity :: ConDescr → Int -- primitive

conFixity :: ConDescr → Fixity -- primitive

instance Show ConDescr where

show = conName

Using conName and conArity we can implement a simple variant of Haskell’s
Show class — for the full-fledged version see [4].

class Show t where

show :: t → String
showsPrec :: Int → t → String
show x = showsPrec 0 x

showsPrec{a + b}d (Inl x ) = showsPrec d x

showsPrec{a + b}d (Inr y) = showsPrec d y

showsPrec{c of a }d (Con c x )

= if conArity c 0 then show c

else showParen (d � 10)

(show c ++ "�" ++ showsPrec 10 x )

showsPrec{a ∗ b}d (x :∗: y)
= showsPrec d x ++ "�" ++ showsPrec d y

The representation type c of a is defined by the following pseudo-Haskell
declaration:

newtype c of a = Con c a.
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Uniquely for Haskell, c is a value that is carried by a type. It is best to think
of the above declaration as defining a family of types: for each c there is a
type constructor “c of” of kind � → � with a value constructor “Con c” of
type a → (c of a). Now, why does the type c of a incorporate information
about c? One might suspect that it is sufficient to supply this information on
the value level. Doing so would work for show , but would fail for read :

class Read t where

read :: String → [(t , String)]

read{c of a }s = [(Con c x , s3)

| (s1, s2) ← lex s , s1 conName c,

(x , s3) ← read s2 ].

The important point is that read produces (not consumes) the value, and yet
it requires access to the constructor name.

Haskell allows the programmer to assign labels to the components of a
constructor, and these, too, are needed by read and show . For the purpose of
presentation, however, we choose to ignore field names. In fact, they can be
handled completely analogously to constructor names.

4.2 Generic class declarations

In general, a class declaration consists of a signature, which specifies the types
of the class methods, and an implementation part, which gives default defini-
tions for the class methods. The type signature has the general form:

class ctx ⇒ C a where
op1 :: Op1 a

. . .

opn :: Opn a.

The implementation part consists of generic and non-generic default defini-
tions. A non-generic definition is an ordinary Haskell definition

op = . . . .

A generic definition can be recognised by the type patterns on the left hand
side, enclosed in curly braces. It has the schematic form

op{1} = . . .

op{a + b} = . . .

op{a ∗ b} = . . .

op{c of a } = . . . .

11



Hinze and Peyton Jones

The type patterns are mandatory, so that the equations can be correctly
grouped. For example, consider the generic definition of ( ) given earlier:

( ){1}Unit Unit = True

( ){a + b}(Inl x1) (Inl x2) = x1 x2
( ){a + b}(Inr y1) (Inr y2) = y1 y2
( ){a + b} = False

( ){a ∗ b}(x1 :∗: y1) (x2 :∗: y2) = x1 x2 ∧ y1 y2.

Without the type patterns there is no way to decide whether the second but
last equation belongs to the (+) or to the (∗) case.

Apart from the type patterns, a generic definition has exactly the form of
a normal Haskell definition.

We note the following points:

✷ A class declaration may specify an arbitrary mixture of generic and non-
generic default-method declarations. In the case of Eq above, ( ) is defined
by induction over the argument type, while (� ) is non-generic. The generic
and non-generic methods may be mutually recursive.

✷ Class declarations are the only place that generic definitions appear in our
design. There are no “free-standing” generic definitions, just as there are
no free-standing overloaded definitions in Haskell. (One might disagree
with this choice, but it does not limit expressiveness, because one can
always invent a class to encapsulate a new overloaded or generic function.)

✷ At the moment, generic default declarations may only be given for type
classes, that is, for classes whose type parameter ranges over types of kind
�. For example, we cannot specify a generic default method for the Functor
class:

class Functor f where

fmap :: (a → b) → (f a → f b).
This is the first extension we plan to add in the future.

✷ For a multi-parameter type class there would be multiple type arguments.
We do not consider this complication in this paper.

4.3 Generic instance declarations

In Section 3.4 we said that the generic definitions in a class declaration are
re-expressed by the compiler as a set of instance declarations, one for each
generic representation type. One might ask: why not get the programmer to
write these instance declarations directly?

Our answer is stylistic rather than technical. We want to present generic
programming in Haskell as a richer language in which to write default method
declarations, and scattering them over several instance declarations does not
convey that message. The question about whether a generic-default decla-
ration was available to use would become more diffuse, because some parts,
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but not others, might be available. Writing the declaration all at once, in the
class declaration, seems to be the simplest and most direct thing to do, even
though it does involve a little new syntax.

Another stylistic reason for our decision is that it is rather easy to confuse
the generic instance declaration for, say, products a ∗ b with “ordinary” in-
stance declarations for the corresponding “ordinary” product type (a, b). For
example, in the case of Show , the ordinary instance declaration for products
might look like this:

instance (Show a, Show b) ⇒ Show (a, b) where

showsPrec d (x , y)

= "(" ++ showsPrec 0 x ++ "," ++ showsPrec 0 y ++ ")".

Because tuples are typically shown using distfix notation, we choose to over-
ride the generic definition. Nevertheless, the class declaration for Show will
have given rise to the generic instance declaration

instance (Show a, Show b) ⇒ Show (a ∗ b) where
showsPrec d (x :∗: y)

= showsPrec d x ++ "�" ++ showsPrec d y .

Recall that products a ∗ b are used to represent the arguments of a construc-
tor. Consequently, the generic instance declaration specifies the layout of
constructor arguments: they are shown consecutively separated by spaces.

4.4 Inferring instance contexts

When a class has generic methods, one can give an instance declaration with-
out providing the code for any of the methods. But one still has to provide
the context for the instance declaration. For example, one could not write

instance Eq (List a)

because the typechecker would complain about a missing (Eq a) constraint.
Instead one must write

instance Eq a ⇒ Eq (List a).

In contrast, the existing deriving mechanism infers the necessary instance
context. The obvious question is: could the compiler infer the instance context
in our new scheme? For example, we might write

instance (. . .) ⇒ Eq (List a)

indicating that the compiler should fill in the missing context “(. . .)”. Indeed,
we might want to allow such an abbreviation in any type signature, allowing
one to write, say,

f :: (. . .) ⇒ a → a.
The ability to write such partial type signatures, with the ellipsis filled in by
type inference, has been discussed on the Haskell mailing list, and looks per-
fectly feasible from a technical standpoint. For instance declarations matters
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are still feasible, (albeit a little trickier, involving a fixpoint iteration) for first-
order kinded types, but we believe that it is infeasible for higher-order kinded
types (see Section 7.3).

In any case, this issue is entirely separate from our main theme, so we do
not discuss it further.

5 Mapping functions

We have now presented the design as seen by the programmer. Before we
can describe the implementation, however, we need to pause to introduce
bidirectional maps, which are an essential foundation to the implementation.

Recall from Section 3.5 our general plan for filling in the generic method
of an instance declaration. Suppose we have the following class declaration:

class C a where

op :: Op a.

We will deal only with single-parameter type classes, but see Section 9. We
also assume, for notational clarity, that the type of method op is given simply
by Op a. We can always introduce a type synonym to make this so 4 . Now
suppose that the programmer writes the instance declaration

instance ctx ⇒ C (T ā).

where ctx is a context, and ā is a sequence of type variables. How is the
compiler to fill in the definition of method op? Following Section 3.5 it can
fill in thus:

instance ctx ⇒ C (T ā) where

op = adapt-Op (op ::Op (T ◦ ā)).

That is, we call op at type T ◦ ā, to produce a value of type Op (T ◦ ā),
and then convert the value to Op (T ā). The function adapt-Op does this
impedance-matching by converting a function that works on values of type
T ◦ ā to one that works on T ā.

adapt-Op :: ∀ā .Op (T ◦ ā) → Op (T ā)

Clearly, how adapt-Op works depends on the form of Op, the type of the

4 Technically, Haskell type synonyms are not powerful enough to do such an abbreviation
for a method like properFraction:

class RealFrac a where
properFraction :: (Integral b)⇒ a → (b, a).

since its type has a context at the beginning. But we will pretend that such an abbreviation
is possible.
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method. Here are some examples:

type In a = a → String
adapt-In :: ∀ā . In (T ◦ ā) → In (T ā)

adapt-In = λf → f · from-T

type Out a = String → a
adapt-Out :: ∀ā .Out (T ◦ ā) → Out (T ā)

adapt-Out = λf → to-T · f
type Both a = a → a
adapt-Both :: ∀ā .Both (T ◦ ā) → Both (T ā)

adapt-Both = λf → to-T · f · from-T .

These adapt functions use the functions to-T and from-T , that convert be-
tween T ā and T ◦ ā; they were introduced in Section 3.3. Notice that both
to-T and from-T are needed; one by itself will not do. Furthermore, while we
define the class, and hence the Op types, once, we may write instances of that
class at many different types, T . So we want to abstract out the to-T and
from-T functions from the adapt functions (note that a◦ is a type variable
below):

adapt-Both ′ :: ∀a a◦ . (a◦ → a) → (a → a◦)
→ (Both a◦ → Both a)

adapt-Both ′ to from = λf → to · f · from
adapt-Both = adapt-Both ′ to-T from-T

It turns out to be convenient to package up the to-T and from-T functions
into an embedding-projection pair :

data EP a a◦ = EP{to :: a◦ → a, from :: a → a◦}.
Here EP a a◦ is just a pair of functions, one to convert in one direction and
one to convert back. Now we can write

adapt-Both ′′ :: ∀a a◦ .EP a a◦

→ (Both a◦ → Both a)
adapt-Both ′′ ep-a = λf → to ep-a · f · from ep-a
conv -T :: ∀ā .EP (T ā) (T ◦ ā)
conv -T = EP{to = to-T , from = from-T }
adapt-Both = adapt-Both ′′ conv -T .

The last step is to make the adapt function itself return an embedding-
projection pair, rather than just the “to” function; and at this stage we adopt
the name bimap — for “bidirectional mapping”:

bimap-Both :: ∀a a◦ .EP a a◦ → EP (Both a) (Both a◦)
bimap-Both ep-a

= EP{to = λf → from ep-a · f · to ep-a,
from = λf → to ep-a · f · from ep-a }

adapt-Both = to (bimap-Both conv -T ).
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It is not at all obvious why we construct mappings in both directions, only
to discard one of them when we use it, but it turns out to be essential when
constructing bimap for arbitrary types, as we will see in the next section.

5.1 Generating bidirectional mapping functions

In the last section we generated bimap-Both for a particular method type
Both a. We also observed that appropriate code depends on the structure of
the type of the method, so the million-dollar question is: how do we gener-
ate the bidirectional maps for arbitrary method types? We do it simply by
induction over the type of the method, thus:

bimap-Op :: ∀a a◦ .EP a a◦ → EP (Op a) (Op a◦)
bimap-Op ep-a = bimap{Op a }[a := ep-a ].

This definition is not proper Haskell; bimap should be thought of as a meta-
function, evaluated at compile time, that returns a Haskell expression. It takes
as arguments: a type (written in curly braces), and an environment � mapping
type variables to expressions. The syntax [a := ep-a ] means an environment
that binds a to ep-a.

We define bimap by induction on the structure of type expressions:

bimap{a }� = �(a)

bimap{(→)}� = bimap-Arrow

bimap{T }� = bimap-T

bimap{t u }� = (bimap{t }�) (bimap{u }�)

where

bimap-Arrow :: ∀a a◦ b b◦ .EP a a◦ → EP b b◦
→ EP (a → b) (a◦ → b◦)

bimap-Arrow ep-a ep-b

= EP{to = λf → to ep-b · f · from ep-a,
from = λf → from ep-b · f · to ep-a }.

The bimap{T } case deals with type constructors other than (→), which we
discuss in Section 5.2. Let us take an example. Recall our Both type:

type Both a = a → a.
Setting � = [a := ep-a ] we have

bimap-Both ep-a

= bimap{a → a }�
= (bimap{(→) a }�) (bimap{a }�)

= ((bimap (→) �) (bimap{a }�)) (bimap{a }�)

= bimap-Arrow ep-a ep-a

=EP{to = λf → to ep-a · f · from ep-a },
from = λf → from ep-a · f · to ep-a.
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5.2 Mapping over data types

What if there is a data type involved? For example in the type of readBin,
there is a pair in the result type:

type ReadBin a = Bin → (a,Bin).

If we just try our current scheme we get stuck:

bimap-ReadBin ep

= bimap{Bin → (a,Bin)}�
= bimap-Arrow (bimap{Bin }�) (bimap{(a,Bin)}�).

Now, since Bin is not a parameterised type, there is nothing to do,

bimap-Bin :: EP Bin Bin

bimap-Bin = id -EP

id -EP :: ∀a .EP a a

id -EP = EP{to = λx → x , from = λx → x }
whereas pairs are parameterised over two types, so we must push the mapping
functions inside:

bimap-Pair :: ∀a a◦ b b◦ .EP a a◦ → EP b b◦
→ EP (a, b) (a◦, b◦)

bimap-Pair ep-a ep-b

= EP{to = λ(x ◦, y◦) → (to ep-a x ◦, to ep-b y◦),
from = λ(x , y) → (from ep-a x , from ep-b y)}.

In general, we can define bimap-T by induction on the structure of data type
declarations. The mapping function for the data type

data T a1 . . . ak = K1 t11 . . . t1m1 | · · · | Kn tn1 . . . tnmn

is given by bimap-T displayed in Fig. 1. Now, what is the type of this bidi-
rectional map? The answer is simple yet mind-boggling: the type of bimap-T
depends on the kind of T . Assume that T has kind � as, for instance,
Bin. Then the bidirectional map simply has type EP T T (and, in fact,
bimap-T = id -EP). If T has kind � → � as all the Op’s have, then bimap-T ’s
type is close to that of an “ordinary” mapping function:

bimap-T :: ∀a a◦ .EP a a◦ → EP (T a) (T a◦).

A more involved kind, say (� → �) → (� → �), gives rise to a more complicated
type:

bimap-T :: ∀f f ◦ . (∀b b◦ .EP b b◦ → EP (f b) (f ◦ b◦))
→ (∀a a◦ .EP a a◦

→ EP (T f a) (T f ◦ a◦)).

Now bimap-T has a so-called rank-2 type signature [12]. Roughly speaking,
bimap-T takes bidirectional maps to bidirectional maps (this is why the ar-
guments of bimap-T are called bimap-ai). In general, if T has kind κ, then
bimap-T has type Bimap{κ}T T where Bimap is defined by induction on the
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bimap-T bimap-a1 . . . bimap-ak

= EP{to = to-T , from = from-T }
where

to-T (K1 x11 . . . x1m1)

= K1 (to (bimap{t11}�) x11) . . . (to (bimap{t1m1 }�) x1m1)

. . .

to-T (Kn xn1 . . . xnmn )

= Kn (to (bimap{tn1}�) xn1) . . . (to (bimap{tnmn }�) xnmn )

from-T (K1 x11 . . . x1m1)

= K1 (from (bimap{t11}�) x11) . . . (from (bimap{t1m1 }�) x1m1)

. . .

from-T (Kn xn1 . . . xnmn )

= Kn (from (bimap{tn1}�) xn1) . . . (from (bimap{tnmn }�) xnmn )

� = [a1 := bimap-a1, . . . , ak := bimap-ak ]

Figure 1. The bidirectional mapping function for the data type T .

structure of kinds:

Bimap{�}t t◦ = EP t t◦

Bimap{κ1 → κ2}t t◦
= ∀a a◦ .Bimap{κ1}a a◦ → Bimap{κ2}(t a) (t◦ a◦).

If κ has order n, then Bimap{κ} is a rank-n type. This poses no problems,
however, since the Glasgow Haskell Compiler internally uses a variant of the
polymorphic λ-calculus [17].

We will say a bit more about higher-order kinded types in Section 7. For
further information on kind-indexed types such as Bimap the reader if referred
to [7].

6 Implementing generic default methods

Now, at last, we are ready to tackle the implementation. We describe it as
a Haskell source-to-source translation, performed (at least notionally) prior
to type checking. Why? The type checker already does a lot of what we
require. Also we probably have a better chance that generic default methods
will work smoothly with complications such as multi-parameter type classes
[16], implicit parameters [13], and functional dependencies [11].

The source-to-source translation goes as follows. For each data type decla-
ration, T , we generate the following:

✷ For each constructor K a value con-K of type ConDescr that describes
the properties of the constructor (Section 6.1).

✷ A type synonym, T ◦, for T ’s generic representation type (Section 6.2).

✷ An embedding-projection pair conv -T :: ∀ā .EP (T ā) (T ◦ ā), that con-
verts between T and its generic representation T ◦ (Section 6.3).
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For each class declaration, for class C , we generate the following (see Sec-
tion 6.4):

✷ An emaciated class declaration for C , generated simply by omitting the
generically-defined methods.

✷ For each generic method op ::Op a in the class declaration, a bidirectional
map bimap-Op :: ∀a a◦ .EP a a◦ → EP (Op a) (Op a◦) (see Section 5).

✷ Instance declarations for C 1, C (a + b), C (a ∗ b) and C (c of a),
all obtained by selecting the eponymous equations from the original class
declaration (see Section 3.4).

For each instance declaration we generate (see Section 6.5):

✷ An extended instance declaration, obtained by adding definitions for the
generic methods that are not specified explicitly in the instance declaration.

6.1 Constructors

For each constructor, K , in a data type declaration, we produce a value of
type ConDescr that gives information about the constructor (in fact, the type
ConDescr used in the compiler is slightly more elaborate):

data ConDescr = ConDescr{name :: String ,

arity :: Int ,

fixity :: Fixity }.
As an example, for the List data type we generate:

con-Cons , con-Nil :: ConDescr

con-Cons = ConDescr "Cons" 2 NoFixity

con-Nil = ConDescr "Nil" 0 NoFixity .

6.2 Generic representation types

For each data type, T , we produce a type synonym T ◦, for its generic repre-
sentation type. For example, for the data type

data List a = Cons a (List a) | Nil
we generate the representation type

type List◦ a = con-Cons of (a ∗ List a) + con-Nil of 1.

Our generic representation type constructors are just unit, sum, product, and
“c of”. In particular, there is no recursion operator. Thus, we observe that
List◦ is just a non-recursive type synonym: List (not List◦) appears on the
right-hand side. So List◦ is not a recursive type; rather, it expresses just the
top “layer” of a list structure, leaving the original List to do the rest. But
as we have seen, this is enough: a recursive function just does one “layer” of
recursion at a time.

This is unusual compared to other approaches. In PolyP [8], for instance,
there is an additional type pattern for type recursion (at kind � → �). A very
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significant advantage here is that there is no problem with mutually-recursive
data types, nor with data types with many parameters, both of which make
explicit recursion operators extremely clumsy and hard to use in practice.

Our design makes do with just binary sum and product. Algebraic data
types with many constructors, each of which has many fields, are encoded as
nested uses of sum and product. The exact way in which the nesting is done
is unimportant to our method. For example:

data Color = Red | Blue | Green
type Color◦ = con-Red of 1

+ (con-Blue of 1 + con-Green of 1)

data Tree a b = Leaf a | Node (Tree a b) b (Tree a b)

type Tree◦ a b = con-Leaf of a

+ con-Node of (Tree a b ∗ (b ∗ Tree a b)).
One may wonder about the efficiency of translating a user-defined data type
into a generic form before operating on it, especially if everything is encoded
with only binary sums and products. However, sufficiently vigorous inlining
means that the generic data representations never exist at run-time (see Sec-
tion 6.6). But, in fact, we might want to explore space-time trade-offs, by
getting much more compact code in exchange for some data translation. Our
design allows this trade-off to be made on a case-by-case basis.

Whether the encoding into sums and products is done in a linear or binary-
sub-division fashion may or may not affect efficiency, depending on how vig-
orous the inlining is.

6.3 Embedding-projection pairs

For each data type T , we also generate functions to convert between T and
T ◦. We saw the conversion functions for List in Section 3.3. The process is
entirely straightforward, driven by the encoding. For example:

from-Color :: Color → Color ◦
from-Color Red = Inl (Con con-Red Unit)

from-Color Blue = Inr (Inl (Con con-Blue Unit))

from-Color Green = Inr (Inr (Con con-Green Unit))

to-Color :: Color ◦ → Color
to-Color (Inl (Con con-Red Unit)) = Red

to-Color (Inr (Inl (Con con-Blue Unit))) = Blue

to-Color (Inr (Inr (Con con-Green Unit))) = Green.

For bimap we have to package the two conversion functions into a single value:

conv -List :: ∀a .EP (List a) (List◦ a)
conv -List = EP{to = to-List , from = from-List }
conv -Color :: EP Color Color ◦

conv -Color = EP{to = to-Color , from = from-Color }.
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6.4 Translating class declarations

For each generic method op ::Op a contained in a class declaration we generate
a bidirectional map

bimap-Op :: ∀a a◦ .EP a a◦ → EP (Op a) (Op a◦)

that allows us to convert between types and representation types (the defini-
tion of bimap-Op is given in Section 5).

Furthermore, we produce instance declarations

instance C 1

instance (C a,C b) ⇒ C (a + b)

instance (C a,C b) ⇒ C (a ∗ b)
instance (C a) ⇒ C (c of a)

whose bodies are filled with the generic methods from the original class dec-
laration (see Section 3.4). If an equation for a type pattern is missing, the
method of the corresponding instance is undefined. There is, however, one
important exception to this rule: if no equation is given for the type pattern
c of a as, for example, in the classes Eq and Binary , we define the generic
methods of the C (c of a) instance by:

op{c of a } = to (bimap-Op (con-EP c)) (op ::Op a)

where con-EP is given by the following pseudo-Haskell code (which defines a
family of functions):

con-EP c :: ∀a .EP a (c of a)

con-EP c = EP{to = λx → Con c x ,
from = λ(Con c x ) → x }.

Again, we employ the bidirectional map to convert between two isomorphic
types.

6.5 Translating instance declarations

An instance declaration for type T is extended by filling in implementations for
the methods. More specifically, if the method op is not specified and if it enjoys
a generic default definition, then the following equation is supplemented:

op = to (bimap-Op conv -T ) (op ::Op T ◦).

That’s it.

6.6 Inlining

It does not sound very efficient to translate a value from T ā to T ◦ ā and
then to operate on it, but we believe that a bit of judicious inlining can yield
more or less the code one would have written by hand. Let us consider, for
example, showBin at type List . The showBinList method will look something
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like this:

showBinList :: (Binary a) ⇒ List a → Bin
showBinList xs = showBin (from-List xs)

type List◦ a = (a ∗ List a) + 1

from-List :: List a → List◦ a.
The call to showBin is at type List◦ a, so the overloading can be resolved
statically. Assuming that the method bodies (given in Section 3.1) are inlined,
we get:

showBinList xs

= case from-List xs of

Inl z → 0 : case z of

(x :∗: y) → showBin x ++ showBin y

Inr z → 1 : case z of Unit → [ ].

But remember that from-List also has a simple, non-recursive definition:

from-List (Cons x xs) = Inl (x :∗: xs)
from-List Nil = Inr Unit .

If we inline this definition in showBinList and simplify using standard trans-
formations, we get

showBinList xs

= case xs of

Cons x y → 0 : showBin x ++ showBin y

Nil → 1 : [ ],

which is about as good as we can hope for.

7 Higher-order kinded types

Functional programmers love abstraction. In Haskell we can, for instance,
abstract over the List data type in

data Rose a = Branch a (List (Rose a))

to obtain the more general type:

data GRose f a = GBranch a (f (GRose f a)).

Here, the type variable “f ” ranges over type constructors, rather than types.
Formally, GRose has kind (� → �) → � → �. There are numerous examples of
such type definitions in [14,5]. Alas, it is impossible to define many instance
declarations for GRose in Haskell at all. In this section we describe the prob-
lem and a solution. This section is quite independent of the rest of the paper.
Though we became aware of the issue when working on generic programming,
we propose an extension to Haskell that is completely orthogonal to generic
programming.
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7.1 What’s the problem?

Consider first defining an instance for Binary (Rose a) by hand — we ignore
readBin here:

instance (Binary a) ⇒ Binary (Rose a) where

showBin (Branch x ts) = showBin x ++ showBin ts .

The first call to showBin on the right hand side requires that Binary a should
hold; the context, (Binary a), takes care of that. The second call is at type
List (Rose a). Assuming we have an instance elsewhere of the form

instance (Binary t) ⇒ Binary (List t)

the second call requires Binary (Rose a), and there is an instance declaration
for that too — it gives rise to a recursive call to showBin.

But matters are not so straightforward when we want to define an instance
Binary (GRose f a). We might try

instance (???) ⇒ Binary (GRose f a) where

showBin (GBranch x ts) = showBin x ++ showBin ts .

The context (???) must account for the calls to showBin on the right-hand
side. The first one is fine: it requires Binary a as before. But the latter is
bad news: it requires Binary (f (GRose f a)), and we certainly cannot write

instance (Binary a,Binary (f (GRose f a)))

⇒ Binary (GRose f a) where

showBin (GBranch x ts) = showBin x ++ showBin ts .

This is not legal Haskell and, even if it were, the typechecker would diverge.
Indeed, no ordinary Haskell context will do.

7.2 A solution

What we need is a way to simplify the predicate f (GRose f a). The trick is to
take the “constant” instance declaration that we assumed for Binary (List a)
above, and abstract over it:

instance (Binary a,∀b . (Binary b) ⇒ Binary (f b))

⇒ Binary (GRose f a) where

showBin (GBranch x ts) = showBin x ++ showBin ts .

Now, as well as (Binary a), the context also contains a polymorphic predicate.
This predicate can be used to reduce the predicate Binary (f (GRose f a)) to
just Binary (GRose f a), and we have an instance declaration for that.

Viewed in operational terms, the predicate (Binary a) in a context corre-
sponds to passing a dictionary for class Binary . A predicate ∀b .Binary b ⇒
Binary (f b) corresponds to passing a dictionary transformer to the function.
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7.3 Deriving instance declarations

Of course, since Binary is a derivable class by virtue of the generic default
definitions, we need not define showBin at all. We can simply write

instance (Binary a,∀b . (Binary b) ⇒ Binary (f b))

⇒ Binary (GRose f a)

and get just the same effect as before. In other words, the deriving mechanism
works happily for types of arbitrary kinds.

Here is a place where a programmer-written context for the instance
declaration is essential. We could not use the idea of Section 4.4 to write:

instance (. . .) ⇒ Binary (GRose f a).

The problem is that there is no “most general instance declaration”. To il-
lustrate the point consider the following instance declaration for the abstract
type Set :

instance (Binary a,Ord a) ⇒ Binary (Set a).

Note that we additionally require that a is an instance of Ord . Now, given the
instance declaration for GRose above, we cannot infer Binary (GRose Set Int)
since Set does not satisfy ∀b . (Binary b) ⇒ Binary (Set b). If we require such
an instance, we must generalize the GRose instance:

instance (Binary a,∀b . (Binary b,Ord b) ⇒ Binary (f b))

⇒ Binary (GRose f a).

By adding further class constraints to f ’s context, we can generalize the in-
stance declaration even more. Sadly, this implies that there is no “most gen-
eral” instance which deriving could infer. Note that this problem does not
crop up for first-order kinded types.

7.4 Formalising the extension

Here is the grammar for generalized instance declarations:

instance head ::= instance (ctx 1, . . . , ctx n) ⇒ C t
context ctx ::= ∀ā . (ctx 1, . . . , ctx n) ⇒ C t .

A context of the form ∀ā . (ctx 1, . . . , ctx n) ⇒ C t with n � 1 is called a
polymorphic predicate. Note that for n = 0 we have “ordinary” Haskell 98
predicates.

7.5 Implementing generalized instance declarations

How do we translate a method call op ::Op T? We must create a C -dictionary
for T if op is a method of class C . In the higher-order kinded situation, we
may need to create a dictionary transformer to pass to op. Fortunately, it
turns out that the now-standard machinery to construct the correct dictionary
to pass can easily be extended to construct dictionary transformers too.

24



Hinze and Peyton Jones

At a call site we have to solve the following problem: we have a set of
assumptions H and a single clause H , the dictionary (transformer) required,
and we want to know whether H is a logical consequence of H. Additionally
we return an expression for the dictionary (transformer) for H . We use the
following notation: H � H �→ d means that d is a dictionary (transformer)
expression that shows how H can be deduced from H.

The assumptions H embody:

✷ Any instance declarations in scope. For example:

Eq Int �→ dict-Eq-Int
∀a .Eq a ⇒ Eq (List a) �→ dict-Eq-List .

✷ Information about superclasses. For example:

∀a .Ord a ⇒ Eq a �→ dict-Eq-Ord .
This says that if we have Ord a we can deduce Eq a; in concrete terms we
witness this fact by the selector function dict-Eq-Ord which selects the Eq
dictionary from the Ord one.

✷ Constraints from the type signature. For example, if we are checking types
for the function

f :: H̄ ⇒ T
f x = . . .

then we put the assumptions H̄ in our assumption set, and try to deduce
all the dictionaries that are needed by calls in the body of f .

We use the following inference rules (A stands for Assumption, C for
Conjunction, MP for Modus Ponens):

(H �→ d) ∈ H

H � H �→ d (A)

H � H1 �→ d1 · · · H � Hn �→ dn
H � (H1, . . . ,Hn) �→ (d1, . . . , dn)

(C)

H � (∀ā . H̄ ⇒ Q) �→ f H � H̄ �θ �→ d
H � P �→ (f d)

(MP)

where � = [ ā := x̄ ] is a renaming substitution (the xi are fresh variables) and
θ = match(Q�,P) is the result of matching Q� against P (note that only the
variables in Q� are bound).

So far, these rules are entirely standard, see, for instance, [10]. To these
we add one new rule (DR stands for Deduction Rule).

H, (H̄ � �→ v) � Q� �→ d
H � (∀ā . H̄ ⇒ Q) �→ (λv → d)

(DR)
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where � = [ ā :=c̄ ] is a Skolem substitution, that is, the ci are Skolem constants.
Thus, to deduce the polymorphic predicate ∀ā . H̄ ⇒ Q we add the body H̄ to
the set of assumptions and try to deduce Q . The Skolem substitution ensures
that this derivation works for all ā.

The new rule is called Deduction Rule because it resembles the deduc-
tion theorem of first-order logic. It is also reminiscent of the usual typing
rule for λ-abstraction while Modus Ponens corresponds to the typing rule
for application. In fact, these two rules capture dictionary abstraction and
dictionary application.

Here is an example of a deduction using these rules. Later lines are deduced
from earlier ones using the specified rule (we abbreviate Binary by B and Ord
by 0).

H = {Ord Int �→ d -O-I ,

Binary Int �→ d -B -I ,

(∀a . (Binary a,Ord a)

⇒ Binary (Set a)) �→ d -B -S }
(4) H � 0 Int �→ d -O-I A

(3) H � B Int �→ d -B -I A

(2) H � (B Int , 0 Int) �→ (d -B -I , d -O-I ) C(3,4)

(1) H � (∀a . (B a, 0 a) ⇒ B (Set a)) �→ d -B -S A

(0) H � B (Set Int) �→ d -B -S (d -B -I , d -O-I ) MP(1,2)

Here is another example, this time of a higher-order case:

H = {Binary Int �→ d -B -I ,

(∀a . (Binary a) ⇒ Binary (List a)) �→ d -B -L,

(∀f a . (Binary a,∀b . (Binary b) ⇒ Binary (f b))

⇒ Binary (GRose f a)) �→ d -B -G }.
We abbreviate H, (Binary c �→ v) by H

′.

(9) H
′ � (∀b . (B b) ⇒ B (List b)) �→ d -B -L A

(8) H
′ � B c �→ v A

(7) H
′ � (B c,∀b . (B b) ⇒ B (List b))

�→ (v , d -B -L) C(8,9)

(6) H
′ � (∀f a . (. . .) ⇒ B (GRose f a)) �→ d -B -G A

(5) H
′ � B (GRose List c) �→ d -B -G (v , d -B -L) MP(6,7)

(4) H � (∀b . (B b) ⇒ B (GRose List b))

�→ (λv → d -B -G (v , d -B -L)) DR(5)

(3) H � B Int �→ d -B -I A

(2) H � (B Int , ∀b . (B b) ⇒ B (GRose List b))

�→ (d -B -I , λv → d -B -G (v , d -B -L)) C(3,4)

(1) H � (∀f a . (. . .) ⇒ B (GRose f a)) �→ d -B -G A

(0) H � B (GRose (GRose List) Int)

�→ d -B -G (d -B -I , λv → d -B -G (v , d -B -L)) MP(1,2)
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The new inference rule kicks in at line (4) and introduces a new assumption,
B c �→ v , that is used in line (8).

8 Related work

This paper improves on our earlier work [4] in several respects. First, generic
definitions now appear solely in class declarations as generic default methods.
In the previous design generic definitions and classes were two competing fea-
tures. We feel that the new proposal fits better with “the spirit of Haskell”.
Second, we have spelled out the implementation in considerable detail. In
particular, the notion of generic representation types and the conversion be-
tween types and representation types has been made precise. Third, we have
described a separate extension that allows the programmer to define instance
declarations for higher-order kinded types. The need for this extension was
noted in [4] but no solution was given.

Though there is a considerable amount of work on generic programming
[18,3,9] this is the first paper we are aware of — apart from PolyP [8] —
that aims at adding generic features to an existing functional language. The
PolyP extension offers a special construct (essentially, a type case) for defining
generic functions. The resulting definitions are similar to ours (modulo no-
tation) except that the generic programmer must additionally consider cases
for type composition and for type recursion. Furthermore, PolyP is restricted
to regular data types of kind � → �, whereas our proposal works for all types
of all kinds. This is quite a significant advantage. In particular, our proposal
deals gracefully with mutually-recursive data types and with data types with
many parameters, both of which make explicit recursion operators clumsy and
hard to use in practice.

The DrIFT tool [19] is a pre-processor for Haskell that allows the pro-
grammer to specify rules that explain how to implement a deriving clause for
classes other than the standard classes. The rules are specified as Haskell func-
tions, mapping a type representation to Haskell program text. DrIFT has the
significant advantage of technical simplicity. However, our system offers much
stronger static guarantees: if a generic default declaration passes the type
checker, then so will any instance declarations that use it. In DrIFT, a rule
may typecheck fine, while producing Haskell text that itself will not typecheck.
We also believe that our closer integration with the language design (achiev-
ing generic programming by enriching default-method declarations) make the
programmer’s life easier.

9 Conclusions and further work

This paper describes two separate extensions to Haskell. The first exten-
sion supports generic programming through a new form of default method
declaration. The second extension allows one to define instance declarations
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for higher-order kinded types through the notion of polymorphic predicates.
Though these extensions are orthogonal to each other, the second ensures that
one gets the most out of the first one (surely, one wants to derive instances
for higher-order kinded types).

We believe that our proposals fit nicely into the Haskell language:

✷ They fit with the “spirit of Haskell”. At first sight, generic programming
and Haskell type classes are in competition, but we use generic program-
ming to smoothly extend the power of type classes.

✷ We are able to explain what “deriving” means in a systematic way. The ad
hoc nature of deriving has long been considered a wart, and programmers
often want to add new “derivable” classes — that is, classes for which you
can say “deriving (C )”. Now they can.

✷ Generic definitions can be over-ridden at particular types by programmer-
supplied instance declarations. This sets our approach apart from other
generic programming schemes. Not only is this useful for primitive types,
but generic methods are often inapplicable for abstract types — consider
equality on sets represented as unordered lists, for example.

✷ There is no run-time passing or case-analysis of types, beyond Haskell’s
existing dictionary passing. Of course, dictionary-passing is a sort of type
passing, but it already exists in Haskell, and it would be extremely tiresome
to introduce another, overlapping mechanism.

Nor are there any new requirements to inspect the run-time represen-
tation of a value, a feature of some proposals. Our proposal is a 100%
compile-time transformation.

✷ Like Haskell’s type classes, static specialisation is possible to eliminate
run-time overhead (see Section 6.6).

✷ Our scheme deals successfully with constructor names and labels. We have
to admit, though, that this is one of the trickier corners of the design.

✷ We cunningly re-use Haskell’s type-class mechanism to instantiate the
generic methods for particular types, by expressing the generic methods
as generic instance declarations (Section 4.3). This approach means that
we do not need to explain or implement exactly how this code instanti-
ation takes place (e.g. how much is done at compile time). Instead we
just piggy-back on an existing piece of implementation technology. (This
is really a point about the implementation, not about the design.)

There seem to be two main shortcomings. Firstly, the details of implement-
ing the generic default methods (representation types, bidirectional mapping
functions, and so on) are undeniably subtle, which is often a bad sign. Sec-
ondly, the technology to deal with constructor and field labels does not fit in
as elegantly as we would wish.

We are currently implementing the proposal and we hope to make the new
features available in the next release of the Glasgow Haskell Compiler.
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There are several directions we plan to explore in the future:

✷ Currently, generic default declarations may be given only for type classes.
However, the theory [6] also deals with constructor classes whose type
parameter range over types of first-order kind. Consequently, we plan to
lift this restriction.

✷ In Haskell 98 instance heads must have the general form C (T ā) where
ā is a sequence of distinct variables. The Glasgow Haskell Compiler, how-
ever, allows for non-general instance heads such as C (List Char). We
are confident that the implementation scheme for generic methods can be
extended to deal with this extra complication.

✷ Multi-parameter type classes are on the wish list of many Haskell program-
mers. So it would be a shame if the generic extension failed to support
them. Now, multi-parameter classes correspond to generic definitions with
multiple type arguments, which are theoretically well understood. So we
are confident that we can also deal with this generalization.
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