

Available online at www.sciencedirect.com



Energy Procedia 1 (2009) 2301-2306



www.elsevier.com/locate/procedia

# GHGT-9

# Detection of CO<sub>2</sub> leakage by eddy covariance during the ZERT project's CO<sub>2</sub> release experiments

Jennifer L. Lewicki<sup>a</sup>\*, George E. Hilley<sup>b</sup>, Marc L. Fischer<sup>c</sup>, Lehua Pan<sup>a</sup>, Curtis M. Oldenburg<sup>a</sup>, Laura Dobeck<sup>d</sup>, Lee Spangler<sup>d</sup>

<sup>a</sup>Earth Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA <sup>b</sup>Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 USA <sup>c</sup>Environmental Energy Technology Division, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA <sup>d</sup>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA

#### Abstract

Carbon dioxide was released from a shallow horizontal well for ten days at 0.1 t d<sup>-1</sup> (Release 1) and for seven days at 0.3 t d<sup>-1</sup> (Release 2) during Summer 2007. Net CO<sub>2</sub> fluxes ( $F_c$ ) were continuously monitored by eddy covariance during the summers of 2006 and 2007. To improve leakage detection ability, we removed ecosystem fluxes correlated with changes in soil temperature and light intensity from  $F_c$ . The Release 2 leakage signal was enhanced in a time series of upper 95<sup>th</sup> percentile residual  $F_c$ , while the Release 1 signal fell within the variability of unmodeled processes.

© 2009 Elsevier Ltd. Open access under CC BY-NC-ND license.

Keywords: Eddy covariance; Carbon dioxide flux; Geologic carbon storage monitoring; Leakage

## 1. Introduction

Eddy covariance (EC) is a micrometeorological technique commonly used to measure the flux of CO<sub>2</sub> (and other trace gases and heat) across the interface between a plant canopy and the atmosphere [e.g., Baldocchi, 1]. Because EC offers the benefit of a CO<sub>2</sub> flux measurement that (1) is automated, (2) does not interfere with the ground surface, and (3) is averaged over both time and space, with the spatial scale significantly larger ( $m^2-km^2$ ) than that of many other ground-based methods, it has been proposed for use in monitoring programs at geologic carbon sequestration (GCS) sites [e.g., Miles et al., 2; Oldenburg et al., 3; Leuning et al., 4]. Importantly, however, the theory that underlies the EC method assumes that the surface the measurement is made over is horizontal and homogeneous and that atmospheric conditions at the time of the measurement are steady. Furthermore, the ability

<sup>\*</sup> Corresponding author. Tel.: +001-510-495-2818; fax: +001-510-486-5686.

E-mail address: jllewicki@lbl.gov.

of EC to detect potentially small CO<sub>2</sub> leakage signals within the large background variability of ecological fluxes is largely untested.

The Zero Emissions Research and Technology (ZERT) shallow release facility at Montana State University provides the opportunity to conduct controlled releases of  $CO_2$  from point and line sources, and test the ability of different  $CO_2$  measurement technologies to detect, locate, and quantify  $CO_2$  leakage within the near-surface environment [Lewicki et al., 5]. Two releases of  $CO_2$  were carried out at different rates from a shallow horizontal well in July and August 2007. The spatio-temporal evolution of the surface leakage flux signals was characterized by repeated accumulation chamber measurements [Lewicki et al., 5]. Lewicki et al. [6] monitored net  $CO_2$  fluxes using EC during the summers of 2006 and 2007. We present EC  $CO_2$  flux measurements and apply a filtering method that removes the background ecosystem  $CO_2$  fluxes correlated with variations in soil temperature and light intensity to enhance leakage detection ability. We show that EC is a promising technique for use in monitoring programs at GCS sites.

#### 2. ZERT CO<sub>2</sub> Release Facility and Experiments

The CO<sub>2</sub> release experiments were conducted at the ZERT shallow release facility on the property of Montana State University in Bozeman, MT. The study site was a ~0.12 km<sup>2</sup> nearly flat agricultural field, with vegetation composed primarily of prairie grasses, alfalfa, and Canadian thistle. The field was mowed/hayed on 11 July 2006 and 22 June 2007. A ~30 cm-thick clay topsoil here overlies a ~20 cm-thick clayey silt layer, which overlies an alluvial sandy cobble. A N45E-trending horizontal well was installed in the field with a 73-m long central slotted (perforated) section and 15- and 12-m long unslotted sections on its sloping NE and SW ends, respectively. The slotted section was located at ~1.3-2.5 m depth, sub-water table, within the alluvial sandy cobble and was divided into six ~12-m long zones separated by 0.4-m wide inflatable packers. From 9-18 July 2007, 0.1 tonnes of CO<sub>2</sub> per day (t d<sup>-1</sup>) were released from the well (hereafter referred to as Release 1). From 3-10 August 2007, 0.3 t CO<sub>2</sub> d<sup>-1</sup> were released (hereafter referred to as Release 2). The lower rate was selected based on numerical simulations to provide a challenging detection problem while still ensuring that injected CO<sub>2</sub> would reach the ground surface and the higher rate was selected to obtain a larger surface flux for demonstration purposes.

Lewicki et al. [5] measured soil CO<sub>2</sub> fluxes using the accumulation chamber method on a grid repeatedly on a daily basis, which characterized the spatio-temporal evolution of surface leakage during Releases 1 and 2. Surface CO<sub>2</sub> leakage was typically focused within ~5 m of the well trace at 5-6 points alligned along the surface well trace (Figure 1). The maximum soil CO<sub>2</sub> flux measured during Release 1 was high (~1600 g m<sup>-2</sup> d<sup>-1</sup>), relative to background ecosystem respiration fluxes. However, the total CO<sub>2</sub> release rate of 0.1 t d<sup>-1</sup> was of similar magnitude as background ecosystem respiration flux integrated over the relatively small grid area (7.7 x 10<sup>-3</sup> m<sup>2</sup>) [Lewicki et al., 5]. The maximum soil CO<sub>2</sub> flux measured during Release 2 was ~6000 g m<sup>-2</sup> d<sup>-1</sup>, while the total CO<sub>2</sub> release rate of 0.3 t d<sup>-1</sup> was ~three times that of background ecosystem respiration flux integrated over the replication flux integrated over the grid area at that time.

#### 3. Methods

An EC station was deployed near the center of the field from 8 June to 4 September 2006 and then 27 m northwest of the release well from 28 May to 4 September 2007 (Figure 1a) [Lewicki et al., 6]. The EC station location took advantage of east-southeasterly prevailing winds, which frequently situated the EC station downwind of the horizontal well. The station was composed of fast- and slow-response subsystems. The fast-response subsystem included two sensors used to measure the variables necessary to calculate turbulent fluxes of CO<sub>2</sub>, H<sub>2</sub>O, heat, and momentum. A Gill-Solent WindMaster Pro sonic three-dimensional anemometer/thermometer (Gill Instruments, Ltd) measured wind speeds in three directions and sonic temperature at 10 Hz. A LI-COR 7500 open-path CO<sub>2</sub>-H<sub>2</sub>O infrared gas analyzer (LI-COR, Inc) measured CO<sub>2</sub> and water vapor densities at 10 Hz. Both sensors were mounted atop a tripod tower at 3.2 m height from 8 June to 4 September 2006, 3.0 m height from 28 May to 18 July 2007, and 2.8 m height from 19 July to 4 September 2007. The slow-response subsystem included sensors associated with a second tripod tower that measured auxiliary meteorological and soil physical parameters. In particular, photosynthetically active radiation (*PAR*) was measured with a LI-COR LI-190SA quantum sensor and soil temperature profiles (10, 20, and 30 cm depth) were measured at two locations with thermocouples.

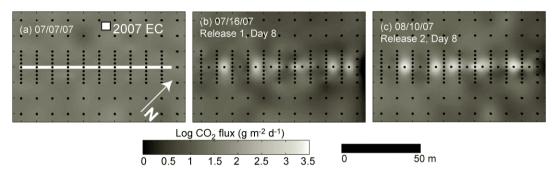



Figure 1. Image maps of log soil CO<sub>2</sub> flux, measured using the accumulation chamber method (a) prior to Release 1 on 07/07/07, (b) on Day 8 of Release 1, and (c) on Day 8 of Release 2. Black dots show measurement locations. White line and square on (a) show approximate locations of surface trace of horizontal well and 2007 EC station, respectively.

Net CO<sub>2</sub> flux ( $F_c$ ) was calculated as the temporal covariance of CO<sub>2</sub> density (c) and vertical wind velocity (w):

$$F_c = \overline{w'c'},\tag{1}$$

where the overbar denotes time averaging and primes denote fluctuations in w and c relative to their mean values. Fluxes were calculated for 30-minute periods. For each half-hour of data, the mean lateral ( $\overline{v}$ ) and then the mean vertical ( $\overline{w}$ ) wind velocities were rotated to zero [Kaimal and Finnigan, 7]. The Webb correction for the effects of fluctuation in heat and water vapor on the density of air [Webb et al., 8] was applied. Raw signals from the infrared gas analyzer and sonic anemometer were evaluated for spikes and all points more than ten standard deviations away from a 60 s moving average were removed from the data. Turbulent fluxes measured during the nighttime under low turbulent conditions can be systematically underestimated [e.g., Aubinet et al., 9; Massman and Lee, 10]. We therefore assessed the relationship between nighttime  $F_c$  and friction velocity (u) and discarded nighttime  $F_c$  data corresponding to  $u \le 0.15$  m s<sup>-1</sup>.  $F_c$  data were tested for stationarity according to Foken and Wichura [11] and nonstationary data were discarded. The reader is referred to Lewicki et al. [6] for more details on EC measurements.

# 4. Results

The mean and standard deviation of the 2006 half-hour  $F_c$  time series were -12.4 and 28.1 g m<sup>-2</sup> d<sup>-1</sup>, respectively, whereas the mean and standard deviation of the 2007 half-hour  $F_c$  time series were -12.0 and 28.1 g m<sup>-2</sup> d<sup>-1</sup>, respectively [Lewicki et al., 6]. Figure 2 shows the average daily nighttime and daytime  $F_c$  for the summers of 2006 and 2007. Average nighttime  $F_c$  were always positive, while average daytime  $F_c$  were typically negative, with the exception of the time periods immediately following mowing of the field. The field was a net sink for CO<sub>2</sub> prior to mowing in 2006 and 2007. The field became a net source for CO<sub>2</sub> when plant leaf area and photosynthetic uptake were decreased during mowing. Daytime CO<sub>2</sub> uptake then gradually increased through late July/early August, thereafter remaining relatively constant for the remainder of the 2006 and 2007 observation periods. CO<sub>2</sub> leakage during Release 1 was not possible to detect within the 2007  $F_c$  time series (Figure 2b). However, average daytime release (Figure 2b).

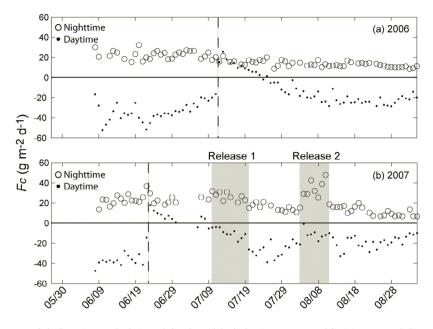



Figure 2. Average nighttime (open circles) and daytime (black dots)  $F_c$  measured in (a) 2006 and (b) 2007. Vertical dashed lines and gray zones indicate timing of mowing and CO<sub>2</sub> releases, respectively.

Because ecosystem fluxes are highly variable, they can mask CO<sub>2</sub> leakage signals similar to those studied here. Estimation and removal of the contribution of net ecosystem exchange (*NEE*) from the total measured flux,  $F_c$  may therefore improve our ability to detect leakage. *NEE* can be separated into photosynthetic uptake by the plant canopy and ecosystem respiration from plants and soil ( $R_{eco}$ ). Although these constituent fluxes are influenced by many factors, intensity of light and soil temperature ( $T_{soil}$ ) are strong drivers of short time-scale variations in plant photosynthetic uptake and  $R_{eco}$ , respectively. Consequently, empirically derived relationships between  $F_c$  and *PAR* and  $T_{soil}$  have been used to decompose  $F_c$  into  $R_{eco}$  and photosynthetic flux components and gap-fill  $F_c$  time series [e.g., Aubinet et al., 9; Falge et al., 12; Fischer et al., 13]. Here, the ecological  $F_c$  signals correlated with changes in *PAR* and  $T_{soil}$  were removed from the 2006 and 2007  $F_c$  time series [Lewicki et al., 6]. The following relationship was used to describe *NEE* in terms of photosynthetic uptake and respiratory release of CO<sub>2</sub>:

$$NEE = -\left(\frac{F_{\max}\alpha PAR}{\alpha PAR + F_{\max}}\right) + b_0 \exp(bT_{soil}),$$
(2)

where  $F_{max}$  is the maximum CO<sub>2</sub> flux at infinite light,  $\alpha$  is the apparent quantum yield, and b and  $b_0$  are empirical coefficients. The first and second terms on the right side of equation (2) describe the photosynthetic uptake and  $R_{eco}$  components of *NEE*, respectively. Using nonlinear optimization methods, equation (2) was fit to half-hour  $F_c$ ,  $T_{soil}$  (20 cm depth), and PAR data for three-day moving (half-hour time step) windows through the 2006 and 2007 measurement periods to estimate  $\alpha$ ,  $F_{max}$ , b and  $b_0$  parameters for the center point in the moving window. Predicted values of *NEE* were then calculated for the center point based on measured  $F_c$ ,  $T_{soil}$ , and PAR values and best-fit parameters. At least 20 data points were required within the three-day moving window for estimation of  $\alpha$ ,  $F_{max}$ , b and  $b_0$ . Otherwise, a gap occurred for predicted *NEE*. A simple "ecological flux filter" was then applied by subtracting predicted *NEE* from measured  $F_c$  to yield residual  $F_c$  ( $F_{cr}$ ).  $F_{cr}$  values represent fluxes that may result from background instrument noise, unmodeled natural processes, and CO<sub>2</sub> leakage. The mean and standard

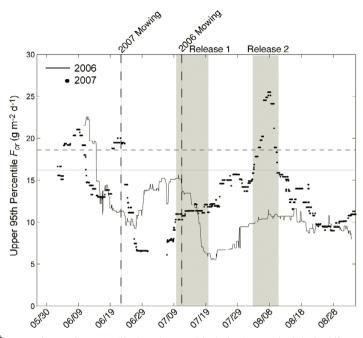



Figure 3. Upper 95<sup>th</sup> percentile  $F_{cr}$  for 2006 (line) and 2007 (black dots). Vertical dashed lines and gray zones indicate timing of mowing and CO<sub>2</sub> releases, respectively. Horizontal solid and dashed lines are 95<sup>th</sup> percentile residual flux for an exhaustively sampled stationary Gaussian distributions with mean and standard deviation = 0 and 8.1 g m<sup>-2</sup> d<sup>-1</sup> (2006) and 0 and 9.3 g m<sup>-2</sup> d<sup>-1</sup> (2007), respectively.

deviation of the 2006  $F_{cr}$  time series were 0.0 and 8.1 g m<sup>-2</sup> d<sup>-1</sup>, respectively, and the mean and standard deviation of the 2007  $F_{cr}$  time series were -0.1 and 9.3 g m<sup>-2</sup> d<sup>-1</sup>, respectively [Lewicki et al., 6].

The distribution of CO<sub>2</sub> leakage fluxes should have a positive mean. Therefore, to distinguish values that could be representative of leakage, we calculated the upper 95<sup>th</sup> percentile  $F_{cr}$  for the center point of a seven-day moving window (half-hour time step) through the 2006 and 2007  $F_{cr}$  time series (Figure 3). For a stationary Gaussian distribution, the upper 95<sup>th</sup> percentile  $F_{cr}$  is two standard deviations above the mean. Assuming stationarity and that the mean is zero for 2006 and 2007  $F_{cr}$  distributions, the upper 95<sup>th</sup> percentile  $F_{cr}$  for these distributions = 16.2 and 18.6 g m<sup>-2</sup> d<sup>-1</sup>, respectively (dashed horizontal lines on Figure 3). Upper 95<sup>th</sup> percentile  $F_{cr}$  measured in 2006 and 2007 typically lay close to or below these thresholds, including those near the timing of mowing of the field. Exceptions to this pattern included several high-frequency increases in upper 95<sup>th</sup> percentile  $F_{cr}$  near the beginning of the time series, and the relatively high values sustained over multiple days during Release 2. Upper 95<sup>th</sup> percentile  $F_{cr}$  observed during Release 1 fell within the variability of background values.

#### 5. Discussion and Conclusions

We tested the ability of EC to detect surface  $CO_2$  leakage associated with two shallow subsurface  $CO_2$  releases within a background ecosystem. The two release experiments provided a challenging leakage detection problem for EC due to the relatively small spatial extent of the leakage signals (Figure 1). Also, the surface  $CO_2$  leakage rate estimated based on accumulation chamber measurements during Release 1 was comparable to the background ecosystem respiration flux integrated over the relatively small measurement grid area [Lewicki et al., 5]. Measurements of  $F_c$  in 2006 and 2007 prior to and following Releases 1 and 2 yielded a background summertime time series with which to compare measurements made during the releases. Average daytime and nighttime  $F_c$ measured during Release 1 were difficult to discern from background values, whereas those measured during Release 2 showed a positive shift upwards, relative to values measured during the weeks prior to and following the release (Figure 2). Application of a simple filter that removed photosynthetic uptake and ecosystem respiration fluxes correlated with changes in *PAR* and  $T_{soil}$ , respectively, reduced the variability and negative bias observed in 2006 and 2007 half-hour  $F_c$  time series [Lewicki et al., 6]. Also, the leakage signal associated with Release 2 was enhanced and clearly detectable in the upper 95<sup>th</sup> percentile  $F_{cr}$  time series, whereas the Release 1 leakage signal remained undetectable. Future filtering methods should remove variations in  $F_c$  associated with currently unaccounted for natural processes (e.g., fluctuations associated with changes in vapor pressure deficit and soil moisture) and instrument noise to further improve EC detection of very small leakage signals.

Once a leakage signal is detected, EC has the potential to locate and quantify the leak. For example, Lewicki et al. [6] used a radial plot of  $F_{cr}$  as a function of mean horizontal wind direction to show that anomalously high  $F_{cr}$  values were typically measured during Release 2 when the EC station was downwind of the horizontal well. If the location of the leakage source were unknown, such a plot, in concert with footprint modeling of the EC flux source area, could assist in location of the leakage signal. Furthermore, Lewicki et al. [6] inverted  $F_{cr}$  measurements and corresponding footprint functions using a least-squares approach to model the spatial distribution of surface CO<sub>2</sub> fluxes during Release 2. Their inversion results roughly located the CO<sub>2</sub> leak, whereas the limited number of  $F_{cr}$  measurements available for use in the inversion did not provide model resolution sufficient to quantify the leakage rate [Lewicki et al., 6]. Simultaneous and repeated measurement of a given leakage signal by multiple EC stations with different flux source areas could improve leakage quantification. Given careful site-specific experiment design, EC is a promising tool for use in GCS monitoring programs.

Acknowledgements. We thank K. Gullickson for assistance in the field. This work was funded by the ZERT Project, Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, NETL, of the U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231.

## References

1. D.D. Baldocchi, (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present, and future, *Global Change Biol*. 9 479.

2. N. Miles. K. Davis, and J. Wyngaard, (2005) Detecting leaks from CO<sub>2</sub> reservoirs using micrometeorological methods; In: *Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results From the CO<sub>2</sub> Capture Project* [S. M. Benson] 1031–1044, Elsevier Science, London, U.K.

3. C.M. Oldenburg, J.L. Lewicki, and R.P. Hepple (2003) Near-surface monitoring strategies for carbon dioxide storage verification, *Lawrence Berkeley National Laboratory Report* LBNL-54089 (2003).

4. R. Leuning D. Etheridge, and B. Dunse, Int. J. Greenhouse Gas Control 2 (2008) 401.

5. J.L. Lewicki, C.M. Oldenburg, L. Dobeck, and L. Spangler (2007) Surface CO<sub>2</sub> leakage during two shallow subsurface CO<sub>2</sub> releases, *Geophys. Res. Lett.* 34 L24402, doi:101029/2007GL032047.

6. J.L. Lewicki, G.E. Hilley, M.L. Fischer, L. Pan, C.M. Oldenburg, L. Dobeck, and L. Spangler (2008) Eddy covariance observations of surface leakage during shallow subsurface CO<sub>2</sub> releases, *J. Geophys. Res.* in review.

7. J.C. Kaimal and J.J. Finnigan, (1994) *Atmospheric Boundary Layer Flows: Their Structure and Measurement*; Oxford University Press, Oxford, U.K.

8. E.K. Webb, G.I. Pearman, and R. Leuning (1980) Correction of flux measurements for density effects due to heat and water vapour transfer, *Quart. J. Royal Meteorol. Soc.*, 106, 85-100.

9. M. Aubinet, A. Grelle, A. Ibrom et al. (2000) Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology, *Advan. Ecol. Res.*, 30, 113-175.

10. W.J. Massman and X. Lee (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges, *Agric. For. Meteorol.*, 113, 121–144.

11. T. Foken and B. Wichura Foken (1996) Tools for quality assessment of surface-based flux measurements, *Agric. For. Meteorol.*, 78, 83–105.

12. E. Falge, D.D. Baldocchi, R.J. Olson, et al. (2001) Gap filling strategies for defensible annual sums of net ecosystems exchange, *Agric. For. Meteorol.*, 107, 43–69.

13. M.L. Fischer, D.P. Billesbach, J.A. Berry, R.J. Riley, and M.S. Torn (2007) Spatiotemporal variations in growing season exchanges of  $CO_2$ ,  $H_2O$ , and sensible heat in agricultural fields of the southern Great Plains, *Earth Interact.*, 11, 1–21.