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Abstract 

Carbon dioxide was released from a shallow horizontal well for ten days at 0.1 t d
-1

 (Release 1) and for seven days 
at 0.3 t d

-1
 (Release 2) during Summer 2007. Net CO2 fluxes (Fc) were continuously monitored by eddy covariance 

during the summers of 2006 and 2007. To improve leakage detection ability, we removed ecosystem fluxes 
correlated with changes in soil temperature and light intensity from Fc. The Release 2 leakage signal was enhanced 
in a time series of upper 95

th
 percentile residual Fc, while the Release 1 signal fell within the variability of 

unmodeled processes. 
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1. Introduction 

Eddy covariance (EC) is a micrometeorological technique commonly used to measure the flux of CO2 (and other 

trace gases and heat) across the interface between a plant canopy and the atmosphere [e.g., Baldocchi, 1].  Because 

EC offers the benefit of a CO2 flux measurement that (1) is automated, (2) does not interfere with the ground 

surface, and (3) is averaged over both time and space, with the spatial scale significantly larger (m
2
-km

2
) than that of 

many other ground-based methods, it has been proposed for use in monitoring programs at geologic carbon 

sequestration (GCS) sites [e.g., Miles et al., 2; Oldenburg et al., 3; Leuning et al., 4]. Importantly, however, the 

theory that underlies the EC method assumes that the surface the measurement is made over is horizontal and 

homogeneous and that atmospheric conditions at the time of the measurement are steady.  Furthermore, the ability 
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of EC to detect potentially small CO2 leakage signals within the large background variability of ecological fluxes is 

largely untested.   

The Zero Emissions Research and Technology (ZERT) shallow release facility at Montana State University 

provides the opportunity to conduct controlled releases of CO2 from point and line sources, and test the ability of 

different CO2 measurement technologies to detect, locate, and quantify CO2 leakage within the near-surface 

environment [Lewicki et al., 5].  Two releases of CO2 were carried out at different rates from a shallow horizontal 

well in July and August 2007.  The spatio-temporal evolution of the surface leakage flux signals was characterized 

by repeated accumulation chamber measurements [Lewicki et al., 5]. Lewicki et al. [6] monitored net CO2 fluxes 

using EC during the summers of 2006 and 2007.  We present EC CO2 flux measurements and apply a filtering 

method that removes the background ecosystem CO2 fluxes correlated with variations in soil temperature and light 

intensity to enhance leakage detection ability.  We show that EC is a promising technique for use in monitoring 

programs at GCS sites.   

 

2. ZERT CO2 Release Facility and Experiments 

 The CO2 release experiments were conducted at the ZERT shallow release facility on the property of Montana 

State University in Bozeman, MT.  The study site was a ~0.12 km
2
 nearly flat agricultural field, with vegetation 

composed primarily of prairie grasses, alfalfa, and Canadian thistle. The field was mowed/hayed on 11 July 2006 

and 22 June 2007.  A ~30 cm-thick clay topsoil here overlies a ~20 cm-thick clayey silt layer, which overlies an 

alluvial sandy cobble.  A N45E-trending horizontal well was installed in the field with a 73-m long central slotted 

(perforated) section and 15- and 12-m long unslotted sections on its sloping NE and SW ends, respectively.  The 

slotted section was located at ~1.3-2.5 m depth, sub-water table, within the alluvial sandy cobble and was divided 

into six ~12-m long zones separated by 0.4-m wide inflatable packers. From 9-18 July 2007, 0.1 tonnes of CO2 per 

day (t d
-1

) were released from the well (hereafter referred to as Release 1). From 3-10 August 2007, 0.3 t CO2 d
-1

 

were released (hereafter referred to as Release 2). The lower rate was selected based on numerical simulations to 

provide a challenging detection problem while still ensuring that injected CO2 would reach the ground surface and 

the higher rate was selected to obtain a larger surface flux for demonstration purposes.   

Lewicki et al. [5] measured soil CO2 fluxes using the accumulation chamber method on a grid repeatedly on a 

daily basis, which characterized the spatio-temporal evolution of surface leakage during Releases 1 and 2. Surface 

CO2 leakage was typically focused within ~5 m of the well trace at 5-6 points alligned along the surface well trace 

(Figure 1). The maximum soil CO2 flux measured during Release 1 was high (~1600 g m
-2 

d
-1

), relative to 

background ecosystem respiration fluxes.  However, the total CO2 release rate of 0.1 t d
-1

 was of similar magnitude 

as background ecosystem respiration flux integrated over the relatively small grid area (7.7 x 10
-3

 m
2
)  [Lewicki et 

al., 5].  The maximum soil CO2 flux measured during Release 2 was ~6000 g m
-2 

d
-1

, while the total CO2 release rate 

of 0.3 t d
-1

 was ~three times that of background ecosystem respiration flux integrated over the grid area at that time. 

3. Methods 

An EC station was deployed near the center of the field from 8 June to 4 September 2006 and then 27 m northwest 

of the release well from 28 May to 4 September 2007 (Figure 1a) [Lewicki et al., 6].  The EC station location took 

advantage of east-southeasterly prevailing winds, which frequently situated the EC station downwind of the 

horizontal well.  The station was composed of fast- and slow-response subsystems.  The fast-response subsystem 

included two sensors used to measure the variables necessary to calculate turbulent fluxes of CO2, H2O, heat, and 

momentum.  A Gill-Solent WindMaster Pro sonic three-dimensional anemometer/thermometer (Gill Instruments, 

Ltd) measured wind speeds in three directions and sonic temperature at 10 Hz.  A LI-COR 7500 open-path CO2-

H2O infrared gas analyzer (LI-COR, Inc) measured CO2 and water vapor densities at 10 Hz.  Both sensors were 

mounted atop a tripod tower at 3.2 m height from 8 June to 4 September 2006, 3.0 m height from 28 May to 18 July 

2007, and 2.8 m height from 19 July to 4 September 2007.  The slow-response subsystem included sensors 

associated with a second tripod tower that measured auxiliary meteorological and soil physical parameters. In 

particular, photosynthetically active radiation (PAR) was measured with a LI-COR LI-190SA quantum sensor and 

soil temperature profiles (10, 20, and 30 cm depth) were measured at two locations with thermocouples.  
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Figure 1.  Image maps of log soil CO2 flux, measured using the accumulation chamber method (a) prior to Release 1 

on 07/07/07, (b) on Day 8 of Release 1, and (c) on Day 8 of Release 2.  Black dots show measurement locations.  

White line and square on (a) show approximate locations of surface trace of horizontal well and 2007 EC station, 

respectively. 

 

Net CO2 flux (Fc) was calculated as the temporal covariance of CO2 density (c) and vertical wind velocity (w): 

 

Fc =  w  c ,         (1) 

 

where the overbar denotes time averaging and primes denote fluctuations in w and c relative to their mean values.  

Fluxes were calculated for 30-minute periods. For each half-hour of data, the mean lateral ( v ) and then the mean 

vertical (w ) wind velocities were rotated to zero [Kaimal and Finnigan, 7]. The Webb correction for the effects of 

fluctuation in heat and water vapor on the density of air [Webb et al., 8] was applied.  Raw signals from the infrared 

gas analyzer and sonic anemometer were evaluated for spikes and all points more than ten standard deviations away 

from a 60 s moving average were removed from the data. Turbulent fluxes measured during the nighttime under low 

turbulent conditions can be systematically underestimated [e.g., Aubinet et al., 9; Massman and Lee, 10].  We 

therefore assessed the relationship between nighttime Fc and friction velocity (u*) and discarded nighttime Fc data 

corresponding to u* 0.15 m s
-1

. Fc data were tested for stationarity according to Foken and Wichura [11] and non-

stationary data were discarded.  The reader is referred to Lewicki et al. [6] for more details on EC measurements. 

 

4. Results 

The mean and standard deviation of the 2006 half-hour Fc time series were -12.4 and 28.1 g m
-2

 d
-1

, respectively, 

whereas the mean and standard deviation of the 2007 half-hour Fc time series were -12.0 and 28.1 g m
-2

 d
-1

, 

respectively [Lewicki et al., 6]. Figure 2 shows the average daily nighttime and daytime Fc for the summers of 2006 

and 2007.  Average nighttime Fc were always positive, while average daytime Fc were typically negative, with the 

exception of the time periods immediately following mowing of the field. The field was a net sink for CO2 prior to 

mowing in 2006 and 2007.  The field became a net source for CO2 when plant leaf area and photosynthetic uptake 

were decreased during mowing.  Daytime CO2 uptake then gradually increased through late July/early August, 

thereafter remaining relatively constant for the remainder of the 2006 and 2007 observation periods.  CO2 leakage 

during Release 1 was not possible to detect within the 2007 Fc time series (Figure 2b). However, average daytime 

and nighttime Fc measured during Release 2 shifted upwards, relative to the weeks prior to and following the release 

(Figure 2b).   
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Figure 2.  Average nighttime (open circles) and daytime (black dots) Fc measured in (a) 2006 and (b) 2007.  Vertical 

dashed lines and gray zones indicate timing of mowing and CO2 releases, respectively.   

 

Because ecosystem fluxes are highly variable, they can mask CO2 leakage signals similar to those studied here. 

Estimation and removal of the contribution of net ecosystem exchange (NEE) from the total measured flux, Fc may 

therefore improve our ability to detect leakage.  NEE can be separated into photosynthetic uptake by the plant 

canopy and ecosystem respiration from plants and soil (Reco).  Although these constituent fluxes are influenced by 

many factors, intensity of light and soil temperature (Tsoil) are strong drivers of short time-scale variations in plant 

photosynthetic uptake and Reco, respectively.  Consequently, empirically derived relationships between Fc and PAR 

and Tsoil have been used to decompose Fc into Reco and photosynthetic flux components and gap-fill Fc time series 

[e.g., Aubinet et al., 9; Falge et al., 12; Fischer et al., 13].  Here, the ecological Fc signals correlated with changes in 

PAR and Tsoil were removed from the 2006 and 2007 Fc time series [Lewicki et al., 6].  The following relationship 

was used to describe NEE in terms of photosynthetic uptake and respiratory release of CO2: 

 

 NEE =
Fmax PAR

PAR + Fmax

 

 
 

 

 
 + b0 exp(bTsoil ),      (2) 

 

where Fmax is the maximum CO2 flux at infinite light,  is the apparent quantum yield, and b and b0 are empirical 

coefficients. The first and second terms on the right side of equation (2) describe the photosynthetic uptake and Reco 

components of NEE, respectively.  Using nonlinear optimization methods, equation (2) was fit to half-hour Fc, Tsoil 

(20 cm depth), and PAR data for three-day moving (half-hour time step) windows through the 2006 and 2007 

measurement periods to estimate , Fmax, b and b0 parameters for the center point in the moving window.  Predicted 

values of NEE were then calculated for the center point based on measured Fc, Tsoil, and PAR values and best-fit 

parameters.  At least 20 data points were required within the three-day moving window for estimation of , Fmax, b 

and b0.  Otherwise, a gap occurred for predicted NEE.  A simple “ecological flux filter” was then applied by 

subtracting predicted NEE from measured Fc to yield residual Fc (Fcr).  Fcr values represent fluxes that may result 

from background instrument noise, unmodeled natural processes, and CO2 leakage. The mean and standard  
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Figure 3.  Upper 95
th

 percentile Fcr for 2006 (line) and 2007 (black dots).  Vertical dashed lines and gray zones 

indicate timing of mowing and CO2 releases, respectively.  Horizontal solid and dashed lines are 95
th

 percentile 

residual flux for an exhaustively sampled stationary Gaussian distributions with mean and standard deviation = 0 

and 8.1 g m
-2

 d
-1

 (2006) and 0 and 9.3 g m
-2

 d
-1

 (2007), respectively.   

 

deviation of the 2006 Fcr time series were 0.0 and 8.1 g m
-2

 d
-1

, respectively, and the mean and standard deviation of 

the 2007 Fcr time series were -0.1 and 9.3 g m
-2

 d
-1

, respectively [Lewicki et al., 6]. 

The distribution of CO2 leakage fluxes should have a positive mean.  Therefore, to distinguish values that could 

be representative of leakage, we calculated the upper 95
th

 percentile Fcr for the center point of a seven-day moving 

window (half-hour time step) through the 2006 and 2007 Fcr time series (Figure 3). For a stationary Gaussian 

distribution, the upper 95
th

 percentile Fcr is two standard deviations above the mean.  Assuming stationarity and that 

the mean is zero for 2006 and 2007 Fcr distributions, the upper 95
th

 percentile Fcr for these distributions = 16.2 and 

18.6 g m
-2

 d
-1

, respectively (dashed horizontal lines on Figure 3). Upper 95
th

 percentile Fcr measured in 2006 and 

2007 typically lay close to or below these thresholds, including those near the timing of mowing of the field.  

Exceptions to this pattern included several high-frequency increases in upper 95
th

 percentile Fcr near the beginning 

of the time series, and the relatively high values sustained over multiple days during Release 2. Upper 95
th

 percentile 

Fcr observed during Release 1 fell within the variability of background values. 

5. Discussion and Conclusions 

We tested the ability of EC to detect surface CO2 leakage associated with two shallow subsurface CO2 releases 

within a background ecosystem. The two release experiments provided a challenging leakage detection problem for 

EC due to the relatively small spatial extent of the leakage signals (Figure 1).  Also, the surface CO2 leakage rate 

estimated based on accumulation chamber measurements during Release 1 was comparable to the background 

ecosystem respiration flux integrated over the relatively small measurement grid area [Lewicki et al., 5]. 

Measurements of Fc in 2006 and 2007 prior to and following Releases 1 and 2 yielded a background summertime 

time series with which to compare measurements made during the releases.  Average daytime and nighttime Fc 

measured during Release 1 were difficult to discern from background values, whereas those measured during 

Release 2 showed a positive shift upwards, relative to values measured during the weeks prior to and following the 

J.L. Lewicki et al. / Energy Procedia 1 (2009) 2301–2306 2305



6 Author name / Energy Procedia 00 (2008) 000–000 

release (Figure 2).  Application of a simple filter that removed photosynthetic uptake and ecosystem respiration 

fluxes correlated with changes in PAR and Tsoil, respectively, reduced the variability and negative bias observed in 

2006 and 2007 half-hour Fc time series [Lewicki et al., 6].  Also, the leakage signal associated with Release 2 was 

enhanced and clearly detectable in the upper 95
th

 percentile Fcr time series, whereas the Release 1 leakage signal 

remained undetectable. Future filtering methods should remove variations in Fc associated with currently 

unaccounted for natural processes (e.g., fluctuations associated with changes in vapor pressure deficit and soil 

moisture) and instrument noise to further improve EC detection of very small leakage signals.  

Once a leakage signal is detected, EC has the potential to locate and quantify the leak.  For example, Lewicki et 

al. [6] used a radial plot of Fcr as a function of mean horizontal wind direction to show that anomalously high Fcr 

values were typically measured during Release 2 when the EC station was downwind of the horizontal well.  If the 

location of the leakage source were unknown, such a plot, in concert with footprint modeling of the EC flux source 

area, could assist in location of the leakage signal. Furthermore, Lewicki et al. [6] inverted Fcr measurements and 

corresponding footprint functions using a least-squares approach to model the spatial distribution of surface CO2 

fluxes during Release 2.  Their inversion results roughly located the CO2 leak, whereas the limited number of Fcr 

measurements available for use in the inversion did not provide model resolution sufficient to quantify the leakage 

rate [Lewicki et al., 6]. Simultaneous and repeated measurement of a given leakage signal by multiple EC stations 

with different flux source areas could improve leakage quantification.   Given careful site-specific experiment 

design, EC is a promising tool for use in GCS monitoring programs.   
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