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A b s t r a c t - - I n  this paper, two boundary element methods, a collocation method and a weighted 
method, are employed to solve a one-dimensional inverse heat conduction problem (IHCP). Inverse 
heat conduction problems are well known for being ill-posed. When numerical methods are directly 
applied on an IHCP, ill-conditioned linear systems will be involved. We show that the condition 
numbers for these systems increase as e n where n is the number of the elements. We use a couple 
of Tikhonov's regularization methods to stabilize the matrix which is generated by the weighted 
method. An error bound for each method is analyzed. Finally, both methods are implemented and 
the result for the collocation method with the truncated singular value decomposition method is also 
shown in this article. (~ 1999 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - I n v e r s e  heat conduction, Boundary element methods, Tikhonov's regularization, 
Condition numbers. 

1. I N T R O D U C T I O N  

Heat  conduction phenomena appear  in many  situations in our lives. In fact, heat  conduction 
phenomena do not exist only in a dead world. Engineers are applying the knowledge of heat 

conduction in many  fields such as crystal growing [1], material structure control [2], and integrated 
circuit packaging [3]. The  heat conduction behavior of a material  is considered linear if its thermal  

conductivity and specific heat are not temperature  dependent, and homogeneous if its thermal  
conductivity, specific heat, and density are the same everywhere. The time-varied tempera ture  u 

should obey the linear heat equation V2u = (1/D)~u if the heat conduction is linear and 

homogeneous where D is the thermal  diffusivity. A well-posed boundary value problem in a heat 
equation requires tha t  either tempera ture  or heat flux (not both) is known on the boundary  [4]. 
Sometimes the solution of inverse problems is required [5]. Being an ill-posed problem, an inverse 

heat  conduction problem (IHCP) is difficult to deal with [6]. There are also many  ill-posed 
problems arising from integral equations with smooth kernels, for example, the inverse radon 
t ransformation [7], but IHCP are more difficult than  other kind of ill-posed problems. The  

inverse radon transformation was applied to computed tomography for decades [8] and has made 
a great success in medicine. An IHCP can be formulated into an integral equation with a 
very smooth kernel. Some numerical studies have been made through use of finite difference 
methods,  for example [9], and other methods, for example, [10-12]. In order to know more 
about  numerical solutions for IHCP, we investigate a simple one-dimensional problem through 
the boundary  element methods (BEM). Recently, BEM have been applied to IHCP [13,14]. As 
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a boundary element method is employed, i.e., the boundary integral equation is employed and 
the solution discretized on temporal space, a linear system is obtained. We will show that the 
matrix, which represents the linear system, has a condition number increasing exponentially with 
respect to the number of time steps if the time interval is fixed. Because of the ill-conditionality 
of the linear system, a special treatment is needed for the linear system. 

Tikhonov's regularization methods and singular value decomposition (SVD) methods are most 
often used for ill-posed problems. A singular value decomposition method, such as that in [15], 
damps the vectors with respect to small singular values in the numerical solution. This kind of 
SVD method can also be seen as a Tikhonov regularization [15]. The truncated SVD method, such 
as that in [16,17], is similar to the generalized inverse. This SVD method removes the vectors 
with respect to small singular values from the numerical solutions. Tikhonov's regularization 
methods have been discussed intensively. Recently a book discussing the theories of Tikhonov's 
regularization methods was published by Tikhonov et al. [18]. The rate of convergence for the 
approximations generated by regularization methods and related topics have been discussed from 
different points of view (cf. [19]). In consideration of practical computation, the precision is 
restricted by the computer system. To reduce round-off errors and truncation errors to zero is 
impossible. In the computer system, we cannot distinguish x from y when [Ix - y[[ < e. The 
positive number e is called the precision of the computer system. In this study, fixed precision of 
the computer system is assumed. We use the truncated SVD method and a couple of Tikhonov's 
regularization methods to stabilize the ill-conditioned system. From the analysis, we find that 
there is no guarantee of accuracy for the methods. Numerical experiments become important 
to decide which methods are applicable. We also illustrate the numerical results in this paper. 
Considerably large numbers of time steps are used for these results to test the reliability of the 
methods. 

The mathematical formulations for the heat equation and the numerical methods are reviewed 
or derived in Section 2. The Green's function and boundary integral equation are considered for 
the one-dimensional heat equation. Two boundary element methods, a weighted method and a 
collocation method, are described. We also show the numerical results without any regularization 
in this section. In the following section, the linear systems for these methods are shown to be ill- 
conditioned. The condition numbers increase exponentially with respect to the number of time 
steps. In the last section, regularization methods are discussed. The truncated SVD method 
is applied to the linear system obtained from the collocation method. An error bound for the 
generalized Tikhononv's regularization is also derived and two regularization methods for the 
weighted BEM are implemented for the example. The regularization parameter is automatically 
adjusted to the number of time steps. 

In this study, we find that the weighted method is more stable than the collocation method, 
and regularization methods can improve the accuracy of the solutions for IHCP very well, es- 
pecially when some prior knowledge is available. The results of the truncated SVD method are 
not superior to the results of Tikhonov's regularization. Because the truncated SVD method 
needs more computation than Tikhonov's regularization, using a weighted BEM with Tikhonov's 
regularization will be a better choice for ill-posed problems than using a collocation BEM with a 
SVD method. 

2. T H E  B O U N D A R Y  E L E M E N T  M E T H O D S  

Consider one-dimensional heat conduction problems. T(x, t) denotes the time-varied tempera- 
ture where x is the coordinate of the space and t is the time. T(x, t) is assumed to obey the 
normalized heat equation on the half-space x > O; i.e., 

0 2 0 
ox2T(x , t )  = -~T(x , t ) ,  for x > 0. (2.1) 
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There is a heat source at x = 0 and a thermal sensor at x = 1. 
at x = 1 is measured on t > 0. 
boundary, x = 0, i.e., 

and 

Therefore, the temperature 
Let s(t) denote T(1, t) and f(t) denote for the heat flux at the 

T(1,t)  = s(t) (2.2) 

~xT(O, t) = f(t). (2.3) 

The initial condition is assumed to be zero; i.e., 

T(x, 0) = 0, for x > 0. (2.4) 

The problem consists of using the measured data s(t) to determine the heat flux f(t). 
Consider the forward problem first. The integral equation for T(x, t) is 

/0' /0 T(x, t) = G(x, t, O, r) f(r)  dr + a(x,  t, (, O)T(~, O) d~, 

where G(x, t, ~, r) is Green's function for the heat equation corresponding to the boundary con- 
dition (2.3), 

1 
(e - ( x - ~ ' / ' ( ' - ' ~  + e - ( x + ~ ' / ' ( ' - ' ~ )  m t -  T), (2.5) = 

and H(t) is the unit step function. In our problem, T(x, O) = O. The temperature at x = 1, s(t), 

fot 1 e-1/4(t-r) f (r)  dr s ( t )  = T ( 1 ,  t)  = X / r ( t  - r )  

= f o t - ~ e - 1 / 4 r  f ( t -  r)dr. 

has to be 

(2.6) 

More details about Green's function, G, can be found in [20]. Integration (2.6) defines a linear 
map from f(t) to s(t). £ is used to denote this linear map; i.e., 

£ f ( t )  = s(t). (2.7) 

It is well known that  linear operator £ is ill-posed [6]. In order to find an approximate solution 
for f(t), we employ a numerical method to solve the equation (2.6). The solution of the heat 
flux f(t) on a finite interval [0,T0] is considered. There is a set of nodes {to,t1,... ,tn} where 
to = O, tn = To, and ti = Ati .  At = To/n denotes the size of time steps. 

The approximation f*(t) of heat flux f(t) is chosen to be piecewise constant; i.e., f*(t) is 
constant in each time step (ti, ti+l). Therefore, the approximation f*(t) can be represented as 

n 

f*(t) = ~ fi¢i(t),  (2.8) 
i = l  

where 
1, t~-i < t < t~, 

~bi(t) = O, t < ti-1 or t > h,  

and fi  are real numbers. Substitute y'(t) into equation (2.7), then £y*(t) = ~ 1  $~£¢~(t) has 
to approximate the measured data s(t). Let ¢i(t) denote £¢i.  Using the collocation method, we 
have 

£ f*  (t j) = s (t j ) ,  for j = 1, 2 . . . . .  n, 
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o r  

where 

n 

f~2~ (tj) = s (tj), (2.9) 
i----1 

¢~(t) : ¢(t  - (i - l)~t) - ¢(t - iAt), 

¢(t) = [--~ v~e-1/4t - ( 1 -  erf ( 2 ~  ) ) ] H(t) 

and the error function eft(x) is defined as (2/v/-~)fo e-u2 du. Here the collocation point is 
chosen at the end of a time step. It is better than using the middle point as in [14], because the 
information received at the middle point does not reflect the heat flux in the whole time step. 
The equations (2.9) become a linear system that 

Cnfn c = s~, (2.10) 

where 

c .  = [ ~ ] ,  

c~j = ( j  (t~) = ¢ (t~_j+l) - ¢  (t~_j) , 

{ff  
fnc---[ f~ 1 .  and 

\/.~/ 
Matrix Cn is lower triangular. 

A weighted method may also be used. We take 

I 
s ( t , )  

\s(i.)/ 

(£f*(t),¢j(t)) = (s(t),~bj(t)), fo r j  = 1 , . . . ,n ,  

o r  
n 

~-~ fi (¢, ,0j)  = (s ,¢j) ,  fo r j  = 1 , . . . ,n ,  
i----1 

where the inner product of s(t) and ( j ,  (s,¢j) = fo r° s(t)C~(t) dr. 
The equations (2.11) form a linear system that 

(2.11) 

A . f ~  = b. ,  (2.12) 

where 

= 

t 

An = [aij], a~j = (¢~ ,¢ j /=  ¢i(t)¢jCt)dt, 

b2 To 
f~' bn  = and b~ = s(t)¢~(t) dr. 
i ' 

Matrix An is symmetric and positive definite. 
Because matrix C,~ in equation (2.10) is lower triangular, the linear system may be solved 

directly. Here is an example. 
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time 
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Figure 1. The results for the  collocation method where n is the  number  of elements. 
For every n, the collocation method cannot a t ta in  significant result without  regular- 
ization. 
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Figure 2. The results for the  weighted method without any regularization. 

The heat flux 
1, if 0.2173 < t < 0.4 or 1 < t < 1.2, (2.13) 

f ( t ) =  O, else, 

andT0 =2. 

The measured data s(t) is calculated by a numerical integration. As n is 5, 7, and I0, the 
results are shown in Figure 1 with the exact solution. The numerical result overflows when n is 

greater than 20. Note that no artificial noise is put here, but the exact solution is not included in 

the approximation space. Obviously, the numerical errors greatly affect the results. An analysis 

of the condition numbers of the matrices appears in the next section. 
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Figure 3. The results for the weighted method. At a time near 2, the values for $*(t) 
are  a b o u t  (-I-) 15. 
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Figure 4. The results for the weighted method. At a time near 2, the values for f*(t) 
are about (+) 1023. 

For the weighted method, equation (2.12) can be solved through the Gaussian elimination. The 

results of the weighted method for problem (2.13) are shown in Figures 2-4 for n = 24 and 40, 

n = 70 and 100, and n = 237 and 503, respectively. The values for the last steps (near t = 2) 

of the results are about (+) 15 in Figure 3 and are about (+) 1023 in Figure 4. For larger ns, 

neither method attains a significant answer. 

3. I L L - C O N D I T I O N I N G  

Consider a linear system 

A x  = b,  (3.1) 
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where A is a n x n matrix and x and b are n-dimensional vectors. 
of x; i.e., [[x[[ = (x.  X) 1/2. The operator norm of A is defined as 

179 

[[x[I denotes the two-norm 

Assume x* be a numerical solution for the linear system (3.1), and assume the difference be- 
tween Ax* and b to be controlled by 

I I A x *  - bll 

Ilbll 
<_ e, (3.3) 

where e is a small positive real number which depends on the computer system. An inequality 
may be established [21, p. 114], that is, 

I Ix* - xll ~ ~ I I A - 1 I I  I IAI I I Ix l l .  (3.4) 

il A-1II HAIl is defined as the condition number of A and denoted by Con(A). The inequality (3.4) 
shows that  the relative error Ilx* -x[[/[[xll will be smaller than 6 Con(A). The poor performance 
due to large condition number is explained in detail in [22, Section 2.7]. When Con(A) is not very 
large, the numerical solution x* is reliable. In this manner, the linear systems (2.10) and (2.12) 
can be analyzed. 

Consider the matrix Cn in equation (2.10). Let 

e I = /i and e n = If) 
Because Ilelll and Ile,,ll are 1, we have 

1 
IIC,,ll > IIC,,e, II and IIc; ' l l  >_ IlC,,e,,ll" 

Therefore, the condition number of Cn has to be larger than IIc.elll/llC.e. II. 

and 

Thus, 

, , ,  o1 z I I f ~  II 2 > m  C~ll} _~ , , . . . , ,el, i  = c .  c .  
i = l  ~=1  

c .  = @ ( t d - @ ( t ~ - ~ )  
i=1  

= @(nAt) - @(0) = ¢ (To). 

HCnelH >-1 / - -~x /~o  e- i/4T° ( 1 e r r / 2 - - ~ o o / / )  
n 

I lC .e , , l l  = @,, (t , , )  = @ ( h  0 

= ---~V~e-1/4At -- l1 -- err / 2 - - - ~ / /  . 

IIAxll 
IlAil = s u p  . (3 .2 )  

~ o  llxff 
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(1 - erf (1 /2v~t) )  may be estimated as follows: 

( ( 1 ) )  el/4At / ° °  2 _ u 2  fu°° 2 (u 2 u~o , 
e a/4at 1 - e r f  ~ = / 2 4 5 7 ~ e  d u =  o - ~ e -  - / d u ,  

where uo = 1 /2yrS.  Let v = u 9 - Uo 2, then 

1 -  erf ( ~ - - - ~ ) = e - 1 / 4 A t / ° °  1 ~ e  - v  dv 

< e_W4~t  1 e - v d v  = 2~/'-~ -U4At  
- ~ u - - - i  W e " 

Furthermore, 

Therefore, 

We have 

0 -< 1 -  erf ( 2 - - - ~ )  • 

2V/-~ --ll4At o < ¢ (a t )  < - - ~ - e  . (3.5) 

Let 

Using inequality (3.6), we have 

] le?A-e ,  II = I~xl _< IIAnl[ 

and 

any unit vector u, there is an inequality 

1 

IIA~lll 

el ---- and en ---- 

I I ~ A . e . I I  = 

a l l  = 

- -  <_ lu T A . u l  _< IIA.II. 

1 

/o //o To ¢ ~ ( t )  dt = ( ¢ ( t )  - ¢ ( t  - A t ) )  2 dt 

____. ( A t ) 2 / T °  ( ~ b ( $ ) - - ~ ( $ - A t ) )  2 

= ( A t )  2 ¢ ' 2 ( ~ ( t ) )  dt, 

(i) 
(3.6) 

2V~0 
llC.e.ll < --e -È/4T° -v"~ 

Therefore, the condition number of Cn 

v~¢ (To) e./4ro 
C o n ( C . ) >  2 nx/'~o 

The condition number Con(Cn) increases exponentially with respect to the number of steps n. 
In other words, regardless of how accurate the computer system is, the numerical solution x* 
cannot maintain the accuracy when n increases. 

Similarly, we may show that the condition number of the matrix A in equation (2.12) increase 
exponentially with respect to the number of steps n. Because of the symmetry of matrix An for 
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where t - At < ~(t) < t. Because ¢ ' ( t )  is increasing on [0, 1/2) and decreasing on (1/2, oo), 

Ca((( t ) )  dt > Ca(t  - At )d t  > Ca(t)  dt - A t ¢  a 
J0 JO JO 

and 

/? /? /? ¢a(~(t)) dt  > Ca(t) dt > Ca(t) dt  - Ate a . 
/5 /2+At /2 

Therefore, if At < 1/2, 

and 

aal > (At)2 foT°¢'(t)dt- 2(At)3¢' (1 )  

fo fro an ,  = ¢2(t) dt = ¢2(t - (n - 1)At) dt 

ff' = ¢2 ( t )  d t  < ¢2(At)At. 

Using inequality (3.5), we have 
2 

ann < 4TOLe-n/2To 
- -  n27r 

Consequently, the condition number of An 

Con (A.)= IIA.II IIAzlll-> ~-~ > ~ Ca(t) d t -  2 Ca e./2ro. 

The right-hand side of inequality (3.7) is in proportion to e". 

(3.7) 

4. R E G U L A R I Z A T I O N  M E T H O D S  

In the last section, we proved that the condition number of matrix Cn in equation (2.10) 
increases exponentially with respect to the number of time steps n. For a well-posed problem, we 
use finer time steps (or use a larger n) when we need a more accurate approximation. Because the 
original integral equation (2.7) is ill-posed, the ill-conditioned property of Cn in equation (2.10) 
and An in equation (2.12) is essential. In other words, no numerical method may solve every 
problem of equation (2.7) with arbitrary accuracy. Usually, a worse result is produced with 
finer time steps when the number of time step is large. The example in Section 2 demonstrates 
the effect of the ill-conditioned system. Several methods have been developed for solving ill- 
conditioned problems and applied to some numerical examples [16]. The most efficient methods 
are the singular value decomposition methods [17] and Tikhonov's regularization methods [23]. 
Nevertheless, an IHCP causes more difficulty than any other ill-posed problem does. 

In this section, a SVD method and some regularization methods are employed to avoid getting 
worse results with a larger n. Because the matrix in equations (2.10) is not positive definite, the 
truncated singular value decomposition method is applied to the linear system (2.10). Consider 
the singular value decomposition of Cn in equation (2.10), 

Cn = UDV v, 

where U and V are orthogonal, and D = diag(ai) with ax >_ al _> ... _> an > 0. a~ are the 
singular values. The solution of equation (2.10) In c has to be ~-~=1(s~/a~)vi, where vi is the 
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i th column of V and s~ is the i th component of u T s  c. Unacceptable numerical error due to very 
small singular values may be removed. The solution of the truncated method 

k S* 
fsvd = ~ 22"vi, 

i=10"i 

where k = max{j  I as _> 6} and the positive number 6 is the cut-off level. This method has been 
applied to IHCP before [16]. Figures 5 and 6 show the results for the example with n = 237 
and 503 and n = 1000 and n -- 1001, respectively. The cut-off level ~ = al  * 10 -3 is used for these 
numerical results. In Figure 6, a significant difference is shown between the results for n = 1000 
and n -- 1001. It implies that  the numerical method is very sensitive. In this method, the 

condition number is equivalent to a l /6 .  

2.0 I 
1.5 

. . . . .  

.t" ( t ° i . . . .  , ,," 

i 0.5 n=23~ 

0.0 ~ _ _ _ _ L _ _  _=_ _ .  

4).5 

- 1 , 0  I J I , ~ , , I , ~ , I , , i , I 

0 .0  0 .5  1 .0  1.5 2 .0  time 

Figure 5. The results for the collocation method with singular value decomposition. 
The cut-off level 6 = 10-3az. 

1.5 

1.0 

/(,) 

0.5  

0 .0  

-0 .5  ' ' 
0 .0  

J .... _--~_ ~ .  

/ . 

r~1001 

nffilO00 \ 

l J , , ~ , , I , , , , I 

0 .5  1.0 1,5 2 .0  time 

Figure 6. The results for the collocation method with singular value decomposition. 
The cut-off level 6 = 10-3az. 
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The truncated SVD method ignores oscillatory parts of the solution to avoid huge numerical 
error. A regularization method also sacrifices exactness to attain a well-conditioned linear system. 
A generalized Tikhonov's regularization is analyzed and implemented in this section. The analysis 
is starts from a linear system, 

Ax = b, (4.1) 

where A is an ill-conditioned symmetric positive definite square matrix. Assume x* to be the 
numerical solution for equation (4.1). Therefore, 

IIx* - xll < ~ Con(A). (4.2) 
llxll - 

Here, ConA is a very large number. The exact solution x minimizes the inner product 

E(u) = (A1/2u- A-I /2b )  2 

Let y minimize the inner product 

H(u) = E(u) + uTBu, (4.3) 

where B is a positive semidefmite symmetric matrix; i.e., uTBu  _> 0 for any u. 
Obviously, (A + B) is not singular. The minimizer y must satisfy the equation which is 

(A + B)y  = b. (4.4) 

Consider equation (4.4). There is a numerical solution y* for y where 

II(A + B)y* - bll < e. (4.5) 
HbJJ - 

Substituting equation (4.4) into inequality (4.5), we have 

Ily - y*ll -< e II(A + B)-~II Ilbll. (4.6) 

From equation (4.1) and equation (4.4), we have 

( A  + B ) y  = A x .  

Therefore, 

and 

We have 

(A + B)y  = (A + B)x  - Bx, 

(A  + B ) ( x  - y) = Bx.  

IIx - Yll -< H(A + B)-Xl[  IIBxll. 

From inequality (4.6) and inequality (4.7), we have 

I I x - y l l  + Ily - y * l l  <- e II(A + B) -1 [ I  Ilbll + I[(A + B)-11[  [IBxll 

and then 
l i x -  y*ll _< e [I(A + B)-xH Ilbll + [[(A + B)-~I[ [[Sxll. 

Applying the inequality: Ilxll ~ [IblI/HAI[, we have 

IIx - y* II < e [](A + B ) - I H  IIAII + ][(A + B)-~II IlBxll 
- Ilxll " 

(4.7) 

(4.8) 

Ilxll (4.9) 
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In case B = # / ,  where # is a small positive number and I is the n x n identity matrix, the 
regularization (4.3) is the first-order Tikhonov's regularization. As B = #I ,  II(A + B)- l l i  is 
1/(An + #), where An is the smallest eigenvalue of A. The inequality (4.9) becomes 

I ly* - x l l  ,h < e~--f----- + - - ,  (4.10) 
Jlxll - A . +  

where A1 is the largest eigenvalue of A. Investigating inequality (4.10), we find that  when )h/An 
is very large ()h/An >> l /e) ,  the error bound (e(A1/(An + #)) + #/(An + #)) for y* is much lower 
than the error bound (e(A1/An)) for x*. There is no guarantee of accuracy for ill-conditioned 
problems even when the regularization is applied. The second term of the right-hand side of 
inequality (4.10) is almost 1, which does not depend on the system error e. It may be shown 
that  the error bound in (4.10) cannot be reduced. When x is the eigenvector with respect to 
the smallest eigenvalue of the matrix A and e = 0, y* is (An/(# + An))X and the relative error 
is #/(# + An). Therefore, if Tikhonov's regularization is applied to a problem in the perfect 
computational environment, e = 0, the accuracy may still be totally lost. 

Tikhonov's regularization offers a good computability but risks the accuracy. For the inverse 
heat conduction problem, the condition number of the corresponding linear system increases as 
fast as e n. The direct methods are shown being not applicable and Tikhonov's regularization 
method provides no guarantee for the accuracy either. Numerical experiments become a rule 
of thumb to decide which methods are applicable. As Tikhonov's regularization is applied to 
example (2.13), the regularization parameter # has to be decided automatically first. We choose 
a # which lets the condition number of (A+#I )  be about 10 s. From Section 3, a l l  is an estimated 
value for HAll. Consequently, the estimated condition number of (A + #I) is a11/#. Therefore, 
we use # = a l l  x 10 -5 for any number of n. The results are shown in Figures 7-9 for n = 237 
and 503, n = 1000 and 1001, and n = 1555 and 1989, respectively, with # = a l l  × 10 - 5 .  The 
regularization parameter is much easier to choose than that  of the method in [14]. Because 
At = 2/n, the round-off error for At depends on n. Therefore, we randomly choose the values 

of n. 
In case B x  = 0, i.e., some prior knowledge for the solution x exist. The inequality (4.9) implies 

I ly*  - xl l  _< e Con(A + B). 
IIxII 
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Figure 7. The results for the  weighted method with Tikhonov's  regularization. The 
regularization parameter/~ ---- 10-5a11. 
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Figure  8. T h e  resu l t s  for t h e  weighted m e t h o d  wi th  T ikhonov ' s  regular izat ion.  T h e  
regular iza t ion  p a r a m e t e r / a  = 10-5a11.  
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Figure  9. T h e  resul ts  for t h e  weighted m e t h o d  wi th  T ikhonov ' s  regular izat ion.  T h e  
regular iza t ion  p a r a m e t e r / ~  = 10-5a11.  

Obviously, Con(A + B) <_ Con(A) under the assumption of A and B being nonnegative. In this 
case, the condition is very strong, but  it may be available for the example. Assuming a prior 
knowledge that  f ( t )  is zero for 1.5 < t _< 2.0 for problem (2.13), we may choose B as 

B = diag (bl, b 2 , . . . ,  bn), 

where 
f 0, if jAr <_ 1.5, 

bi 
5, if 1.5 < iA t  <_ 2.0. 

The results are shown in Figures 10-12 when n = 237 and 503, n = 1000 and 1001, and n = 1555 
and n = 1989, respectively. The dashed line represents the exact solution. This method produces 
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Figure 10. The results for the weighted method with generalized Tikhonov's regu- 
larization. The information that f(t) = 0 for 1.5 < t _< 2 is assumed to be the prior 
knowledge. 
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Figure 11. The results for the weighted method with generalized Tikhonov's regu- 
larization. The information that f(t) = 0 for 1.5 < t _< 2 is assumed to be the prior 
knowledge. 

s t ab l e  and  accu ra t e  results .  T h e  number  of  e lements ,  n, which is 1989 is cons idered  large enough.  

Since the  res t r i c t ion  of  the  size of  ma in  m e m o r y  in our  compute r ,  we do no t  use la rger  n. 

5. C O N C L U S I O N S  

T h e  b o u n d a r y  in tegra l  r ep resen ta t ion  (2.5), which provides  a d i rec t  re la t ion  be tween  t h e  

flux f ( t )  and  measu red  d a t a  s ( t ) ,  is app l ied  to  ca lcula te  t he  numer ica l  solut ions.  In  add i t ion ,  t he  

in i t ia l  condi t ion  is a s sumed  to  be zero and  the  bases a re  i n t eg ra t ed  analy t ica l ly .  T h e  noise in t he  

c o m p u t a t i o n  is r educed  as low as  possible.  Because  the  condi t ion  number  of  t he  co r respond ing  

l inear  sys t ems  increases  as e n, t he  condi t ion  number  can be  very  large when a large n is used to  
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Figure 12. The results for the weighted method with generalized Tikhonov's regu- 
laxization. The information that f(t) = 0 for 1.5 < t _< 2 is assumed to be the prior 
knowledge. 

generate a precise approximation. Tikhonov's regularization reduced the condition number but 
still offers no guarantee of accuracy. Therefore, numerical experiments provide a more practical 
criterion (than analysis) to decide which methods are applicable. In the example, the thermal 
diffusivility and the distance from the boundary to the sensor point are unity. Thus, in this 
normalized problem, the time unit is equivalent to L2/D for a practical problem, where D is the 
diffusivity and L is the distance from the boundary to the sensor point. 

We have shown that the direct methods are not applicable even for a small n. The truncated 
singular value decomposition method needs much more computations than the regularization 
methods; but the results for the regularization are better than those for the singular value de- 
composition method. It may be concluded that the regularization methods are superior to the 
truncated SVD method. If an information, Bx = 0, is available, the regularization method, 
(A + B)x = b, could provide stable and accurate approximations. 
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