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Convergence properties of a class of least-squares methods for finding ap- 
proximate inverses of the Laplace transform are obtained by using reproducing 
kernel Hilbert space techniques (or, alternatively, related minimization tech- 
niques) and some classical interpolation results. 

1. INTRODUCTION AND PRELIMINARIES 

We obtain error bounds for certain approximations to the inverse Laplace 
transform. Suppose 

s 
m @f(t) dt = F(s), 

0 
(1.1) 

where f  is assumed to have a representation of the form (2.1) which follows. 
We wish to construct an approximation fn(t) to the inverse transform f(t), 
using n + 1 values F(sJ, i = 0, l,..., n of F. The problem of inversion of the 
Laplace transform, which is an ill-posed problem, gives rise to many interest- 
ing and challenging numerical and analytic investigations. The monographs 
of Bellman, Kalaba, and Lockett [2] and Krylov and Skoblya [4] are devoted 
to this important problem, where a number of methods are developed. A 
synopsis of the difficulties and the rationale of various approaches to the 
numerical inversion of the Laplace transform are given in Bellman [l, Chap. 
191. In the present note we consider only a very simple method used in [2, 
Chap. 21 and more recently by Schoenberg [9]. 
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We suppose that f~ 9a(ol), where PS(~) is the Hilbert space of real-valued 
functions on [0, co), square integrable with respect to the weight function 
wa(t) = ezat (a is a fixed constant). Denote the inner product and norm in 

-%b> by 

(f, da = lmf(t) g(t) ezort & llflia = (f,fC 

Let si , i = 0, l,..., 71 be n + 1 distinct points in [0, co). Let the approximate 
solution f,, to (1.1) be the solution to the minimization problem: 

Find f E 9a(a) to minimize 11 f jJo1 , subject to 

s 

m  

e-@f(t) dt = F(Q), i = 0, l,..., n. 
0 

(1.2) 

Let the functions $ be defined by 

&(t> = exp[+ + 24 tl, i = 0, l,..., n. 

If so + 01 > 0, then & E =Yz(~) and the conditions (1.2) may be rewritten 

(Ai , fh = WA i = 0, l)...) n. (1.3) 

Thus, the problem of finding the approximate solution fn is naturally formul- 
ated as finding the function of minimum norm in the linear variety (of 
codimension n + 1) defined by the finite number of linear constraints (1.3). 
It is easy to show (and is well-known, see, e.g., [5, p. 651) thatf, is unique 
and is in the span of #St , i = 0, l,..., n. To write the solution explicitly, let 
l-‘, be the Gram matrix of c,&, , i = 0, l,..., n. The ijth entry of r, is given by 

(Ai , h,L = Jo- exp[--(si + sj + 2~) tl dt = (si + sj + 2a:)-l. 

Thus, I’, is a generalization of a section of a Hilbert matrix; hence, r, is 
nonsingular (see [3, p. 2171). It is easy to show that 

fa = b4, > us,,-*, Y&J CXTSO), q&.Jw)‘. (1.4) 

The ijth entry rii of Pi’ is given by the formula 

yQ = (Si + sj + 201) A,(-(s, + a)) &(-(Sj + a)), i,j==O,l ‘n >..*,- , 

where 

(see [3, p. 2181). 
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Schoenberg [9] discusses the case LY = - -i, sj = j -r 1, j = 0, I,..., n. 
He gives the solution to the minimization problem (1.2) in the form 
fn(t) = S,(ect), where S,(x) = En= ~ a c,P,(2s - l), PJx) being the classical 
Legendre polynomials, and 

c, = (2v + 1) LgO (-l)“+i (” z “j (YjF(” + 1). 

2. THE MAIN RESULT 

We now give some Pa( 01 )- convergence properties of this method and error 
bounds for 01 > 0, 01(s~+r - si)-l and n(sj+r - si) large. 

THEOREM. Let fn begiwen by (1.4), where 01 > 0, si = (j/n) T, j = 0, I,..., n, 
with T a positive number no less than 2~. Suppose f  E ~Z(CX) and, furthermore, has 
a representation of the form 

f(t) = eczart Lm ectTp(r) dr, (2.1) 

where sy j p(r)1 dr < co. Then 

s om [f(t) - f&)Y e2at dt 

< (1 + (5Y’“) I& ($?)3’2 ecanrrlT (1 + 0 (&jj (6 I p(s)] ds)’ 

+ jf jTm s f; $a ds dt/ . (2.2) 

Proof. Let K be the operator that maps f  E Z2(a) into its Laplace trans- 
form: 

(Kf) (s) : = jam e-“y(t) dt = F(s), s 3 0. 

Using properties of reproducing kernel Hilbert spaces (RKHS) (for more 
details see, e.g., [S, lo]), K(3?a(a)) is the RKHS of real-valued functions on 
[0, co) with inner product ( , )o and with the reproducing kernel Q(s, t) given 

bY 
Q(s, t> :== (A , &)a = (s -t- t + 2=)-l, 

The condition (2.1) is equivalent to 

0 < s, t < co. 

F(S) = L” Q(s, t) p(t) dt = ir e-“tf(t) dt. (2.3) 
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Denote by Q&s) th e real-valued function of s on [0, co) defined by 
Q5(s) = Q(x, s). Thus, Qz represents the evaluation functional at x in Xo . Let 

Since Qs, = IC&. , F, = Kf,, , and, furthermore, F, is the orthogonal 
projection’ in so *of F onto the subspace of Xo spanned by the functions 

Qsi, i = 0, l,..., n (F, is the Gram matrix of Qs, ,..., Qs, in so). By the 
properties of RKHS and the fact that 

f E %(a) and Kf=Oqf=o, 

there is an isometric isomorphism between -Epz(a) and Zo whereby 

Thus, 

!IF--nII,=/If-frill., 

where /j //o is the norm in Ho . Thus, the proof will be effected if we show that 
11 F -F, 11: is bounded by the right-hand side of (2.2). 

Now, recalling that (Qs , Qt>o = Q(s, t) from elementary properties of 
RKHS, it is easy to show that 

IIF-F&,= m - 
ss P(S) ~(4 [Q(s, 4 - Qnb t>l ds & (2.4) 0 0 

where 

and QJs, t) and En(s, t), defined by 

E&, t) = SO, t) - Qn(s, 9, 

are both positive definite kernels. 
The expression (2.4) also can be derived directly without the use of pro- 

perties of reproducing kernels. I f  we put 

x,(t) = f&> eat, x(t) = f (t) ent, 6% Y) = J-oa 44 r(t) 4 

then a formula for // x - X, li2, equivalent to the expression for (IF -F, 1102 
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given in (2.4), can be derived easily by applying standard techniques to the 
following problem: 

Minimize jl x, ~1% 

subject to the constraint 

(xn , G;) = (x, G:), 

where 

G;(t) = G,(Q) = c--(~+‘~)~, i = 0, l,...) 72. 

Now we consider the problem of estimating the right-hand side of (2.4). 
Since &,(s, t) is a positive definite kernel, 

m ss m p(s) ,o(t) IT,&, t) ds dt > 0 
0 0 

for any p for which the integral is defined. Therefore, replacing p(s) by xp(s) 
for s < T and by yp(s) for s > T gives for all x, y  

ax2 + 26x + cy2 3 0, 

where 

and 

T T  
a .zz 

* ij ~(4 At> Gds, 4 ds de 
‘0 0 

b:= T m 
is ~(4 p(t) Us, 4 ds & 

0 T  

P(S) p(t) &(s, t) ds dt. 

So the matrix 

is positive definite; therefore, a 3 0, c 2 0 and 

b2 < UC < $(a + c)“. 

Hence, 2 1 ZJ 1 < (2)li2 (a + c), and we get 

IIF - -F;1 II; = j” jm p(s) p(t) -%(s> t> ds dt 0 0 
= a + 26 + c < (1 + (2)9 (u + c), 
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or 

and it remains to find a bound on supo6S(T E,(s, s). This is done as follows. 
Note that 

Q(s, t) = rj’” G(s, 4 G(t, 4 du, 

where 

G(s, u) = e-(a+8)u, s, u >, 0, 

and, furthermore, 

E,(s, s) = inf 1s” (G(s, u) - f  ciG(si , u))’ du: ci E R, i = 0 ,..., n,/ , 
0 i=O 

so that 

EJS, s) < Jorn (G(s, 4 - i. C&i 7 u))Z d” 

for any real co, cr ,..., c, . 
Let s be fixed, with sj := jT/n < s < sj+r =: ( j + 1) T/n, and suppose 

j < n - (N - l), where N - 1 is the greatest integer in [0, an/T]. 
Let G,(s) be the function of s given by 

G,(s) = G(s, u) := exp[-(ol + s) u], s, u 2 0, 

and let ci = Q(S), i = 0, l,..., n, be defined by 

f G%si) = y Liz&) Gu(sj+A 
i=O i=O 

where P&S) is the polynomial of degree N - 1, which takes on the value 1 
at s = s~+~ and the value 0 at s = s~+~ , K = 0, l,..., N - 1, K # i. Thus, 

is the Lagrange polynomial in s interpolating to G,(s) at the points sj , 
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s, 1-i-l 9.“) sj+,v-1 * By the Newton form of the remainder for Lagrange inter- 
polation, 

N-l N-l 

G,(s) - C piN(s) G&j+i) = n (s - sj+i) G&i > sj+l ,..., sj+w-I 3 ~1, P.6) 
i=O i=O 

where G,[sj , ~j+~ ,..., Sj+N-r , s] is the Nth divided difference of G,(x) at the 
points x = sj ,..., $+,&-r , s. Thus, there exists some 0 E [sj , sj+.v-r] such that 

Gu[sj , Sj+l)**-, Sj+,v-1 , $1 = & g Gu(x) 1 x=6 
V 

(2.7) 
= & e-(e+ah. 

Substituting (2.7) into (2.6) and then (2.6) into (2.5) gives 

E,(s, s) < / E (s - sj+J 1’ j-; & c2(@+a)u du 
i=O 

= j y f  ($ - sj+i) I2 gq [2aN+l(B + 42N+11-1 
i=O 

<’ Gw! E ra12, 
’ 201 (N!)2 22N i=l Lx 

for s E [s, , sj+$). 

Now, use s~+~ - s, = iTIn, N - 1 < m/T < N to obtain 

yf (sj+i - Sj) ~ jy i . 

i==l a is1 N - 1 

Furthermore, 

N-l i 

log n - = 
izl N - 1 

Y 1% (A) 
i=l 

<W-- OS1 logudu = -(iV- 2) +log(N- 1); 
(N-l)-’ 

hence, 

N-l . 
tjj & < (N - 1) e-(N-2) < e2 (7) e-(an)lT. 
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By Stirling’s formula, 

(2N)! 
(NJ)2 22N = & 

<&(T)““(l +o(f,,. 

Thus, for s < sn-(N-l) , 

E,(s, s) < (2a)-l e47r-1/2 T 3’2 eeSanp (1 + 0 (&)) . 
( ) 

The same bound may be obtained for s 3 ~~-(~-r) , provided n - (N - 1) > 
N - 1, by approximating G,(s) in (2.7) by the G,(sJ with si to the left of s. 
The condition T > 201 insures that n - (N - 1) > N - 1, and the theorem 
is proved. 

3. EXTENSIONS 

When (Y < 0, a similar convergence theorem can be proved if 
si = s,, + (j/n) T, where s0 + 01 > 0. It is necessary to assume that 
$’ 1 p(s)1 ds = 0. Then (2.2) can be shown to hold where in the right-hand 
side of (2.2) LY is replaced by 01 + s, and the lower limits on the double 
integral are T + s, instead of T. The left-hand side has f replaced by f+, 
wheref+ is that element in g2(,(01) of minimal dp2(Lu)-norm satisfying 

s 
m e-“y(t) dt = F(s), s >, so. 

0 

The modifications in the proof occur by noting the following facts, which can 
be established easily: 

(1) There is an isometric isomorphism between LZ’#(or) and .%$o , where 
5?+(a) is the quotient space A?(~)/A’(K), 

N(K) = ]f~ 92(a), im e”tf(t) dt = 0, s > so/ , 

and Ho now has the reproducing kernel Q(s, t), s, t >, so . 

(2) The condition s: 1 p(s)] ds = 0 insures that (2.3) holds. 

(3) LX is replaced by so + CL in (2.7) and the subsequent argument, and 
N - 1 is the greatest integer in (so + a)n/T. 

409/P/3-20 
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Finally, m-e remark that the error bounds and convergence properties of the 
approximations to the inverse transform rely heavily on the particular kernel 
associated with the Laplace transform, and they are not a special case of other 
results on regularization and approximation of ill-posed linear operator 
Equations [6, 71 using reproducing kernel space methods. 
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