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This paper defines a class of on-line foreground automata, which make distinctions between
the “foreground” or relevant inputs and outputs and the “blank” ones that serve as a
background. It is shown that there is a well-defined operation that maps the substring of
relevant inputs into an eventually appearing substring of relevant outputs, without regard for
the blanks scattered among the inputs. This operation plays the role of the computation of an
off-line automaton and a computational time can be measured by comparing the automaton
to a “benchmark automaton” that produces each relevant output as soon as theoretically
possible. Properties of these computational times are explored, both for finite automata and
“Turing automata,” which are modeled by multi-tape Turing machines. An analogue of
Church’s Thesis can be stated for the computations associated with the operations of Turing
automata, but it is argued that there is no clear cut formalization for the concept of an
“effective foreground automata.” © 1992 Academic Press, Inc.

1. INTRODUCTORY REMARKS

A deterministic physical device which interacts with the world is always receiving
some sort of input and providing some sort of output. It would be natural to model
it as an “on-line” automaton that receives an input and provides an output at each
unit time. Nevertheless, such a model poses a technical and conceptual problem.
The requirement that a new input be received and a new output be generated at
each time appears to provide the automaton with no time to compute an output
and thus no way to have a temporal component for the computational complexity
of its response. This paper proposes one possible solution for this apparent
dilemma. For an appropriately defined class of “foreground automata” that make
distinctions between “foreground” or relevant inputs and outputs and irrelevant or
“blank” inputs and outputs which serve as a background, these background
“blanks” can fulfill our need to describe the device as always having some sort of
input-output interaction while still providing the automaton with the computa-
tional time to respond to the relevant data that appears in the foreground of the
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data stream. Under the conceptual scheme that emerges from such a distinction,
particular classes of automata, such as finite automata, are capable of performing
more computationally complex tasks than otherwise would be possible. Indeed, the
very concepts of computational tasks, computational time, and computational
complexity take on a new perspective. A computation is now viewed as an
operation which maps the relevant portion of the input stream into the relevant
portion of the output. Computational time is no longer directly measured as the
time used to carry out a computational process. Instead, it arises from certain input
and output blanks that serve to retard the eventual appearance of the relevant
outputs.

This theory could be applied to a situation where first inputs are received, then
a calculation is performed, and finally outputs are produced. However, it becomes
far more interesting and useful when blank and relevant inputs are thoroughly
intermingled and we need a more subtle analysis of the distinct ways that the
automaton responds to these two types of inputs. As an informal motivation,
imagine someone attempting to carry on a conversation in a newly acquired foreign
language. Such conversations will be far more successful when the other person
speaks quite slowly. Here it is easy to make a distinction between the foreground
speech that appears among the background pauses in the words and sentences. It
would be natural to suggest that the slower speech provides the individual with
time required to perform the conceptual processing of the new language.

This paper proposes a formal implementation of these ideas. It defines a class of
foreground automata that treat blanks in a way that allows us to define a foreground
operation which maps the substring of relevant inputs from a proper string into the
substring of eventually produced relevant outputs. Here a “proper” input string for
a given automaton must present the relevant data at a slow enough rate for the
automaton to react properly. This operation on the relevant data will now be taken
as the “computational behavior” in place of the mere input—-output mappings.
Again the foreign language example provides a natural informal motivation. It does
not matter how slowly the other person speaks as long as it is sufficiently slow as
to allow understanding. A long paragraph delivered at high speed would only leave
the poor listener dazed and confused.

Taking the computational behavior of the automaton as restricted to its opera-
tion on the relevant “foreground” data requires a new analysis of computational
complexity and computational time, in particular. One automaton takes less
computational time than another operationally equivalent one when the relevant
output is produced more quickly with fewer blanks. It is shown that a foreground
automaton is always operationally equivalent to some “maximally efficient”
automaton that can operate without taking computational time and can thus serve
as a benchmark for measuring such time. Computational time arises from delays
caused by blanks in the input and output strings. Thus it can be decomposed into
input delays and output delays. 1t will be shown that although finite foreground
automata cannot always avoid taking computational time, they are able to avoid
output delays.
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Turing machines with one-way input and output tapes are capable of modeling
the “on-line” automata considered in this paper and will be called “Turing
automata.” In effect, a foreground Turing automaton operates as what Arbib
[1, Chap. 1] calls an “off-line” Turing machine, while still acting as an “on-line”
automaton. Church’s Thesis, which states that every effective function can be
computed by a Turing machine, can be extended in a purely natural way to the
thesis that every effective function can be computed by the foreground operation of
a foreground Turing automaton. This further illustrates the natural way in which
these string operations capture our informal concept of a “computation.”
Well-known results from the theory of computational complexity of the Turing
machines, such as the speedup theorem [2, Theorem 12.14], can be used to show
that Turing automata cannot always operate without using computational time, so
that the corresponding benchmark automaton cannot be a Turing automaton.
When we seek some analogue of Church’s Thesis for the concept of an “effective
foreground automaton,” it becomes clear that there is no readily defined class of
automata that would serve the purpose. It is conjectured here that there is no such
analogous formalization for this concept.

The theory will be cast in terms of the external input—output behavior of
automata without reference to specific internal states. It might seem natural to
utilize what Arbib [1, Chap. 1] calls “length-preserving sequential functions,”
which are concatenation preserving and map a finite string from the input
vocabulary to a string of the same length from the output vocabulary. However,
this familiar characterization of automata behavior is inadequate for our present
purpose. We are interested in the “operational behavior” of foreground automata,
i.e., the mapping from the substring of relevant inputs into a substring of eventually
produced relevant outputs. Upon receiving a finite string of relevant inputs, the
automaton will eventually produce the determined string of relevant outputs, but
often only at a later time, after it has received additional relevant inputs. An
attempt to cast such behavior in terms of finite string functions would be quite
awkward, and it proves to be convenient to use infinite strings instead. We will use
the term “string” to refer to such infinite sequences. The behavior of an automaton
can be characterized by its string function, the mapping that it induces from infinite
input strings to infinite output strings. A reader familiar with the concept of a
sequential function should note that the two concepts are easily interdefined.

The paper is organized as follows. Section 2 introduces the basic definitions of a
foreground automaton, a proper input string, and a foreground string operation. Here
it is shown that there is a well-defined foreground string operation for a foreground
automaton with a proper input string. Section 3 introduces a measure of computa-
tional time in the performance of a foreground string operation by a foreground
automaton. It is shown that there is a “maximally efficient” automaton that can be
used as a benchmark for such a measurement. This computational time is decom-
posed into input delays and output delays that arise from certain blanks that appear
in the input and output strings. The computational times of finite automata are
explored in Section 4. Here it is shown that finite automata can always avoid
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output delay, but that input delay is sometimes unavoidable. The final section
introduces a class of Turing automata, which are Turing machines that can model
foreground automata. The concept of an effective foreground operation is shown to
be well defined. Such an operation can be carried out by a Turing automata with
just one computational tape. However, doubt is shed on whether there is any
analogue of Church’s Thesis for a concept of an “effective foreground automaton.”

2. THE FORMAL THEORY OF FOREGROUND AUTOMATA

DEeFINITION 2.1. (1) An automaton M is a quintuple {X, Y, Q, 5, r>, where:

X is the finite input alphabet set,

Y is the finite output alphabet set,

Q is the set of internal states with ¢, in Q the initial state,
s: QO x X — Q is the next-state function,

r:Q x X — Y is the current-output function.

Both X and Y are assumed to contain a special symbol “b,” called a “blank.”

(2) The computational behavior of the automaton is defined through a finite
sequence of times, beginning with time 0 when the machine is in state g,. If the
machine is in state g at time p and the input at time p is x, then the output at p
is r(g, x) and at time p+ 1 the machine enters state s(g, x). Thus the automaton
acts on any finite input sequence from X to produce an output sequence from Y of
the same length.

We will use the Greek letter w to denote an infinite sequence ordered as the
natural numbers. Those w-sequences from the set X will be called “input-strings”
and w-sequences from the set ¥ will be called “output strings.” We will use the
notations [a], for the initial segment of string « of length p, and («), for the pth
member of the string, called the “value of « at time p.”

DerFNITION 2.2, A function F that maps input strings to output strings is a
siring function when it satisfies the condition that whenever F(a) = f, F(a')=f’, and

[al,=[a'], then [f],=[F],.

The computational maps of the automaton from finite input sequences to finite
output sequences can be generalized as a string function that maps infinite input
strings to output strings. Each automaton determines a unique string function
describing its computational behavior. Given a string function, it is easy to
construct at least one associated automaton merely by letting its internal state be
the finite sequence of inputs that it has received.

DerFiNITION 2.3. Let F be a string function which maps an input string « to an
output string §. We will say that Fis a:
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(1) boolean string function when there is a function G such that for each p,
(B),=G((a),)-

(2) finite automata string function when F is the string function of a finite
automaton.

(3) recursive string function when there is a recursive function G such that
(B),=G([al,)

Here the methods of [3, Chap. 5] can be used to obtain a formal definition of
the recursive function G with the specified domain and range. It is obvious that
boolean string functions are a proper subset of the finite automata string functions,
which in turn are a proper subset of the recursive string functions. For an infinite
string « there is a substring of the “foreground” relevant data which may be either
finite or infinite. It is useful to have a couple of notations to describe such a
substring.

DEerFINITION 2.4. Let o and f§ be strings and p a time:

(1) %(a), called the relevant substring of a, is the result of deleting all occurren-
ces of the blank symbol “b,” while preserving the order of the remaining symbols.
We will abbreviate #(a) as &

(2) The strings o and B are said to be relevance equivalent, o = 3, when &= f.

(3) The string B is an alternate extension of o at p, a=[p]p, when
Lal,=[81,.

(4) The string B is the result of inserting a symbol z into a string « at a time p,
B=a{z//p}, when (B), = (a), for p'<p, (B), = (), _, for p'>p, while (§),=z.

According to these notations, if = F(a), then Q?(F(oc))=ﬁ. The operation of
inserting a symbol is complementary to the operation of forming substrings. It
follows from this definition that a=[p—1] a{b//p} and that a~a{b//p}. The
difference between the two strings is that after time p, a{b//p} contains its relevant
data at one time later than « does.

Roughly speaking, we want to say that an automaton is in an “essential blank
state” when it is not actually reading its input, so that if a relevant input were
provided that automaton would eventually misbehave because it had not read the
input. However, we want to characterize this concept as a property of the string
function describing the behavior of the automaton. Suppose that at a time p the
automaton has been provided a finite sequence of inputs [a],, where (a),=5b. We
want to say that this blank is “essential” when, for some way of further extending
inputs through later times, the eventual relevant output would have been different
had the blank not been given, allowing each further relevant input to arrive at an
earlier time.

DErFINITION 2.5. Let F be a string function and o be some string in its domain,
where (a), =5 at a time p:
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(1) We say that b occurs essentially for F with input o at time p when there is
a f such that f=[p] « and a f’ such that f=p'{b//p}, where F(p’') % F(B).

(2) An automaton is in an essential blank state when an input blank that is
provided when it is in such a state would occur essentially for the associated string
function.

It is an immediate consequence of this definition that, when blanks occur at both
times p and p + 1, then if the blank occurs essentially at p + 1, it must also occur
essentially at p. The depth of essential blanks following p is the number of essential
blanks in a block of blanks immediately following p when a sufficient number of
blanks are inserted following p to include non-essential blanks. Were it possible to
insert arbitrarily many essential blanks, we would say that the depth was infinite.
We will show that this is not possible for the foreground automata defined below.

Qur concept of an essential blank state has been defined for any string function
or automaton. Qur goal is to define a class of “foreground automata” which are
roughly describable as “ignoring the blank inputs.” The problem here is that an
essential blank input cannot be ignored in the sense that the next relevant input
could have been given instead. Only inessential blanks are “truly ignored” in this
way. A foreground automaton should need a blank input to be essential solely
because it is not responding to input at that time, and the output should be exactly
the same no matter what input had been given at that time.

DEFINITION 2.6. A foreground string function is a string function that satisfies
the condition that for any input string « and time p, if (x), =5 is an essential blank
at p and B is an input string differing from « only at time p, then F(x)=F(B).
A foreground automaton is an automaton with a foreground string functlon

In other words, if a foreground automaton ever receives a blank that could not
be deleted without affecting some future relevant output, then, in effect, the
automaton was not reading its input at that time.

PROPOSITION 2.1. Let F be a foreground string function and « an input string for
F such that at time p, (¢),=b is not an essential blank. Let o =a{b//q} for some
g < p. If the resulting blank in o' at time p+1 is now an essential blank in o', then
the blank at q is also essential.

Proof. Since the resulting blank in «’ at p+ 1 is essential, there is an alternate
extension § at p+ 1 such that if p’ is the result of deleting the blank at p + 1, then
R(F(B)) # R(F(B')). Let 6 and &' be the respective results of deleting the blank at
g in B and B'. Let 5 and &' be the respective results of deleting the blank at ¢ in
B and p’. Assume that the inserted blank at g in o was not essential. Now f and
B’ are both alternate extensions of «’ at g so #(F(p))=R(F(3)) and R(F(f'))=
A(F(58")). On the other hand, J is an alternate extension of o at p, with &’ the result
of removing this blank. Since this blank was not essential, R(F(5)) = R(F(S')),
contradicting the above inequality. ||



FOREGROUND AUTOMATA 373

DErFINITION 2.7. Let F be a foreground string function and « an input string
for F:

(1) The string o is proper for F if there is no time p such that if o’ = a{b//p}
then the blank at p in o' is essential.

(2) The string « is a minimal input sequence for F when it is proper for F and
if o has an inessential blank at a time p there is no ¢ > p such that (), # b; i.e., the
only way that inessential blanks can occur are in an infinite terminal sequence.

(3) The relevant output has been determined at p for input « when for any input
string B such that [8],=[a],, F(B)= F(«).

When the relevant output has been determined, further relevant inputs will have
no effect on the substring of relevant outputs that eventually emerge. However, they
might still have an effect on the times that the outputs appear.

PROPOSITION 2.2. There is no foreground string function F, input string o for F,
and time p such that the depth of essential blanks following p is infinite.

Proof. Otherwise, if § is any input string for F which is an alternate extension
of [a],, then we can show that for each g, [F(x)],~[F(f)], by repeated
applications of the definition of a foreground string function. This allows that the
relevant output is determined at p so that a blank at p is not essential. |

THEOREM 2.1. Let F be a foreground string function and o an input string for F:

(1) There is a unique input string § where B~a and B is proper and minimal
for F.

(2) If a is proper for F and a non-essential blank occurs at a time p in o and o’
is the result of deleting the blank at p, then &' is again proper for F. More generally,
the result of deleting all non-essential blanks which are not in a terminal sequence is
a minimal input string for F.

(3) If a is proper for F, then the result of inserting a blank at any time q is again
proper for F.

(4) If a and B are both proper input strings for F and a =~ B, then F(a)~ F(B).

Proof. For (1) begin with the string & and look for the first place, if any, that
the depth of essential blanks is not zero and insert a number of blanks equal to this
depth, which is finite by Proposition 2.2. If & is finite this process will terminate
after a finite time and we can append a terminal sequence of non-essential blanks
to obtain B. Otherwise f is the result of the non-terminating application of this
process.

For (2) we suppose that a' was not proper so that for some ¢ > p and some
alternate extension f’, where [f'],=[a'],, if we define &' =p'{b//q} then
F(6') # F(p'). Define 6" = 6’{b//q} and a” = a{b//q+ 1} so that by the construction
[6"],+1=1[a"1,. . Since a is proper the blanks at p and g+ 1 are non-essential
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in «”, which shows that they are also non-essential in ”. Now define 8 as the result
of deleting the blank at ¢+ 1 in 6”. By the construction, = p'{b//p}, which is an
alternate extension of [a],. We can now conclude the following:

(1) F(B)~ F(p') because the blank at p is non-essential in o and S is an
alternate extension of [a],.

(2) F(B)=~ F(6") because the blank at g + 1 is non-essential in 3"
(3) F(0')=~ F(6") because the blank at p is non-essential in 0",

Together, these contradict the above claim that F(8') # F(f’), thus showing that o’
must be proper. We can now systematically delete all non-essential blanks which
are not in a terminal sequence with a resulting sequence that remains proper and
is minimal.

For (3) let o’ =a{b//q}. Suppose that o’ were not proper so that for some p > g,
o”=a{b//p}, and this blank at p is essential. Let f be the result of deleting the
blank at ¢ from «”. By construction, f=a{b//p—1} and is thus a non-essential
blank. But by Proposition 2.1 this blank cannot become essential as the result of
inserting a non-essential blank at g.

For (4) let 6 be the minimal input string constructed from (1) above so that

~a. It is now possible to systematically insert blanks into § to arrive at a string
&’ which can be obtained from both « and f by inserting blanks. By (3) ¢’ is proper
and all of the inserted blanks are non-essential. By (2) these non-essential blanks
may be deleted in any order with the resulting strings remaining proper and the
corresponding non-essential blanks remaining non-essential. By this construction
we can obtain both a and f by inserting non-essential blanks in 6. Hence
F(a)~ F(8) and F(B)~ F(3). |

Part (4) of Theorem 2.1 establishes that a foreground string function F has a
well-defined operation that maps the “foreground” relevant substring of a proper
input string « for F onto the “foreground” relevant substring of the output. Further-
more, for any input string «, there is a proper minimal string § such that f~a,
where any proper string § such that § ~ « can be obtained from § by the insertion
of non-essential blanks. This allows us to introduce the following definitions.

DerFNITION 2.8. Let F, F,, and F, be foreground string functions with a
common domain and « an input string in this domain:

(1) The string a is relevance-led when it has no blank followed by a relevant
symbol. Such a string either has no blanks or else it has only finitely many relevant
symbols followed by a terminal sequence of blanks.

(2) F*, the foreground operation of F, is a function whose domain is the set of
relevance-led input strings for F and whose range is included in the relevance-led
output strings. When « is a relevance-led input string for F and § is the minimal
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input string such that B~ a, F*(a)=2(F()) with an appended infinite terminal
sequence of blanks in the case that #Z(F(B)) is finite.

(3) F, and F, are said to be operationally equivalent, F\ ~ F,, when F* = F}.

It should be noted that F* is not necessarily a string function and that
operational equivalence is an equivalence relation.

Our simplifying assumption that the “background” is represented by a single
symbol “b,” which appears in both the input and output vocabularies, could easily
be generalized to allow sets of “background” symbols. Such a generalization can
prove to be particularly useful in the study of cascades of automata, such as found
in [1, Chap. 8]. Suppose that we have an input vocabulary X with some subset B
that we want to treat as the set of background symbols. There is a one-state
blanking automaton that maps all elements of B to the blank symbol “b,” while
mapping members of X — B onto themselves. To allow B to be viewed as the input
blanks for a foreground automaton M, we would require that there be a foreground
automaton M’ meeting our previous criteria such that the string function of M is
equal to the string function for the series cascade of M’ following the blanking
automaton for B. To also allow some subset B of the output vocabulary to be
viewed as blanks, we would require that the series cascade of M followed by the
blanking automaton for B be a foreground automaton. Unlike the previous theory,
this generalized concept of a foreground automaton restricts the allowed treatment
of output blanks as well as input blanks.

3. CoMPUTATION TIME FOR FOREGROUND OPERATIONS

Once we have made a distinction between the foreground and the background
and we have a well-defined “foreground operation” for a foreground automaton,
one can compare the computational efficiency of operationally equivalent automata.
As a benchmark for such a comparison we seek a “maximally efficient” automaton
that has no essential blank states and always produces a relevant output when such
an output is determined.

DerINITION 3.1. Let F and F’ be a foreground string functions:

(1) Fis maximally efficient when for every string function F” such that F” ~ F,
and every input string « which is minimal for F, if § is proper input string for F”
and f~« then for every time p, Z[F(«)], is at least as long as Z[F"($)],.

(2) F’is a benchmark for F when F' =~ F, F’ is maximally efficient, and all input
strings are proper for F'.

There are several alternatives that might be suggested for measuring the
“computational time” that a foreground automaton has taken at a given time p
when it has received a finite input [«], and has produced a certain relevant output
sequence as a result. Here we propose comparing the time that it took F to produce
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its relevant output against the time that the benchmark would have taken. At those
times when the automaton produces a blank even though a new output has been
determined, we find out how much earlier the benchmark automaton would have
been able to produce this new relevant output. This ensures that computational
time never increases by more than one in a unit time. There is no sudden surge in
computational time when the automaton eventually does produce this determined
relevant output. The following definition makes these concepts precise. Proposi-
tion 3.1 will establish the existence of the benchmark referred to in part (5) of the
definition.

DEeriNITION 3.2, Let F be a foreground string function, « a proper input string
for F, and p>0:

(1) The relevant output determined by F at p with input « is Z([F(«)],) for the
largest number ¢ such that whenever § is a relevance-led input such that
[B1,~[«],, then Z([F(f)])=R([F(x)]), or the infinite string, #(F(«)), when
there is no such g¢.

(2) The remaining output required with input [« ], is the remaining sequence in
the determined relevant output that follows #([F(a)],). When the length of the
remaining output is non-zero, we say that a new output is determined for F.

(3) The desired output value for F at p is the first value of the remaining output
if a new output is determined, or b otherwise.

(4) The completion time for F at p with input « is the largest value g < p such
that a new output is determined for F at g.

(5) Let F’ be the benchmark for F and f be a relevance-led string such that
B =~ a. The computational time taken by F at p with input « is ¢ —m, where ¢ is the
completion time for F and m is the least value ¢ such that Z([F'(f)],) ~ 6, where
d the finite sequence [F(a)],_, followed by the desired output value for F at p.

The proof of the following proposition is quite straightforward. Define the
benchmark function as always producing a relevant output when a new output is
determined.

PROPOSITION 3.1. For any foreground string function F, there is a foreground
string function F' which is a benchmark for F.

Note that if F had not taken computation time prior to p, but produced a blank
output at p when a relevant output had been determined, then the computational
time caused by this blank would first appear at time p + 1. Computational time is
the result of delays in the emergence of the relevant outputs caused by blanks in the
input or output strings. However, not every blank leads to such a “computational
delay.” The computational time can only be increased at those times that an output
blank is produced. If a new output was determined for F at a time p when (#(«)),
was blank, then the computational time will increase and we identify this blank
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output as an output delay at p. If no new output was determined for F at p, but the
computational time increased anyway, then there must have been a previous input
blank in « that prevented F from receiving sufficient relevant input to determine a
new output. In this case we identify the blank output as an input delay at p. It is
possible for the computational time to decrease at a time p that a relevant output
is produced by F; we then say that there was a delay reduction at p. Such a delay
reduction can only occur when several inputs are required to determine an output,
such as with the “comparing automaton” discussed in Section 4 below. A delay
reduction can only compensate for previous output delays; input delays create
permanent computational time. Each such delay or delay reduction changes the
computational time by a value of one. We can define the accumulated output delay,
the accumulated input delay, and the accumulated delay reduction at a time p as the
sum of the previous times in which such a delay or delay reduction took place. The
actual output delay at p is the result of subtracting the accumulated delay reduction
from the accumulated output delay. This discussion is summarized by the following
theorem, whose proof is quite straightforward.

THEOREM 3.1. Let F be a foreground string function and a a proper input string
for F and p>0:

(1) The actual output delay is never negative; ie., the accumulated delay reduction
at p can never exceed the accumulated output delay.

(2) The computational time at p is the sum of the actual output delay and the
accumulated input delay.

(3) The computational time at p never exceeds the number of blanks in [F(x)] »
and the accumulated input delay never exceeds the number of blanks in [«],.

4. COMPUTATIONAL TIME FOR FINITE AUTOMATA

We now seek to see how computational time might arise in finite automata. The
simplest such automaton is a one-state or “boolean” automaton with a boolean
string function. With the exception of the trivial case, where there is only one
relevant symbol in the output vocabulary, a foreground boolean string function
must always produce a blank output when it has a blank input. All input sequences
are proper, and blank outputs from relevant inputs will not cause delays. Computa-
tional time is merely the sum of blanks in the input string.

Among the remaining finite automata, the simplest is a wunit delay automaton
whose output vocabulary is identical to its input vocabulary. At the time p =0 the
output is b; for p > 0 the output is identical to the input at the time p — 1. Note that
the next-state and current-output functions for a finite automaton are boolean
string functions whose input are ordered pairs consisting of the current state and
the current external input for the finite automata. It is easy to show that a finite
automaton can always be constructed as a cascade of these two boolean automata

571/45/3-7
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with a unit delay automaton. The delay automaton would follow the current state
automaton and send its output back to the two boolean automata as the current
state component of their inputs. This construction graphically illustrates the
differences between the computational time of a foreground finite automaton and
such concepts as the time needed for a signal to pass through a device or the time
needed for a sequence of computational processes. It also illustrates the fact that the
computational time of a cascade of automata often has little relation to computa-
tional times of the component automata in the cascade. The use of cascades can be
a practical technique for the construction of computational devices. Here it should
be observed that computational efficiency is a global effect of the construction and
it often cannot be decomposed into any concept of computational efficiency for the
component automata.

There are two quite simple finite automata with input and output vocabularies
{0,1, b} that provide useful illustrations. A comparing automaton compares an
even-numbered relevant input with the previous relevant input and produces the
output “1” if they were alike or “0” otherwise. A doubling automaton duplicates each
relevant input in the output. Thus an initial relevant input beginning “101...” would
eventually result in a relevant output beginning “110011....” Both operations can be
performed by finite foreground automata that operate without using computational
time. It is possible to construct a finite foreground comparing automaton for
which all input strings are proper and no input blanks are required. Such an
automaton must produce a blank output whenever an odd-numbered relevant
input is received. A finite doubling automaton must receive approximately as many
input blanks as relevant inputs in order to limit the length of the string that it has
to remember. Input strings without blanks cannot be proper for such an
automaton.

It is now casy to use these two automata to construct a finite foreground
automaton whose input vocabulary contains an additional special symbol “#.” It
begins by operating as a doubling automaton until, if ever, it receives a “#” as its
input. Thereafter, it operates as a comparing automaton. Such an automaton must
receive input blanks, which do not contribute to computational time as long as it
continues to operate as a doubling automaton. However, once it switches to
operating as a comparing automaton, these input blanks will have prevented it
from receiving sufficient input to determine the output. It will then be forced to
produce output blanks which will show up as input delays. Any finite automaton
that performs such an operation must sometimes use computational time, but this
time arises only from input delays. In the theorem below we will show that a finite
foreground string operation can always be performed without output delay.

TueOREM 4.1. Every finite foreground string function is operationally equivalent
10 a finite foreground string function that never produces output delay.

Proof. We will begin with an arbitrary finite foreground automaton M and
show how to construct an operationally equivalent finite foreground automaton
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which produces no output delay. We can assume that M has an initial state that
cannot be entered from any other state and that otherwise it has a minimal number
of states in that all remaining states are pairwise distinguishable by their eventual
functional behavior on some input sequence. The future behavior of an automaton
following a time p is determined by the input x and the state g of the automaton
at p. Thus the question of whether an output blank at p is an output delay depends
on the values of x and g. When there is such an x, we say that g is an output delay
state. A state g of M will be called an initial output delay state when there is some
input x such that ¢ gives an output delay with input x, but there is no ¢’ and x’
such that M in state ¢’ with input x’ gives an output delay and then goes to state g.

LEMMA. If M has an output delay state, then it has an initial output delay state.

Proof. We first note that if an output delay occurs at p with a proper input
string o, then some relevant output was determined at p. If 8 is any proper input
sequence such that [f],=[a],, then there is some g> p, where this relevant
output is produced at g with input [§],, but the outputs are blank between the
times p and gq.

Were the lemma false, we could begin with some output delay state ¢ with an
input x and indefinitely trace backwards through earlier states, noting for each
earlier time a proper input that produces output delay.

Since the automaton is finite, we must finally come to an output delay state ¢’
reading an input x’ that can be traced backwards to ¢’ again. Turning this
backwards path of inputs around, we obtain a finite proper input sequence which,
when given to the automaton in state ¢’, will end up with the automaton again in
the state ¢” while producing only blank output during the process. Repeating this
sequence indefinitely, we would obtain an infinite input string for which the
automaton would produce only blank output. Since no further relevant output
would be produced by this string, it follows that a relevant output was not
determined and there could not have been an output delay. §

Each state g of the automaton determines a sequence of relevant outputs which
will be eventually produced no matter what input is given. The length of this
determined relevant output can vary from zero to infinite. We define r-length(q), the
relevance length of the state g, to be n when the length of the determined relevant
output is n, where this length is neither zero nor infinite. Otherwise r-length(q) = 0.
Let r be the maximum of r-length(g) for all initial output delay states q of M. Let
5 be the number of initial output delay states ¢ such that r-length(g) = r. Define the
ordinal of M to be the ordinal number rw+s. We complete the proof of the
theorem by showing that if the automaton produces an output delay, then we can
modify it to create an operationaily equivalent finite foreground automaton with a
smaller ordinal. Since there can be no infinite descending sequence of ordinal
numbers, this construction must terminate with an automaton without output
delays.

If the automaton has a state ¢ in which all future relevant output is determined,
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it is quite easy to show that we can alter the automaton to create an operationally
equivalent automaton in which this output is produced as a relevance-led sequence.
This would be done by creating a series of new states to follow g. This produces an
operationally equivalent automaton that produces output delays only in those
states at which the entire future relevant output has not yet been determined. The
ordinal of the automaton would be unchanged by this modification.

We now assume that the automaton has an output delay and that the ordinal is
greater than zero. Let ¢ be some initial output delay state with the maximal
r-length. Assume that the first relevant output determined at q is the symbol “1.”
For each proper input string f§ that might be provided to the automaton once it is
in state g, there is a number m such that after starting the automaton in state g and
giving it the input sequence f, the relevant output of “1” first occurs in the sequence
[8]..- We will call [B],, a generating input for the state q. There are finitely many
distinct generating inputs for the state ¢ and they form a tree under the relation of
sequence extension.

Now modify the automaton so that in the state ¢ the modified automaton
produces a “1” as a result of any input and then goes through a cycle of newly
created states giving output blanks until a generating input for the previous
automaton has been received. The modified automaton then produces another
output blank instead of the “1” that the original automaton would have produced.
After this it returns to whatever state of the old automaton that it would have been
in after receiving this generating input. This modified automaton is operationally
equivalent to the original, but ¢ and all newly created states have a relevance length
less than r. Therefore, the original of the modified automaton must be less than that
of the original. After a finite number of such modifications, the ordinal must be
reduced to zero, creating an operationally equivalent automaton with no output
delay. 1|

One interesting open problem is that of obtaining a characterization of those
finite automata that are operationally equivalent to a delay-free finite automaton.
Many commonly encountered finite automata need not in principle use any
computational time. For many practical devices, computational time arises not
from the logical necessity of input delay, but from the complementary nature of
computational time and internal complexity. Often computational times can be
reduced only at the expense of a great increase in the internal complexity. For
example, there is a mere boolean automaton capable of playing a perfect chess
game with no computational time.

5. RECURSIVE STRING FUNCTIONS

We have said that a string function F mapping an input string « to an output
string f is “recursive” when there is a recursive function G such that for each p,
(B),=G([a],). It is certainly not possible for every recursive string function to be
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generated by an automaton that could be described as “effective” or “finitely
realizable.” No provision is made for the computational time that might be needed
to compute G. However, we shall see that a recursive foreground string function is
operationally equivalent to the string function of such an effective automaton. Thus
the computation described by the operation of a recursive foreground string
function is appropriately effective even though the string function itself may not
have that property of finite realizability that we associate with the term “recursive.”

The obvious choice for a class of “effective” automata that extend beyond finite
automata is provided by the concept of a Turing machine. Our discussion of Turing
machines will be informal and we presume that the reader is familiar with various
formal representations, such as is found in [2, Chap. 2]. Turing machines can have
multiple tapes, and it is possible for each tape to have a separate vocabulary, multi-
ple heads, and even to be multi-dimensional. The straightforward way to link our
theory of automata to Turing machines is to model an automaton by a multi-tape
Turing machine which has one-way “input” and “output” tapes, each with a single
head that always moves to the right, and where the machine always writes to the
output tape. In this case the input and output tapes play the role of the inputs and
outputs of the automaton. When such a machine has no additional tapes it can
only model a finite automaton, but with additional tapes its computational
capabilities are greatly extended. We will call any such automaton that is modeled
by such a Turing machine a Turing automaton. We will identify and number the
“tapes” of a Turing automaton as those tapes other than the input and output
tapes. Thus a “one-tape Turing automaton” has one tape in addition to the input
and output tapes. The obvious advantage of a Turing automata model is that it
simultaneously satisfies the standard definition of a Turing machine and the
definition of automata studied in this paper.

THEOREM 5.1. Every foreground recursive string function is operationally
equivalent to the string function of a one-tape Turing automaton.

Proof. To prove this we need merely note that there is a one-tape Turing
machine which, when given a tape with [a], as the symbols will eventually halt in
a state that encodes (f),=G([a],). Since F is a foreground string function, this
tape need only contain the relevant substring of [«],. It is a straightforward task
to modify this one-tape Turing machine into our desired Turing automaton. For
example, this modified machine might keep the relevant substring of [«], as an
initial string on its third tape, where this initial string was followed by a special
marking symbol not in the input or output vocabulary. The computations could
then be carried on in the remainder of the tape. Each time that the Turing
automaton received a new relevant input, it would begin by appending this input
to the initial segment of its tape. A proper input string would have to provide essen-
tial blank inputs until this rewriting was completed and the machine had either
determined a new relevant output or determined that additional relevant input was
needed. |
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Such a machine would be quite computationally inefficient. However, some
inefficiency is unavoidable and a Turing automaton with only one tape and tape
head often cannot avoid essential input blanks. Since a Turing automaton can
have only finitely many internal states and has a finite tape vocabulary, the only
way that it could store a continuous stream of new relevant inputs would be to
continuously write these on its tape. But this would prevent it from using the tape
for any other purpose and it would encounter the same problems as would a finite
automaton. A Turing automaton with added tapes and heads can avoid this
problem and take all input strings as proper. In contrast to the finite automata that
can only avoid output delay, these expanded Turing automata can always avoid
input delay, but might still have output delays.

Further investigations into the computational times of Turing automata can be
carried out by applying previous results on the computational complexity of Turing
machines. One immediate application is to show that there are Turing foreground
automata for which no Turing automaton can serve as a benchmark. It is easy to
apply the “speedup theorems,” such as [2, Theorem 12.14], to show that there are
foreground operations for which every Turing automaton could be replaced by a
yet more efficient Turing automaton and none could serve as a benchmark.

Theorem 5.1 establishes that a form of “Church’s Thesis” can be applied to our
concept of a foreground string operation; ie., every foreground string operation
that can be computed by an effective procedure can be performed by a one-tape
Turing automaton. Quite a different picture emerges when we inquire which
foreground string functions can be performed by an automaton which might be
described as carrying out an “effective procedure.” Standard results from the theory
of computational complexity show that the class of Turing automata expands as
these automata are allowed more tapes and heads. It is an interesting question
whether there is some wider class of automata for which it would be reasonable to
propose such analogue of Church’s Thesis. For example, we might propose a class
of Turing automata with arbitrarily large finite numbers of tapes, heads and
dimensions for each tape. However, I would speculate that no such proposal would
gain the widespread acceptance that has been accorded to Church’s Thesis. A very
generalized concept of a Turing machine is merely a finite automaton which is
allowed to read and write on a “discrete world,” which is assumed to satisfy certain
criteria. However, it is not clear what limitations should be placed on such criteria.
For example, one such world might consist of a multi-dimensional tape with highly
non-Euclidean topological properties that allows a tape head to move n cells away
in one of the dimensions by selecting a path through other dimensions, where the
selected path forms a binary coding of the number n. It would then be able to move
n cells away with only log(n) moves. Such an automaton could have computational
capabilities that would not be available to an automaton whose tapes were
restricted to a Euclidean geometry. No such contorted tape could be constructed in
our Euclidean world, but this would seem to be a mere empirical restriction, not
a logical one.

For previous automata that we have considered, including the Turing automaton
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constructed for the proof of Theorem 5.1, it was always easy to determine when the
automaton was in an essential blank state. Our general theory has not taken into
account those methods by which a symbiosis might be achieved between the physi-
cal device modeled by an automaton M that requires essential blanks in its input
and an “external world” that cooperates by providing a proper input to the device.
One possibility might be for the physical device to embody a second automaton
whose output signals the necessity of an essential blank for M. We call such an
automaton the input-seeking automaton for M. For a finite automaton there is no
computational complexity in deciding whether the next state is an essential blank
state. The subset of essential blank states can be determined at the time that the
automaton is constructed. On the other hand, a Turing automaton has a potential
infinity of “states” determined in part by the status of the additional internal tapes
used for computation. In this case it is not always decidable whether or not the
automaton is in an essential blank state and we may not be able to construct a
recursive input-seeking automaton.

THEOREM 5.2. There is a foreground Turing automaton for which the question of
whether or not the automaton is in an essential blank state is undecidable.

Proof. To show how to construct such an automaton, we first note that it is
easy to construct a two-head one-tape Turing automaton with no essential blank
states, which performs the doubling operation described above. The first head
writes the inputs on the tape while the second follows behind and reads them at the
appropriate times. Next, we use the techniques of [3, Chap. 1] to construct a
second Turing machine that, when given a tape with n 1’s followed by a 0 halts if
and only if the nth recursively enumerable set eventually enumerates the number
one. To construct the desired automaton, we begin with the doubling Turing
automaton and add a second tape. As long as only input 1’s have been received, the
automaton copies these to this tape. If an input 0 is received after a length » initial
block of 1’s, the head on the second tape proceeds to mimic the second Turing
machine. If this Turing machine ever determines that the nth recursively
enumerable set enumerates the number one, then the Turing automaton ceases to
move the second head that was used for the doubling operation. Thereafter it
attempts to double each new relevant input just like the finite doubling automaton
described above. Once the number n has been determined for the second Turing
machine by the input of a 0, further input blanks will be essential if and only if the
nth recursively enumerable set eventually enumerates the number one, an
undecidable question as shown in (3, Chap.2]. [

Automata such as the one constructed for Theorem 5.2 seem artificial and
undesirable. We might want to rule them out altogether when defining the class of
foreground automata. However, the main focus of this paper has been to show that
one very simple criterion is sufficient to define a class of foreground automata that
determine well-defined string operations. This gives us a simple basic theory that
can be the foundation for future refinements.
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