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a b s t r a c t

A computational study of a viscous incompressible two-fluid model with an oscillating
cylinder is investigated at a Reynolds number of 200 and at a dimensionless displacement
amplitude of A = 0.13 and for the dimensionless forcing cylinder oscillation frequency-
to-natural vortex shedding frequency ratios, f /f0 = 1.5, 2.5, 3.5. Specifically, two-
dimensional flow past a circular cylinder subject to forced in-line oscillations beneath a
free surface is considered. The method is based on a finite volume discretization of the
two-dimensional continuity and unsteady Navier–Stokes equations (when a solid body is
present) on a fixed Cartesian grid. Two-fluid model based on improved volume-of-fluid
method is used to discretize the free surface interface. The study focuses on the laminar
asymmetric flow structure in the near wake region and lock-on phenomena at a Froude
number of 0.2 and for the dimensionless cylinder submergence depths, h = 0.25, 0.5
and 0.75. The equivorticity patterns and pressure distribution contours are used for the
numerical flow visualization. The code validations in special cases show good comparisons
with previous numerical results.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The interaction of a free surface wave motion with moving cylindrical bodies has been principally the subject of
experimental studies (see e.g., [1–3]). Computations of nonlinear viscous free surface problems including cylindrical bodies
are relatively few (see e.g., [4,5]). The purpose of this paper is to numerically investigate a viscous incompressible fluid
flow past a circular cylinder beneath the free surface based on a two-fluid model. The aggregated-fluid approach is used
by describing the behaviour of both fluids using one set of governing equations, namely the two-dimensional continuity
and unsteady Navier–Stokes equations in their pressure–velocity formulation (when a solid body is present). The method
of solution is based on a finite volume discretization of the governing equations. A second-order accurate central-difference
scheme is used to discretize the governing equations in space in conjunction with the first-order explicit forward Euler
scheme to advance these equations in time.

In the present two-fluid model, the free surface interface is discretized with the volume-of-fluid method due to Hirt and
Nichols [6]. To capture the free surface, the known fluid interface geometry is used to compute fluid volume fraction, F ,
between zero and one in each computational cell, whose value is one for full cells; zero for cells without fluid; between zero
and one for partially filled cells. At any time in the solution, the shape of the free surface interface is reconstructed using the
piecewise linear interface calculation algorithm following the works in [7,8]. Since the free surface interface is free to move,
its advection in time should be performed after the new velocity field has been calculated from the governing equations. In
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the present numerical algorithm, the strictly mass conserving volume-of-fluid advection method, for incompressible flows
on a Cartesian mesh, due to Aulisa et al. [9] is used unlike the volume-of-fluid advection algorithms by [10,11] in which the
advection operations may result in undershoots or overshoots of the volume fraction, and thus they do not preserve mass
exactly.

For the moving fluid–body interface the fractional area/volume obstacle representation method due to Hirt and Sicil-
ian [12] is combined with the cut cell method due to Gerrits [7] in order to improve the accuracy of the fluid–body inter-
face approximation and preserve a global second-order accuracy of the spatial discretization. It is noted that the fractional
area/volume obstacle representation method approximates fluid–body interface with straight-line segments within each
computational cell using the piecewise linear interface computation algorithm and hence this method is of only first-order
accurate. This complicates the numerical approximation of convective and diffusive fluxes near fluid–body interface as well
as the application of the boundary conditions at fluid–body interface. In the present model, Gerrits’ cell merging procedure
is utilized in which the velocity cells cut by the fluid–body interface are merged with the appropriate neighbour fluid cells
to form trapezoidal cells near the surface of the cylinder. A combination of B-spline and polynomial interpolations is then
used to evaluate convective and diffusive fluxes through the edges of the trapezoidal cells. Discrete pressure and velocity
fields corresponding to the successive time instants are obtained as a result of solution of a coupled sparse linear system
in primitive variables using a generalized minimal residual method. This is done by making use of the Trilinos numerical
solver library (see [13] for details). A preconditioner is calculated at each iteration to achieve optimal convergence for the
system. The accuracy checks indicate that the present method is of second-order in space and first-order in time.

The objective of this study is to numerically investigate two-dimensional flow past a circular cylinder subject to
forced streamwise oscillations beneath a free surface based on a two-fluid model at a Reynolds number of 200 and at a
dimensionless displacement amplitude of A = 0.13 and for the dimensionless forcing cylinder oscillation frequency-to-
natural vortex shedding frequency ratios, f /f0 = 1.5, 2.5, 3.5. To date analysis of locked-on flow regimes in the near wake
region at a Froude number of Fr = 0.2, the dimensionless cylinder submergence depths h = 0.25, 0.5 and 0.75 have not
been available. This study focuses on this analysis based on the numerical flow visualization in terms of the equivorticity
patterns and pressure distribution contours. The observed features are compared with the case when the free surface is
absent (h = ∞) to better understand the effect from the inclusion of the free surface. The numerical algorithm is verified
by applying it to special cases in the absence of a free surface. The validation of the method is also presented for uniform
flow past a stationary cylinder in the presence of a free surface. Comparisons are made with previous numerical results.

2. Model description

A basic schematic that illustrates the problem is shown in Fig. 1, together with important dimensions. In this figure,
the cylinder of radius d is submerged in the fluid at the distance h∗ below undisturbed free surface, g∗ is the acceleration
due to gravity, g⃗∗

= (0, g∗, 0), f ∗ is the frequency of the forced cylinder oscillation. The flow is from left to right which
involves the two-fluid phases (the fluids in the regions Ω1 and Ω2) entering into the domain with the same uniform stream
velocity, U . The fluids inΩ1 andΩ2 have the densities, ρ1, ρ2, and the dynamic viscosities,µ1, µ2, respectively. The cylinder
is initially at rest in a uniform flow with velocity U , and then, at time t∗ = 0, the cylinder starts to perform time-dependent
streamwise oscillation. The imposed dimensionless oscillatory cylinder displacement is assigned by x(t) = A cos(2π ft). The
dimensionless parameters are the forcing amplitude of the cylinder oscillations, A = A∗/d; the frequency ratio, f /f0, with
f = df ∗/U and f0 = df ∗

0 /U being the dimensionless forcing frequency of the cylinder oscillation and the natural vortex
shedding frequency; the Froude number, Fr = U/

√
dg∗, and the dimensionless cylinder submergence depth, h = h∗/d.

Here, f ∗

0 is the dimensional natural vortex shedding frequency of a stationary cylinder and t = t∗U/d is the dimensionless
time. The Reynolds number is defined by R = Ud/ν1 and R = Ud/ν2 for fluids with the kinematic viscosities ν1 = µ1/ρ1
and ν2 = µ2/ρ2 in Ω1 and Ω2, respectively. The dimensionless period of cylinder oscillation, T (=1/f ), is T = T ∗U/d.
Different investigators used various combinations of relevant periodic motion parameters, A or a period parameter, VmT/d,
(Keulegan–Carpenter number, KC , where Vm is the maximum oscillatory velocity), and the forcing frequency parameter
f . If the parameters of the present problem characterizing the periodic motion, are introduced, as defined above, then
A = KC/2π .

2.1. Governing equations

The present two-fluid flow model involves modelling of both fluids in flow domains Ω1 and Ω2 using the same single-
fluid flow model equations employed in [14]. In Gubanov’s work generalized differentiation is utilized to extend the
Reynolds transport theorem over a control volume containing fluid interface for deriving the integral form of governing
equations for the incompressible viscous flow problems involving arbitrarily moving bodies. This is done by following the
work in [15], and the use of generalized function theory made this derivation straightforward, systematic and rigorous
(see [14,5], for more details). The continuity and Navier–Stokes equations proposed in [14] (when a solid body is present)
are summarized in a non-inertial frame of reference which translates with the cylinder as follows

dV
dt

+

∫
A
(u⃗ · n⃗) dS = 0, (1)
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Fig. 1. Schematic of the problem.

d
dt

∫
V
u dV +

∫
A
(n⃗ · u⃗)u dS = −

1
ε

∫
A∪I

pn1 dS +
1
R

∫
A∪I

n⃗ · ∇u dS −

∫
V
a1 dV , (2)

d
dt

∫
V

v dV +

∫
A
(n⃗ · u⃗)v dS = −

1
ε

∫
A∪I

pn2 dS +
1
R

∫
A∪I

n⃗ · ∇v dS +

∫
V


1
Fr2

− a2


dV , (3)

where V and A are the fractional volume and area, respectively, open to flow within the computational cell, V ; I is the
length of the fluid–body interface open to flow; u⃗ is the dimensionless velocity vector, where u⃗ = (u, v, 0); n⃗ is the
outward unit normal vector; S is the control volume boundary. All quantities in governing equations (1)–(3) are given in
their dimensionless form. These quantities are defined in terms of the dimensional counterparts: x = x∗/d, y = y∗/d, u =

u∗/U, v = v∗/U, V = V ∗/d2, S = S∗/d, V = V∗/d2, A = A∗/d, I = I∗/d. The dimensionless pressure is given by
p/ε = p∗/ρ2U2, where ε = ρ1/ρ2 when x⃗ ∈ Ω1, and ε = 1 when x⃗ ∈ Ω2. The external force, F⃗ , is due to the dimensionless
acceleration of the non-inertial frame of reference, a⃗ = (a∗

1d/U
2, a∗

2d/U
2, 0), and due to the dimensionless gravity force,

g⃗ = (0, 1/Fr2, 0), which yields F⃗ = (−a1, 1/Fr2 − a2, 0).
Numerical experiments conducted in the present study show that when the cylinder moves through the fixed staggered

grid, the pressure cell which belongs to the cylinder at time t = tn may become the fluid cell at time t = tn+1. The continuity
equation needs to be discretized in this pressure cell. Since at time t = tn the velocities in the pressure cell do not satisfy
the mass balance exactly, the pressure field has to do extra work to restore the mass balance in the pressure cell at time
t = tn+1. This extra work seems to reflect as a spike in the pressure. Fekken [16] and Kleefsman [17] attempted to overcome
this difficulty but they failed to eliminate these pressure spikes. In the present computational model, the pressure spikes
are eliminated by using the non-inertial frame of reference which translates with the cylinder. The single set of governing
equations (1)–(3) are solved in the flow part of the computational domain, Ω = Ω1 ∪ Ω2, shown in Fig. 1, after setting the
fluid properties, ρ1/ρ2 = 1/100 and µ1/µ2 = 1/100 (or ν1/ν2 = 1), following the work of Reichl et al. [4]. Therefore, the
Reynolds numbers in the fluid regions Ω1 and Ω2 are the same which is varied by altering the viscosity. In Gubanov’s [14]
work, themotion of the fluid inΩ1 is neglected and the effect of the ambient pressure exerted on the fluid inΩ1 by the fluid
in Ω2 is taken into consideration. Thus, the governing equations are solved in the region Ω2 only. Consequently, the free
surface is modelled explicitly at the computational boundary. This results in numerical difficulties due to the complexity of
application of boundary conditions at the free surface on the non-boundary-fitted Cartesian grid.

3. Numerical method

Following the work in [5], the continuity and Navier–Stokes equations are discretized using a finite volume
approximation for two fluid regionsΩ1 andΩ2 on a fixed Cartesian grid. This is done based on the aggregated-fluid approach
by describing the behaviour of both fluids using one set of Eqs. (1)–(3). In this approach the free surface is no longer the
boundary of the calculation domain but just the interface between two fluids. This prevents difficulties with free surface
conditions reported in [14] but imposes new challenges as a discontinuity is introduced in the fluid properties across
the interface. A second-order accurate central-difference scheme is used to discretize the governing equations in space
in conjunction with first-order explicit forward Euler scheme to advance the numerical solution in time. A cell merging
procedure is used to preserve a global second-order accuracy of the spatial discretization. The no-slip boundary conditions
are implemented on the surface of the cylinder. At the inflow boundary of the computational domain, the uniform free
stream conditions are prescribed. Well-posed open boundary conditions, due to Gresho and Sani [18],

1
R

∂u
∂x

+
h̄
Fr2

= p,
∂v

∂x
= 0 (4)

are enforced at the outflow boundary. Here h̄ is the height of the fluid at the outflow boundary. At the top and bottom
boundaries of the computational domain, the free-slip boundary conditions are prescribed. The uniform flow is used as the
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Fig. 2. An example of pressure cell labeling.

initial condition. It is assumed that at time t = 0, the free surface is undisturbed. The present paper adopts basically the
same numerical method of solution as that used in [5], and a summary of the numerical method is given below.

3.1. Cell labeling

The governing equations and the boundary conditions are discretized on a staggered grid. The cell labeling is used
to identify cells of different types. This is done by following the work of Gerrits and Veldman [19]. For pressure cells
four different cell types are distinguished. Cells for which the fluid in Ω1 and the fluid in Ω2 occupy more than a half
cell are marked as F(luid). B(oundary) cells are the ones located in a vicinity of fluid–body interface. Cells located at the
computational domain boundary are labeled asD(omain). Cells occupied by the body are called (e)X(cluded). The continuity
equation is discretized in all F cells. The value of pressure is set to zero in B, D and X knots. An example of pressure cells
labeling is shown in Fig. 2. Next, velocity cells are labeled in the following manner: the edge of pressure cell on which u-
or v-velocity knot is located is labeled according to the types of pressure cells this edge belongs to. For example, the edge
between two F cells is denoted as FF edge. As a result, seven types of velocity cells can be distinguished: FF, BF, BX, DF, BB,
DD and XX. The Navier–Stokes are discretized in all FF cells. The values of velocities BF, BB, BX and XX are set to zeros. DF
and DD velocities are used to apply boundary conditions at the computation domain boundary.

3.2. Discretization of the continuity equation

Fig. 3 shows a pressure cell, pi,j, which is cut by the presence of a fluid–body interface. When solving the continuity
equation (1) in this cell, the finite volume discretization yields

− (ui,jA0)
n+1

+ (ui+1,jA1)
n+1

− (vi,jA2)
n+1

+ (vi,j+1A3)
n+1

= 0, (5)

where Ak, k = 0 . . . 3 indicate the areas open to flow in the pi,j cell as shown in Fig. 3.

3.3. Discretization of the Navier–Stokes equations

Themomentum equations (2) and (3) are solved in u- and v-cells, respectively. In what follows, only the discretization of
the u-momentum equation (2) is discussed; the discretization of the v-momentum equation (3) follows a similar approach.
If FF cell is not in a vicinity of the fluid–body interface, its neighbour velocity cells will be one of the following types: FF, DF
or DD. In this situation, a standard discretization is used to discretize the Navier–Stokes equations [20]. However, when FF
cell borders at least one cell of BF type (i.e., FF knot is in a vicinity of the fluid–body interface), a standard discretization of
the u-momentum equation (2) will result in the loss of accuracy. The typical situation when FF cell (ABCDEG) borders BF
cell (GEF) is shown in Fig. 4. Many studies exclude BF cells from consideration and apply a no-slip condition to calculate BF-
velocity (see, for example, [14,17,16,7]). Gubanov [14] pointed out that the loss of accuracy in the vicinity of the fluid–body
interface due to excluding BF cells greatly affects hydrodynamic forces imposed on this interface. In the present model, a
cell merging technique is used to discretize the Navier–Stokes equations in such FF cells to ensure that the second-order
accuracy is preserved. For example, in Fig. 4, FF cell (ABCDEG) can be merged with the BF cell (GEF) to form a trapezoidal
cell near the surface of the cylinder. Depending on the location and the local orientation of the fluid–body interface, cells of
a wide variety of shapes can be formed. An approximation to the velocity knots for which a standard discretization is not
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Fig. 3. Discretization of the continuity equation (1). The part of the cell occupied by the cylinder is shown in gray.

Fig. 4. Discretization of the u-momentum equation (2). FF cell (ABCDEG) borders BF cell (GEF).

applicable is then obtained by using a two-dimensional spline interpolating function implemented in SINTEF multilevel B-
spline approximation library (available at www.sintef.no). The B-spline interpolation allows a second-order approximation
of the velocity and convective flux from available neighbouring values of the fluid velocities and the values computed from
the no-slip boundary condition. An example of u-cell in which u-momentum equation (2) is discretized is shown in Fig. 4.

The time derivative is approximated in space by using the midpoint rule and in time by using the explicit forward Euler
method as

d(ui,jVui,j)

dt
≈

un+1
i,j Vn+1

ui,j − un
i,jV

n
ui,j

1t
, (6)

where Vui,j = VABCDEG + VGEF . The convective term is discretized by∫
A
(n⃗ · u⃗)u dS ≈

N ′−
k=0

un+1
Ak

f nAk
, N ′

= 2 . . . 8, (7)

where f nAk
is the convective flux through an edge Ak at the time t = tn, N ′ denotes a number of edges of u-cell for which a

velocity and convective flux are evaluated. A finite volume approximation of the diffusive term for the edges of a cell ui,j is
written as

1
R

∫
A
n⃗ · ∇udS ≈

1
R

N ′−
k=0

f̄ n+1
Ak

+
1
R

N ′−
k=0

f̄ n+1
Ik , N ′

= 0 . . . 8. (8)

http://www.sintef.no
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Here, f̄ n+1
Ak

and f̄ n+1
Ik indicate the diffusive flux throughAk and Ik, respectively, at the time t = tn+1. It is noted that the no-slip

condition is used when approximating f̄ n+1
Ik .

For the approximation of the pressure and volumetric force no merging procedure is needed since BF cells are excluded
from the consideration. The pressure term is discretized as a boundary integral resulting in

1
ε

∫
I
pn1dS. ≈

1
εn+1

(pn+1
i,j nI0In+1

0 + pn+1
i−1,jnI1In+1

1 ), (9)

where nI0 and nI1 indicate the x-component of the normal vector to the fluid–body interface segments In+1
0 and In+1

1 ,
respectively, calculated at the time t = tn+1. Finally, the volumetric force is approximated by∫

V


1
Fr2

− a1


V ≈


1
Fr2

− a1


Vui,j . (10)

3.4. Fluid interface reconstruction and advection

In the present two-fluid flow model, the free surface is discretized with the volume-of-fluid method due to Hirt and
Nichols [6]. To capture the free surface, the known fluid interface geometry is used to compute fluid volume fraction, F ,
in each pressure cell, pi,j to distinguish between the fluids in the regions Ω1 and Ω2. The free surface is defined in the
computational cells where a rapid change in density, ρ, and viscosity, ν, occurs. Asmentioned earlier, the ratio of the density
of the fluid in Ω1, ρ1, and the density of the fluid in Ω2, ρ2, is set to ρ1/ρ2 = 1/100 (i.e., ν1/ν2 = 1). The Reynolds numbers
for the fluids inΩ1 andΩ2 are the same. Thus, only the density in the vicinity of the free surface interface is computed based
on the average of the densities ρ1 and ρ2 at time t = tn+1.

At any time in the solution, the interface is reconstructed using the piecewise linear interface algorithm to approximate
free surface and fluid–body interfaces following theworks in [7,8]. In thismethod for every pressure cell pi,j with 0 < Fi,j < 1
one defines an orientation and then a distance of a straight-line segment

n⃗x⃗ + d = 0, (11)

where F is volume of fluid, unit normal n⃗ pointed out of fluid and d is a line distance from the origin, which cuts Fi,j amount
of fluid in cell (see [7,21]). Following the work in [7], an approximation of the fluid interface normal

n⃗ =
∇F
|∇F |

(12)

is obtained by standard finite difference discretization in every pi,j cell with respect to its neighbours in 3× 3 block of cells.
It is noted that the fluid–body interface normal is determined based on the geometry of the body. Since the free surface
interface is free to move, its advection in time should be performed after the new velocity field has been calculated from the
governing equations. In the present numerical algorithm, following the work of Mironova [5], geometrical area-preserving
volume-of-fluid advection algorithm of Aulisa et al. [9] is used to advect the free surface in time. The advection algorithm
preserves mass exactly for two-dimensional incompressible flows.

The numerical method has been implemented in a computer program developed by Dr. Kocabiyik’s research group
at Memorial University (see [5] for implementation details). Discrete pressure and velocity fields corresponding to the
successive time instants are obtained as a result of solution of a coupled sparse linear system in primitive variables using
a generalized minimal residual method. This is done by making use of the Trilinos numerical solver library [13]. At each
time iteration, a preconditioned linear system PAx = Pb is solved using the generalized minimal residual method, where
P is an incomplete LU preconditioner with a threshold. The threshold parameter is chosen so as to minimize the amount
of memory needed to store the preconditioner and at the same time to maximize the rate of convergence of the iterative
solver. The convergence criteria is ‖PAx − Pb‖ ⩽ 10−6.

4. Validation

The numerical algorithm is first tested to determine the accuracy of the spatial and temporal discretizations. The problem
of an initial flow past a stationary cylinder in the absence of a free surface at R = 103 is chosen for the accuracy tests. This
Reynolds number is high enough to present the flow structure in detail, yet still low enough to allow for full resolution on
fine grids. The relative errors in the predicted quantities are computed at t = 0.1 using the discrete L2 norm defined as

‖ξ̄ − ξ‖ = 1h

−
i,j

(ξ̄i,j − ξi,j)
2

1/2

, (13)

where ξ̄ is the solution obtained by the finest grid possible, ξ is the computed quantity and 1h is the uniform spatial grid
step. Since exact analytical solution to this problem is not available, the fully converged numerical predictions obtainedwith
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Table 1
L2 norm of the relative errors of the pressure, p, and velocity components, u, v, as the time step and the number of grid cells per cylinder diameter vary for
the stationary cylinder case in the absence of a free surface at R = 103 when t = 0.1.

Grid cells per cylinder diameter 1t
40 60 90 0.004 0.002 0.001

‖p̄ − p‖ 0.002677 0.001188 0.000538 0.000491 0.000243 0.000122
‖ū − u‖ 0.021027 0.011165 0.005635 0.000575 0.000291 0.000147
‖v̄ − v‖ 0.017875 0.008519 0.003980 0.000597 0.000295 0.000147

the grid systemof 120 cells per cylinder diameter are used for full resolution. Three uniformgrid systems 90×90, 60×60 and
40×40 are used for the spatial and temporal accuracy tests. The uniform spatial grid step values are1h = 1/90, 1/60, 1/40,
respectively. Table 1 shows the calculated spatial and temporal relative errors of the pressure, p, and velocity components,
u, v, at t = 0.1 as the near wake grid resolution and the time step vary. The results indicate that the present numerical
algorithm has an accuracy of second-order in space and of first-order in time, as expected. The computational domain
geometry is defined with respect to the mean position of the cylinder. In the vicinity of the mean cylinder position, the
grid has fine resolution and is uniform. Outside of the uniform grid region, the grid expands exponentially towards the four
boundaries of the computational domain. The computational grid geometry is defined by specifying the locations of inflow
and outflow boundaries, L1 and L2, along the x-axis and the location of the top and bottom boundaries, L3, along the y-axis
as shown in Fig. 5. Numerical experiments indicate that the grid with L1 = 20, L2 = 30, L3 = 40 yields results which
are accurate to maximum 3% when compared to the reference grid with computational domain size 30 × 40 × 60 for the
case of uniform flow past a stationary cylinder in the presence of a free surface at R = 200: Fr = 0.3, h = 0.55. This
level of accuracy is assumed to be sufficient. The grid resolution tests are carried out for the uniform flow past a stationary
cylinder in the presence of a free surface at R = 200: Fr = 0.3, h = 0.7. The grids with the grid resolution of 60 cells per
diameter give the maximum error of order 2.2% when compared to those with the grid resolution of 90 cells per diameter.
Thus, the grid resolution of 60 cells per diameter is chosen for the current investigation of uniform flow past the cylinder in
the presence of a free surface. This mesh has approximately 250 × 190 node points with considerable mesh concentration
both around the cylinder 100 × 100 and in the wake, 150 × 90, (see Fig. 5). For a Reynolds number of 200, this mesh give a
natural shedding frequency of f0 = 0.198. This is within 0.1% of the accepted value of 0.197–0.199 [22,23]. The discussion
of spatial grid resolution is in principle the same as that given in [5], and the time step 1t = 0.005 used for the evolution of
the solution follows exactly those set out in that discussion. The accuracy of the numerical algorithm is checked by carrying
out computations for the case of uniform flow past a stationary cylinder in the presence of a free surface at R = 180. The
predicted flow properties are compared to those obtained in the numerical study in [4]. In the work of Reichl et al. [4], the
flow is calculated using the computational fluid dynamics commercial software package FLUENT. This package is based on
the finite volume method, and uses volume-of-fluid method to treat two flow phase models via a segregated solver on an
unstructured boundary fitted grid with a prescribed pressure at the outflow

∂p
∂x

= 0,
∂p
∂y

=
1
Fr2

(14)

and thus, differs from the outflow boundary condition (4) used in the present study. The spatial discretization is performed
by a quadratic upstream interpolation for convective kinematicsmethod of Leonard [24]. The temporal discretization is only
first-order accurate due to the employment of the volume-of-fluid method. Further details concerning implementation of
this software package can be found in the FLUENTmanuals. The comparison of the nearwake structures between the present
computational method and the numerical results of Reichl et al. [4] and Gubanov [14] at R = 180, Fr = 0.3 are displayed
in Fig. 6 for the cylinder submergence depth, h = 0.55. The results are in good agreement. Two-phase flow models with
different outflow boundary conditions are used in the present study and the work by Reichl et al. and thus, the free surface
is modelled implicitly. A single-fluid flowmodel is used in [14], and free surface boundary conditions are satisfied explicitly
to track the free surface. These differences lead to the minor discrepancies between the numerical results displayed in
Fig. 6.

In Table 2, the effect of the submergence depth, h, on predicted values of the local Froude number, Fr|L, the frequency ratio,
f̄0/f0, (f̄0, f0: the vortex shedding frequencies in the presence and absence of a free surface, respectively, and f0 = 0.191), the
average u-velocity,u, at R = 180: Fr = 0.3, h = 0.1, 0.4, 0.55 are compared with the numerical results of Reichl et al. [4].
The u-velocity is averaged based on the free surface height, h|L, in the region directly above the cylinder. This is undertaken
for each Froude number, Fr, and the submergence depth, h, case at the time when maximum lift occurs. For the cases, when
no vortex periodic shedding is observed, the average u-velocity is computed close to the point where maximum lift occurs.
The local Froude number, Fr|L, is calculated based on the maximum u-velocity in the region directly above the cylinder, ū,
at the time when the lift coefficient reaches its maximum and the free surface height, h|L, by using Fr|L = ū/

√
(gh|L). The

predicted results are in excellent agreement with the numerical results of Reichl et al. [4].
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Fig. 5. Grid geometry parameters (left). The shaded region is uniform grid region. Grid used for themajority of the simulations (right). It contains 250×190
cells.

Fig. 6. The equivorticity patterns for the case of uniform flow past a stationary cylinder in the presence of a free surface at R = 180, Fr = 0.3 and h = 0.55:
numerical results of Gubanov [14] (left); Reichl et al. [4] (middle) and present results (right).

Table 2
The effect of the submergence depth, h, on the local Froude number, Fr|L; the frequency ratio, f̄0/f0; the average u-velocity in the region directly above the
cylinder,u, for uniform flow past a stationary cylinder in the presence of a free surface at R = 180: Fr = 0.3, h = 0.1, 0.4, 0.55. Comparison with the
numerical results of Reichl et al. [4].

Reichl et al. [4] Present
h Fr|L f̄0/f0 u Fr|L f̄0/f0 u
0.10 1.09 – 0.70 1.09 – 0.71
0.40 0.73 1.01 1.35 0.73 1.00 1.34
0.55 0.66 1.07 1.41 0.66 1.07 1.41

5. Results

The numerical simulations for two-dimensional flow past a circular cylinder subject to forced in-line oscillations beneath
a free surface are carried out at the Reynolds number of R = 200: A = 0.13, Fr = 0.2, h = 0.25, 0.5, 0.75 when
f /f0 = 1.5, 2.5, 3.5. The unsteady flow calculations are conducted for the time up to t = 100 when h = 0.25, 0.5, 0.75
and up to t = 150 in the absence of free surface (h = ∞) based on the grid system 20 × 30 × 40 with 252 × 196
elements and the time step, 1t = 0.005. The predicted natural vortex shedding frequency at R = 200 is f0 = 0.198. The
numerical results are visualized in terms of equivorticity and pressure contours in the near wake region. All the snapshots
that follow, t = 0T corresponds to the instant when the cylinder reaches its maximum displacement, x(t) = A. In all the
equivorticity and the pressure contour plots that follow, black colours correspond to counter-clockwise rotation (positive)
and gray colours indicate clockwise rotation (negative). For streamwise oscillations of the cylinder, the range near f /f0 ≈ 2
constitutes the fundamental lock-on regime (the unsteady pressures from thewake vortices induce the cylinder to respond).
Certain wake patterns can be induced by the forced body motion, such as the 2S mode (two single vortices per cycle, like
the classic Kármán street), 2P mode (two vortex pairs per cycle), and P + S (one single and a pair of vortices per cycle),
following the terminology introduced in [25]. The determination of locked-on regimes of vortex shedding is based on the
repetition of vortex shedding in the near wake region over an integer number of cylinder oscillation periods following the
work of Ongoren and Rockwell [26]. Thus, a single vortex shedding cycle, Tv , is defined by Tv = nT , where n is an integer
number. The coalescence of vortices may result in C(2S) (or C(P + S) or C(2S + 2P)) mode. For example, in C(2S) mode at
least one shed vortex is formed by the smaller vortices coalesce.

5.1. Cylinder submergence depth, h = 0.5

Table 3 summarizes the effect of the free surface inclusion at h = 0.5 on the flow regimes, the vortex shedding modes
and their periods, Tv , for the case Fr = 0.2 when f /f0 = 1.5, 2.5, 3.5, respectively. For f /f0 = 1.5, a transition occurs from
quasi-periodic state (C(6S) mode, per 5T , within T ≤ t ≤ 14T ) to non-periodic state (14T ≤ t ≤ 23T ); and then to quasi-
periodic state (4Smode, per 3T , within 23T ≤ t ≤ 29T ). The presence of the free surface seems to destabilize the flow with
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Table 3
The effect of the free surface inclusion on vortex shedding modes and their periods, Tv , for the case Fr = 0.2 and h = 0.5 at R = 200: A = 0.13, f /f0 =

1.5, 2.5, 3.5. The superscript ‘‘∗ ’’ denotes quasi-locked-on modes.

f /f0 h = 0.5 h = ∞

Mode Tv Mode Tv

1.5
C(6S)∗ (T ≤ t ≤ 14T ); 5T
Non-locked (14T < t < 23T ); – 2P 2T
4S∗ (23T ≤ t ≤ 29T ) 3T

2.5 Non-locked – C(6S)∗ 8T

C(2S)∗

3.5 C(2S)∗ (21T ≤ t ≤ 33T ); 4T (50T ≤ t ≤ 71T ); 4T
Non-locked (34T ≤ t ≤ 69T ) Non-locked

(72T ≤ t ≤ 104T )

an increase in the frequency ratio from f /f0 = 1.5 to f /f0 = 2.5. For the highest frequency ratio, f /f0 = 3.5, the classical
quasi-locked-on C(2S) mode, per 4T , is observed within twelve periods of cylinder oscillation, and then, a transition into
the non-periodic state occurs (34T ≤ t ≤ 69T ). The details of the new quasi-locked-on vortex shedding modes, C(6S), are
given only for the frequency ratio, f /f0 = 1.5.

In Fig. 7, the equivorticity patterns and the pressure contours over five periods of cylinder motion, 5T , are displayed
when f /f0 = 1.5, (T ≤ t ≤ 14T ). The quasi-locked-on C(6S) mode, per 5T , is observed. This mode is a combination of
three classical 2S modes. Two co-rotating positive vortices ‘‘3’’ and ‘‘4’’ merge to produce the large single vortex, ‘‘4 + 3’’,
over T/2 < t < T , and the cylinder alternately sheds two single vortices from lower and upper sides, respectively, over
0T ≤ t ≤ 3T/2 (‘‘4 + 3’’ is shed at t ≈ T ; ‘‘1’’ is shed at t ≈ 3T/2). Then, the positive vortex, ‘‘6’’, developing T/2 ≤ t ≤ 2T
becomes detached at t ≈ 2T . On the other hand, the negative vortex, ‘‘2’’, developed over T ≤ t ≤ 3T is shed at t ≈ 7T/2.
Over the last two periods of vortex shedding cycle (3T ≤ t ≤ 5T ), twomore single vortices, ‘‘10+ 8’’ and ‘‘5’’, are alternately
shed from lower and upper sides of the cylinder at t ≈ 4T and t ≈ 9T/2, respectively. Thus, the cylinder alternately sheds
three single positive vortices and three single negative vortices from lower and upper sides, respectively, over 0T ≤ t ≤ 5T .
Therefore, the quasi-locked-on C(6S) mode, per 5T , is observed for f /f0 = 1.5 when h = 0.5 within T ≤ t ≤ 14T . The
corresponding pressure plots displayed in Fig. 7 reveal that the high pressure region develops in the stagnation region; and
above and below the low pressure region in the downstream of the cylinder at t = 0T . Moreover, at t = 0T the low pressure
region concentration is observed rear of the cylinder. By the development of the positive vortex, ‘‘6’’, over 0T ≤ t ≤ T/2
the high pressure from the stagnation region starts moving in the clockwise direction, whereas the lowest pressure region
is shifted substantially to the lower side of the cylinder. Then, the high pressure region from the stagnation region moves
in the counter-clockwise direction over T ≤ t ≤ 2T , in which two negative vortices, ‘‘2’’ and ‘‘5’’, develop. On the other
hand, the low pressure region is substantially formed in the rear of the cylinder at t ≈ 2T when the positive vortex, ‘‘6’’,
becomes detached. Over 5T/2 ≤ t ≤ 9T/2, the high pressure region associated with the stagnation region starts to move in
the clockwise direction and it extends above and below the low pressure region at t ≈ 9T/2 by the shedding of the negative
vortex, ‘‘5’’. At the same time, the low pressure region is concentrated rear and upper right side of the cylinder.

5.2. Cylinder submergence depth, h = 0.75

The effect of the free surface inclusion at h = 0.75 on the flow regimes, the vortex shedding modes and their periods,
Tv , is summarized in Table 4, respectively. The presence of the free surface seems to break up the periodicity of the vortex
shedding when f /f0 = 1.5. The period of vortex shedding mode is 2T for f /f0 = 1.5 in the absence of free surface. The
coalescence between the vortices in the vortex shedding layers appears at the higher frequency ratios, f /f0 = 2.5 and 3.5,
for both h = 0.75 and h = ∞. For f /f0 = 2.5 and 3.5, a switchover in the vortex shedding modes is observed as h decreases
from ∞ to h = 0.75. It is also noted that in the absence of free surface a switchover from 2P to quasi-locked-on C(6S) and
C(2S) modes is observed with an increase in the value of the frequency ratio, f /f0. On the other hand, as the frequency ratio,
f /f0, increases, the presence of free surface at h = 0.75 seems to stabilize the vortex shedding mode to the quasi-locked-on
C(P+ S) + C(2S) mode for both f /f0 = 2.5 and 3.5. The details of this new vortex shedding mode will be given only for the
frequency ratio, f /f0 = 3.5.

The equivorticity patterns and the pressure contours are displayed in Fig. 8 in the near wake of the cylinder over seven
periods of cylinder oscillation, 7T , when f /f0 = 3.5. The vortex shedding mode is the quasi-locked-on C(P + S) + C(2S)
mode, per 7T , within twenty-six periods of cylinder oscillation, 26T , (4T ≤ t ≤ 30T ). A transition into the non-periodic
state is observed when the switching time is reached at t ≈ 30T , and then flow shows non-periodic behaviour within
31T ≤ t ≤ 69T . The C(P+ S) + C(2S) mode is the combination of the two classical C(P+ S) and C(2S) modes. Fig. 8 shows
that the cylinder alternately sheds a single vortex from each sides, namely the vortex ‘‘3’’ from lower side (t ≈ T ) and the
vortex ‘‘2 + 1’’ from upper side (t ≈ 5T/2). Then, it sheds the single vortex ‘‘10 + 8 + 6 + 4’’ (t ≈ 5T ) and the pair of co-
rotating vortices ‘‘11’’ and ‘‘9 + 7 + 5’’ (t ≈ 6T ) from positive and negative vortex shedding layers, respectively. It is noted
that the development of each vortex is a result of coalescence of smaller co-rotating vortices in the vortex shedding layer.
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Fig. 7. The equivorticity patterns (left) and the pressure contours (right) in the near wake over 5T , at R = 200: A = 0.13, f /f0 = 1.5 when Fr = 0.2 and
h = 0.5 [T ≈ 3.367, 23.569 ≤ t ≤ 40.404 : (7T , 12T ) or symbolically (0T , 5T )]. The quasi-locked-on C(6S) mode, per 5T , is observed (t ≤ 14T ).

Thus, this vortex shedding mode is designated as the quasi-locked-on C(P + S) + C(2S) mode, per 7T . An examination of
the pressure plots indicates that the positive vortices represent the regions of the lowest pressure and thus the near wake is
controlled by the positive vortex structures. Moreover, the pronounced variations in the free surface level enhance the high
and low pressure regions near the curved free surface interface. The highest pressure region associated with the stagnation
switches from the stagnation region and the region directly above the cylinder to the region in the upper left side of the
cylinder where the free surface rises sufficiently in this region, at (t = nT/2, n = 1, 3, 5, 7, 9, 11, 13). On the other hand,
the low pressure region develops rear and upper left side of the cylinder near the free surface interface at t = 0T . Then,
it shifts to the regions below and directly above the cylinder when the free surface falls in this region, at t = T/2. This
switching process in the location of the low pressure region is observed at every half period of cylinder oscillation, T/2,
(t = nT/2, n = 1, 3, 5, 7, 9, 11, 13).
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Fig. 7. (continued)

Table 4
The effect of the free surface inclusion on vortex shedding modes and their periods, Tv , for the case Fr = 0.2 and h = 0.75 at R = 200: A = 0.13, f /f0 =

1.5, 2.5, 3.5. The superscript ‘‘∗ ’’ denotes quasi-locked-on modes.

f /f0 h = 0.75 h = ∞

Mode Tv Mode Tv

1.5 Non-locked – 2P 2T

2.5
[C(P + S) + C(2S)]∗

5T C(6S)∗ 8T(3T ≤ t ≤ 40T );
Non-locked (41T ≤ t ≤ 49T )

3.5
[C(P + S) + C(2S)]∗

7T

C(2S)∗

4T(4T ≤ t ≤ 30T ); (50T ≤ t ≤ 71T );
Non-locked (31T ≤ t ≤ 69T ) Non-locked

(72T ≤ t ≤ 104T )

6. Summary and conclusions

The problem of unsteady, laminar, two-dimensional flow of a viscous incompressible fluid past a circular cylinder subject
to in-line oscillations in uniform flow in the presence of the free surface is investigated numerically. The method of solution
is based on a finite volume discretization of the two-dimensional unsteady continuity and Navier–Stokes equations (when a
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Fig. 8. The equivorticity patterns and thepressure contours in thenearwake over sevenperiods of cylinder oscillation, 7T , atR = 200:A = 0.13, f /f0 = 3.5
when Fr = 0.2 and h = 0.75 [T ≈ 1.443, 30.303 ≤ t ≤ 40.404 : (21T , 28T ) or symbolically (0T , 7T )]. The quasi-locked-on C(P + S) + C(2S) mode, per
7T , is observed (4T ≤ t ≤ 30T ).
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Fig. 8. (continued)

solid body present) in their pressure–velocity formulation on a fixed Cartesian grid. The two-fluid model based on volume-
of-fluid method is used to discretize the free surface interface. The free surface is defined in the computational cells where
a rapid change in density, ρ, and viscosity, µ, occurs: ρair/ρwater = 1/100, µair/µwater = 1/100 (see, for example, [4]). The
accuracy checks indicate that the present method is of second-order in space and first-order in time. The code validations
in special cases show good comparisons with previous numerical results.

The fluid flow is calculated at the Reynolds number of R = 200 and the displacement amplitude A = 0.13 for the
frequency ratios f /f0 = 1.5, 2.5, 3.5 when Fr = 0.2 and h = 0.25, 0.5, 0.75. The effects of the cylinder submergence
depth, h, and the frequency ratio, f /f0, on the equivorticity patterns in the near wake region are summarized in Fig. 9.
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Table 5
The effects of the free surface inclusion, the cylinder submergence depth, h (=0.25, 0.5, 0.75) and the frequency ratio, f /f0 (=1.5, 2.5, 3.5), on vortex
shedding modes and their periods, Tv , at R = 200: A = 0.13, Fr = 0.2. The superscript ‘‘∗ ’’ denotes quasi-locked-on modes.

f /f0 h = 0.25 h = 0.5 h = 0.75 h = ∞

Mode Tv Mode Tv Mode Tv Mode Tv

1.5 2T

C(6S)∗ 5T

Non-locked – 2P 2T

(T ≤ t ≤ 14T );
C(2S)∗ Non-locked –(11T ≤ t ≤ 29T ) (14T < t < 23T );

4S∗

3T(23T ≤ t ≤ 29T )

2.5

C(2S)∗

4T Non-locked –

[C(P + S) + C(2S)]∗

5T C(6S)∗ 8T(7T ≤ t ≤ 31T ) (3T ≤ t ≤ 40T )
Non-locked Non-locked
(32T ≤ t ≤ 49T ) (41T ≤ t ≤ 49T )

3.5

C(2S)∗

4T 4T 7T 4T

(21T ≤ t ≤ 32T )
Non-locked C(2S)∗ [C(P + S) + C(2S)]∗ C(2S)∗
(32T < t < 34T ) (21T ≤ t ≤ 33T ) (4T ≤ t ≤ 30T ) (50T ≤ t ≤ 71T )
C(2S)∗ Non-locked Non-locked Non-locked
(34T ≤ t ≤ 43T ) (34T ≤ t ≤ 69T ) (31T ≤ t ≤ 43T ) (72T ≤ t ≤ 104T )
Non-locked
(44T ≤ t ≤ 43T )

The case when the free surface is absent (h = ∞) is also shown in this figure. The snapshots are taken at the instant
x(t) = A. It is noted that for the periodic/quasi-periodic cases the snapshots are taken over the time interval in which the
flow reaches a periodic/quasi-periodic state. For non-periodic cases, the commonly appearing equivorticity plots at x(t) = A
(within the time interval 25T ≤ t ≤ 100) are also shown in the figure. It is seen that minimal free surface deformations
occur at h = 0.75, and for all f /f0. Thus, there is a diffusion of the opposite signed vorticity across the interface. As the
cylinder submergence depth, h, decreases to 0.25, the interface curvature becomes more pronounced (only slightly) for
each frequency ratio, f /f0. At the smallest frequency ratio, f /f0 = 1.5, the lower vortex shedding layer shows a similar
behaviour irrespective of the presence of a free surface. On the other hand, inclusion of the free surface seems to cause a
change in the vortex formation from the upper side of the cylinder: the shed negative vortex is lifted upward toward the free
surface interface for each h = 0.25, 0.5, 0.75; and attaches to the free surface at h = 0.25, 0.5 at the same frequency ratio,
f /f0 = 1.5. For the higher frequency ratios, f /f0 = 2.5, 3.5, the near wake shows a quite similar behaviour in the presence
of free surface at h = 0.5, 0.75, when compared to that at h = ∞. At the smallest cylinder submergence depth, h = 0.25,
the near wake is dissimilar to the cases at h = 0.5, 0.75, especially for f /f0 = 2.5. When h = 0.25 the negative vorticity
diffuses across the interface due to the interaction with the free surface for all f /f0. At larger cylinder submergence depths,
h = 0.5, 0.75, the shed negative vortex is lifted upward toward the free surface by the propagation of the positive vortices
as f /f0 increases. This results in the elongation of the negative vortices in the horizontal direction, and they become weaker
as they reach the free surface. Thus, the near wake becomes more dominated by positive vortex structures and it seems to
be more skew symmetric as the cylinder submergence depth, h, decreases from ∞ to 0.25. It is also seen that, the vortex
formation length (length of the positive vortex developing in the lower vortex shedding layer) remains almost the same as
h decreases from ∞ to 0.5 for the frequency ratios, f /f0 = 1.5, 2.5. On the other hand, an increase in the frequency ratio,
f /f0, from 2.5 to 3.5 results in an increase (or a decrease) in the vortex formation length by approximately 21.5%, 26.3% and
34.4% (or 9.3%) for the cylinder submergence depths, h = 0.5, h = 0.75 and h = ∞ (or h = 0.25), respectively. Moreover,
the amount of the opposite signed vorticity near the free surface interface increases as the frequency ratio, f /f0, increases
from 1.5 to 3.5 in the presence of the free surface at h = 0.25, 0.5, 0.75. Minimal free surface deformations become more
pronounced with the increased frequency ratio as expected (see [4]).

Table 5 summarizes the effects of free surface inclusion, cylinder submergence depth, h, and the frequency ratio, f /f0,
on the vortex shedding modes and their periods, Tv . This investigation has shown that it is possible to generate distinctly
different patterns of vortex formation than that of classical vortex shedding modes [2S (or C(2S)), 2P (or C(2P)), P + S
(or C(P + S))] in the presence of the free surface depending on the values of the cylinder submergence depth, h, and the
frequency ratio, f /f0. These new vortex shedding modes are the combination of the two and three 2S modes; C(P + S) and
C(2S)modes i.e., 4S and 6S (or C(6S)) mode; C(P+S)+C(2S)mode. At the smallest frequency ratio, f /f0 = 1.5, the presence
of the free surface seems to destabilize the flow at h = 0.75 when compared to the reference case h = ∞. A decrease in
the value of h, from 0.75 to 0.5, results in the stabilization of the flow, and the occurrence of new vortex shedding modes
(quasi-locked-on C(6S) mode, per 5T and quasi-locked-on 4S mode, per 3T ) for f /f0 = 1.5. The quasi-locked-on C(2S)
mode, per 2T, is observed at h = 0.25 for f /f0 = 1.5. This mode persists for the higher frequency ratios, f /f0 = 2.5 and
3.5 when h = 0.25. As the frequency ratio, f /f0, increases from 1.5 to 2.5, the vortex shedding is stabilized and produces
different modes of vortex shedding, C(P + S) + C(2S), per 5T , at h = 0.75. On the other hand, the flow shows non-periodic
behaviour for the smaller cylinder submergence depth, h = 0.5, when f /f0 = 2.5. An interesting point to note is that for the
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Fig. 9. The effects of the cylinder submergence depth, h, and the frequency ratio, f /f0 , on the equivorticity patterns at R = 200: A = 0.13, Fr = 0.2.

smaller frequency ratios, f /f0 = 1.5 and 2.5, the presence of the free surface at each cylinder submergence depth causes a
switchover in the vortex shedding modes when compared to the reference case h = ∞. On the other hand, at the highest
frequency ratio, f /f0 = 3.5, the quasi-locked-on C(2S) mode, per 4T , persists irrespective of the presence of a free surface,
except the case when h = 0.75. The vortex shedding period, Tv , increases from 2T to 4T and 8T when h = 0.25 and h = ∞,
respectively, with an increase in the frequency ratio, f /f0, from 1.5 to 2.5. However, as f /f0 increases from 2.5 to 3.5, the
vortex shedding period, Tv , remains fixed at 4T when h = 0.25; increases from 5T to 7T at h = 0.75, and decreases from
8T to 4T at h = ∞.

An examination of the pressure plots at t = 0T (when the cylinder reaches its maximum displacement, x(t) = A)
indicates that high pressure region is associated with the front stagnation region for the cases h = 0.25, 0.5, 0.75, h = ∞

when f /f0 = 1.5; h = 0.5, 0.75 when f /f0 = 3.5; and h = ∞ when f /f0 = 2.5, 3.5. However, for the frequency ratio,
f /f0 = 2.5, the high pressure concentration substantially occurs at the upper left side of the cylinder at t = 0T when
h = 0.25, 0.5, 0.75 unlike the reference case h = ∞. On the other hand, at t = 0T low pressuremainly concentrates the rear
or the bottom and above of the cylinder by the development of the new vortices irrespective of the cylinder submergence
depth, h, and the frequency ratio, f /f0 (see Figs. 7 and 8) (the vorticity and pressure plots are not presented in this paper
for the cases h = ∞ and h = 0.25). In addition, the positive vortices located through the downstream of the cylinder
represents the low pressure regions irrespective of the presence of the free surface for all f /f0. The pronounced variations in
the free surface level, in general, enhance the high and low pressure regions near the curved free surface interface. That is,
the highest pressure region associated with the stagnation switches from the stagnation region to the region in the upper
left side of the cylinder where the free surface rises sufficiently in this region (or vice versa) for the cases h = 0.25, 0.5, 0.75
when f /f0 = 3.5 (or for the case h = 0.25 when f /f0 = 2.5) at every half cycle of the cylinder oscillation, T/2. On the other
hand, the low pressure becomes dominated in the downstream of the cylinder when a positive vortex is shed into the lower
vortex shedding layer irrespective of the presence of the free surface and for all frequency ratios, f /f0.
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