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SUMMARY

Decreased expression of the Nlrp3 protein is associ-
ated with susceptibility to Crohn’s disease. However,
the role of Nlrp3 in colitis has not been characterized.
Nlrp3 interacts with the adaptor protein ASC to acti-
vate caspase-1 in inflammasomes, which are protein
complexes responsible for the maturation and secre-
tion of interleukin-1b (IL-1b) and IL-18. Here, we
showed that mice deficient for Nlrp3 or ASC and cas-
pase-1 were highly susceptible to dextran sodium
sulfate (DSS)-induced colitis. Defective inflamma-
some activation led to loss of epithelial integrity,
resulting in systemic dispersion of commensal bac-
teria, massive leukocyte infiltration, and increased
chemokine production in the colon. This process
was a consequence of a decrease in IL-18 in mice
lacking components of the Nlrp3 inflammasome,
resulting in higher mortality rates. Thus, the Nlrp3
inflammasome is critically involved in the mainte-
nance of intestinal homeostasis and protection
against colitis.

INTRODUCTION

Human inflammatory bowel disease (IBD), comprising ulcerative

colitis and Crohn’s disease, constitutes a major health problem

in developed countries (Fiocchi, 1998). Ulcerative colitis exhibits

a characteristic profile of chronic inflammation involving the

distal colon and rectum and is generally recognized as an

immune-mediated disorder resulting from abnormal interaction

between colonic microflora and mucosal immune cells (Goyette

et al., 2007). Excessive inflammatory and immune responses in

the intestine are thought to be due to a breach in the epithelial

barrier in the gut that segregates commensal microflora from

the host’s systemic organs (Strober et al., 2002). Indeed, deteri-
oration of the mucus layer of the colon is prominent in patients

with ulcerative colitis (Podolsky and Isselbacher, 1984; Rhodes,

1996). In addition, studies in rodents have linked tissue damage

and disruption of the epithelial barrier in the gut to cytokine

imbalances (Bouma and Strober, 2003). The production of these

inflammatory mediators has been implicated in the pathogenesis

of experimental colitis and IBD in humans (Podolsky, 2002).

The synthesis and secretion of proinflammatory cytokines is

governed by germline-encoded receptors such as the toll-like

receptor (TLR) and nucleotide-binding domain and leucine-

rich repeat containing (NLR) protein family (Kanneganti et al.,

2007; Kopp and Medzhitov, 2003). TLRs are membrane-bound

receptors that detect pathogen-associated molecular patterns

(PAMPs) in the extracellular milieu (Kawai and Akira, 2007).

TLR activation results in the rapid transcriptional activation of

effector genes, including cytokines and chemokines that drive

recruitment and/or activation of immune cells at mucosal sur-

faces. This immune cell recruitment is believed to play an impor-

tant role in protecting against bacterial dissemination but may

also underlie the clinical manifestations associated with inflam-

mation as well as tissue damage therein. For instance, mice lack-

ing the flagellin receptor TLR5 developed spontaneous colitis

(Vijay-Kumar et al., 2007). Although mice deficient for the lipo-

polysaccharide (LPS) receptor TLR4, the lipoprotein receptor

TLR2 or the TLR signaling adaptor MyD88 do not display an overt

intestinal phenotype, they develop exacerbated injury upon

exposure to dextran sodium sulfate (DSS) (Araki et al., 2005;

Fukata et al., 2005; Rakoff-Nahoum et al., 2004).

In addition to TLRs, several members of the cytosolic NLR

family have been identified as key regulators of cytokine produc-

tion (Kanneganti et al., 2007). Notably, the gene that encodes the

NLR protein CARD15 (also known as NOD2) was associated with

Crohn’s disease (Hugot et al., 2001; Ogura et al., 2001). NOD2

was subsequently shown to mediate activation of the transcrip-

tion factor NF-kB and MAP kinases (Girardin et al., 2003; Inohara

et al., 2003). The NLR protein Nlrp3 (also referred to as Nalp3,

CIAS1, or Cryopyrin) is involved in activation of the cysteine

protease caspase-1 (Lamkanfi et al., 2007). Homotypic interac-

tions between the pyrin domain in the N terminus of Nlrp3 and
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the bipartite adaptor protein ASC (encoded by Pycard) bridge

the association of caspase-1 to Nlrp3 in a large protein complex

referred to as the ‘‘inflammasome’’ (Martinon et al., 2002). Acti-

vated caspase-1 processes the cytosolic precursors of the

related cytokines interleukin-1b (IL-1b) and IL-18, thus allowing

secretion of the biologically active cytokines. Hence, mice lack-

ing caspase-1 are defective in the maturation and secretion of

IL-1b and IL-18 (Ghayur et al., 1997; Kuida et al., 1995;

Li et al., 1995). IL-1b participates in the generation of systemic

and local responses to infection, injury, and immunological chal-

lenges by generating fever, activating lymphocytes, and pro-

moting leukocyte infiltration at sites of injury or infection (Dinar-

ello, 1996). Although IL-18 lacks the pyrogenic activity of IL-1b,

it is involved in the induction of several secondary proinflamma-

tory cytokines, chemokines, cell adhesion molecules, and nitric

oxide synthesis (Horwood et al., 1998; Olee et al., 1999).

Gain-of-function mutations within NLRP3 have been associ-

ated with three autoinflammatory disorders characterized by

skin rashes and prolonged episodes of fever in the absence of

any apparent infection. These hereditary periodic-fever syn-

dromes are Muckle-Wells syndrome (MWS), familial cold autoin-

flammatory syndrome (FACS), and neonatal-onset multisystem

inflammatory disease (NOMID), and they are collectively referred

to as the Cryopyrin-associated periodic syndromes (CAPS)

(Agostini et al., 2004). Functional studies revealed that the

disease-associated NLRP3 mutations enhance caspase-1 acti-

vation and IL-1b secretion (Dowds et al., 2004). In addition,

decreased NLRP3 expression and IL-1b production was recently

linked with increased susceptibility to Crohn’s disease in

humans (Villani et al., 2009). However, the role of the Nlrp3

inflammasome in colitis has not been characterized. To under-

stand the role of the Nlrp3 inflammasome in colitis, we studied

the response of Nlrp3�/�, Pycard�/�, and Casp1�/� mice to

DSS-induced colitis. Our results indicated a major role for the

Nlrp3 inflammasome in protection against DSS-induced colitis

and revealed its protective function in intestinal homeostasis.

RESULTS

Nlrp3 Protects from Mortality and Morbidity after DSS
and TNBS Administration
Oral administration of DSS is directly toxic to the colonic epithe-

lium (Kitajima et al., 1999) and triggers inflammation by disrupt-

ing the compartmentalization of commensal bacteria in the gut

(Rakoff-Nahoum et al., 2004). To study the contribution of

Nlrp3 to the development of colitis, we first assessed the

mortality rate of age- and sex-matched wild-type and Nlrp3�/�

mice after oral administration of 4% DSS in drinking water.

Only 20% of wild-type mice died during the DSS administration

period, but a mortality rate higher than 80% was noted for the

Nlrp3�/� cohort (Figure 1A). The experiment was repeated with

a lower DSS concentration (3%) to study the phenotype of

Nlrp3�/� mice under milder conditions. Nlrp3�/� mice suffered

from more body weight loss from day 5 on (Figure 1B). Simulta-

neously, stool consistency scores of Nlrp3�/� mice became

significantly worse compared to those of DSS-fed wild-type

mice (Figure 1C). Differences in rectal bleeding were also

apparent between the two groups, with Nlrp3�/�mice displaying

significantly elevated scores relative to DSS-administered wild-
380 Immunity 32, 379–391, March 26, 2010 ª2010 Elsevier Inc.
type controls starting as early as day 2 (Figure 1D). The evalua-

tion of colon length is the parameter with the lowest variability

in the model of DSS-induced colitis (Okayasu et al., 1990).

To further assess the severity of colitis, colon length was mea-

sured in DSS-fed wild-type and Nlrp3�/� mice. Colons of

Nlrp3�/� mice were on average 20% shorter than those of

wild-type mice treated with DSS (Figure 1E; Figure S1A available

online).

These clinical assessments were validated by histological

examination of representative colon sections. In agreement

with previous studies (Rakoff-Nahoum et al., 2004; Takagi

et al., 2003), we observed marked histopathological changes in

hematoxylin & eosin (H&E)-stained colons of DSS-treated wild-

type mice characterized by crypt loss and infiltrating leukocytes

(Figure 1F). However, only minimal evidence of necrosis and

ulceration was evident in colons of wild-type mice. In contrast,

colonic sections of DSS-fed Nlrp3�/� mice displayed severe

transmural inflammation with focal areas of extensive ulceration

and necrotic lesions. Inflammatory infiltrates filled the lamina

propria and submucosa in areas where the mucosa was intact

and often effaced the normal architecture of the tissue. Submu-

cosal edema was often marked in areas of ulceration (Figure 1F).

Semiquantitative scoring of these histological parameters con-

firmed that colitis severity in Nlrp3�/� mice was significantly

higher than in wild-type mice (Figure 1G). Wild-type mice were

attributed an overall histological score of 1.625 ± 0.27, whereas

Nlrp3�/�mice were assigned a score of 3.78 ± 0.15 (Figure 1G).

Consistent with the absence of disease in animals that were not

fed DSS, no signs of inflammation or tissue damage were

observed in colons of untreated wild-type and Nlrp3�/� mice

(Figure S1B).

Intrarectal administration of 2,4,6-trinitrobenzenesulfonic acid

(TNBS) represents an alternative model for the induction of acute

colitis in mice through direct barrier destruction (Alex et al., 2009;

Palmen et al., 1995). To assess whether Nlrp3 also exerts

a protective role during acute TNBS-induced colitis, survival of

wild-type and Nlrp3�/�mice was monitored for 5 days after intra-

rectal instillation of 150 mg/kg TNBS. As observed during acute

DSS-induced colitis (Figure 1), Nlrp3�/� mice were significantly

more susceptible to acute TNBS-induced mortality than wild-

type mice (Figure S1C). In addition, macroscopic scoring of

inflammation in colon confirmed that colitis severity in Nlrp3�/�

mice was significantly higher than in wild-type mice (Fig-

ure S1D). Collectively, these results demonstrate that Nlrp3-

dependent signaling is critical for protection against acute

DSS- and TNBS-induced mortality and morbidity.

Nlrp3 Expression in Mucosal Epithelial Cells Is Critical
for Protection against DSS-Induced Colitis
Nlrp3 is expressed in a wide range of immune cells as well as in

epithelial cells (Kummer et al., 2007). To determine the cell pop-

ulations that are critical for Nlrp3-dependent protection against

DSS-induced colitis, we generated four groups of Nlrp3 bone

marrow chimeras. In agreement with our previous results (Fig-

ure 1), Nlrp3�/�mice receiving Nlrp3�/� bone marrow presented

with significantly worse symptoms of colitis relative to wild-type

mice transplanted with wild-type bone marrow. Differences in

clinical disease parameters between these groups such as

body weight loss (Figure 2A), stool consistency (Figure 2B),



Figure 1. Nlrp3�/� Mice Are Hypersusceptible to DSS-Induced Colitis

(A) Wild-type (n = 15) and Nlrp3�/� (n = 12) mice were fed a 4% DSS solution in drinking water for 5 days. Survival was monitored until day 14 after the start of DSS.

(B–G) Wild-type and Nlrp3�/�mice were treated with 3% DSS for 5 days, followed by regular drinking water for 2 days. (B) Body weight, (C) stool consistency, and

(D) rectal bleeding score were scored daily.

(E) Mice were sacrificed on day 7 to measure colon length.

(F) At the same time, histopathological changes in colon tissue were examined by H&E staining.

(G) Semiquantitative scoring of histopathology was performed as described in Experimental Procedures. Data represent means ± SE of a representative exper-

iment. *p < 0.05; **p < 0.01.
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and colonic bleeding (Figure 2C) all reached statistical signifi-

cance by day 7 after DSS administration. Incidence and severity

of colitis in Nlrp3�/� mice receiving wild-type bone marrow was

comparable to that of Nlrp3�/� mice transplanted with Nlrp3�/�

bone marrow (Figures 2A–2C), suggesting that Nlrp3 expression

in nonhematopoietic cells is more important for protection
against colitis than Nlrp3 expression in leukocytes. Indeed,

wild-type mice transplanted with Nlrp3�/� bone marrow were

less sensitive to DSS-induced colitis and presented with body

weight changes, diarrhea, and bleeding scores that were com-

parable to those of wild-type mice (Figures 2A–2C). The marked

improvement in the clinical manifestation of colitis in the latter
Immunity 32, 379–391, March 26, 2010 ª2010 Elsevier Inc. 381



Figure 2. Nlrp3 Signaling in Nonhematopoetic Cells Is Critical for Protection against DSS-Induced Injury

Mice (n = 8–10/group) were treated with 3% DSS for 5 days, followed by regular drinking water for 2 days. (A) Body weight, (B) stool consistency, and (C) rectal

bleeding were scored daily. (D) Mice were sacrificed on day 7 to examine histopathological changes in colon tissue by H&E staining.
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groups was confirmed by less signs of severe histopathology

in H&E-stained sections of the lamina propria of wild-type

mice that received wild-type or Nlrp3�/� bone marrow (Fig-

ure 2D). In contrast, Nlrp3�/� mice presented with extensive

crypt destruction and edema regardless of the Nlrp3 status of

the transplanted bone marrow (Figure 2D, bottom). In agree-

ment, colon homogenates of DSS-fed Nlrp3�/� recipients con-

tained higher amounts of inflammatory cytokines and chemo-

kines relative to wild-type recipients (Figure S2). Overall, these

results suggest that Nlrp3 expression in local cells of the colonic

mucosa is critical for protection against DSS-induced colitis.

Inflammasome Signaling Downstream of Nlrp3 Confers
Protection against DSS-Induced Colitis
Nlrp3 recruits ASC and caspase-1 into a large protein complex

termed the ‘‘inflammasome’’ (Kanneganti et al., 2007; Lamkanfi

and Dixit, 2009). To determine whether Nlrp3 inflammasome

activation is implicated in protection against colitis, we assessed

the response of mice lacking the downstream inflammasome

components ASC and caspase-1. Similar to Nlrp3�/� mice (Fig-

ure 1A), Pycard�/� and Casp1�/�mice were highly susceptible to

DSS-induced colitis, with nearly all Pycard�/� and Casp1�/�

mice dying within 2 weeks after administration of 4% DSS
382 Immunity 32, 379–391, March 26, 2010 ª2010 Elsevier Inc.
(Figure 3A). As seen with Nlrp3�/� mice, Pycard�/� and

Casp1�/� mice displayed significantly more body weight loss

(Figure 3B), higher stool consistency scores (Figure 3C), and

rectal bleeding (Figure 3D) when fed on a milder regimen of 3%

DSS. Moreover, the colon length of Pycard�/� and Casp1�/�

mice was significantly reduced (Figure 3E; Figure S3A). Finally

and as observed for Nlrp3�/� mice (Figure 1F), H&E-stained

colon sections of DSS-fed Pycard�/� and Casp1�/� mice dis-

played severe transmural inflammation with focal areas of

extensive ulceration and necrotic lesions (Figures 3F and 3G).

The role of the Nlrp3 inflammasome in protection against DSS-

induced colitis is not limited to the acute phase of disease as

shown by the fact that Nlrp3�/� and Casp1�/�mice also suffered

from increased body weight loss, diarrhea, and reduced colon

length during chronic disease (Figures S3B–S3F). These results

demonstrate that Nlrp3 inflammasome activation is critical for

protection against DSS-induced colitis.

IL-18 Maturation by the Nlrp3 Inflammasome Confers
Protection against DSS-Induced Colitis
The Nlrp3 inflammasome is responsible for the maturation and

secretion of the related cytokines IL-1b and IL-18 (Kanneganti

et al., 2006; Mariathasan et al., 2006; Sutterwala et al., 2006).



Figure 3. Essential Role for the Nlrp3 Inflammasome Components ASC and Caspase-1 in Protection against DSS-Induced Colitis

(A) Wild-type, Pycard�/�, and Casp1�/�mice (n = 7–10) were fed a 4% DSS solution in drinking water for 5 days. Survival was monitored until day 14 after the start

of DSS.

(B–G) Wild-type, Pycard�/�, and Casp1�/�mice (n = 10–14) were fed a 3% DSS solution in drinking water for 5 days, followed by regular drinking water for 2 days.

(B) Body weight, (C) stool consistency, and (D) rectal bleeding were scored daily.

(E) Mice were sacrificed on day 7 to measure colon length.

(F) Histopathological changes in colon tissue were examined by H&E staining.

(G) Semiquantitative scoring of histopathology was performed as described in Experimental Procedures.

Data represent means ± SE of a representative experiment. *p < 0.05; **p < 0.01.
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Notably, IL-18 has previously been associated with protection

against DSS-induced colitis (Takagi et al., 2003). We therefore

determined the amounts of IL-1b and IL-18 in serum of DSS-

treated animals. IL-1b amounts in serum of wild-type, Pycard�/�,

and Casp1�/�mice barely rose above those of untreated animals

at the three time points analyzed (days 1, 3, and 7; data not

shown). Similarly, IL-1b amounts produced by colonic tissue

from DSS-fed wild-type mice remained below 200 pg/ml,

although caspase-1-deficient cells secreted even less IL-1b (Fig-

ure S4A). Unlike IL-1b, IL-18 was highly induced in the serum of

DSS-treated wild-type mice, but not in Pycard�/� and Casp1�/�

mice (Figure 4A). Local IL-18 production in the colon was also

induced in response to DSS treatment as evidenced by the

markedly increased IL-18 immunoreactivity (Figure 4B). In agree-

ment with an important role for IL-18 downstream of the Nlrp3

inflammasome, colons of caspase-1�/� mice contained signifi-

cantly less mature IL-18 relative to DSS-fed wild-type mice

(Figure 4C). The results of the bone marrow chimera studies

(Figure 2) suggested that cells of the colonic mucosa represent

a critical site of Nlrp3 inflammasome activation during DSS-

induced colitis. To provide additional support for the colonic

mucosa as an important site for Nlrp3 inflammasome activation,

we determined the amounts of mature IL-18 produced by iso-

lated colonic epithelial cells. As in total colon extracts (Fig-

ure 4C), colonic epithelial cells isolated from DSS-fed Casp1�/�

mice produced markedly less mature IL-18 than those of wild-

type mice (Figure 4D). Isolated epithelial cells from colonic

epithelia stained positive for the epithelial cell marker cytokera-

tin-18 (Figure S4B). Finally, we tested the role of IL-18 in protec-

tion against DSS-induced colitis. To this end, DSS-fed Casp1�/�

mice received a daily injection of saline or 0.5 mg recombinant

IL-18 for 4 consecutive days. In agreement with an important

role for IL-18 downstream of the Nlrp3 inflammasome, Casp1�/�

mice treated with recombinant IL-18 lost significantly less body

weight when compared to those receiving PBS (Figure 4E).

Thus, Nlrp3 inflammasome signaling through IL-18 confers

protection against DSS-induced colitis.

The Nlrp3 Inflammasome Is Required for Preservation
of Epithelial Integrity after DSS Administration
IL-18 has been linked to repair and restitution of ulcerated

epithelium (Reuter and Pizarro, 2004), and colitis was previously

shown to be more severe under conditions in which epithelial

cell integrity is compromised (Rakoff-Nahoum et al., 2004).

We therefore investigated the role of the Nlrp3 inflammasome

in maintaining epithelial integrity in the gut. The intestinal barrier

permeability in Nlrp3�/� and Casp1�/� mice appeared normal

prior to DSS treatment (Figure 5A). However, the Nlrp3 inflamma-

some is important for regulation of gastrointestinal permeability

after DSS-induced injury because significantly more FITC-

dextran was recovered in serum of DSS-treated Nlrp3�/� and

Casp1�/� mice (Figure 5A).

The decreased barrier function in the absence of Nlrp3 inflam-

masome signaling could be explained by increased apoptosis of

epithelial cells and/or decreased cell proliferation. We first char-

acterized the extent of apoptosis by terminal deoxynucleotidyl

transferase-mediated dUTP nick end labeling (TUNEL) staining.

The number of TUNEL-positive cells in colonic tissue of DSS-

treated Nlrp3�/� and Casp1�/� mice was comparable to that
384 Immunity 32, 379–391, March 26, 2010 ª2010 Elsevier Inc.
of wild-type mice (data not shown), indicating that the absence

of Nlrp3 inflammasome signaling does not affect apoptosis.

50-bromo-20-deoxy-uridine (BrdU) staining was subsequently

used to determine the role of the Nlrp3 inflammasome in epi-

thelial cell proliferation. The epithelial crypts of DSS-treated

Nlrp3�/� and Casp1�/� mice presented with significantly less

BrdU-positive cells (Figures 5B and 5C). Untreated wild-type,

Nlrp3�/�, and Casp1�/� mice all showed comparable amounts

of BrdU staining in colonic crypts, suggesting that the Nlrp3

inflammasome is specifically required for epithelial cell prolifera-

tion after DSS-induced injury. Therefore, activation of the Nlrp3

inflammasome induces a compensatory proliferative response

of epithelial cells in order to preserve the integrity of the epithelial

layer during DSS-induced colitis.

Increased Intestinal Barrier Permeability Results
in Commensal Overgrowth and Bacteremia
It is well established that commensal microflora in the lumen of

the colon play an essential role during intestinal inflammation

(Rembacken et al., 1999; Sutherland et al., 1991; Turunen

et al., 1998). In addition, a functional Nlrp3 inflammasome may

be required to mount a proper immune response to prevent

commensal overgrowth. We therefore asked whether the pro-

found disruption of the epithelial barrier in the colon of DSS-

fed Nlrp3�/� and Casp1�/�mice caused commensal overgrowth

and bacteremia. To this end, mice were administered 3% DSS

for 7 days and the number of colony-forming units (CFUs) in

different tissues was determined at day 9. Significantly more

bacteria were counted in the stool, liver, colon, and mesenteric

lymph nodes (MLN) of Nlrp3�/� and Casp1�/� mice relative to

DSS-fed wild-type mice (Figure 6A). Increased bacteremia in

Nlrp3�/� and Casp1�/� mice was due to DSS treatment as

shown by the fact that untreated mice showed similar bacterial

counts in the stool and colon (Figure S5A) and their systemic

organs were devoid of bacteria (data not shown). Systemic

dissemination of bacteria and bacterial components triggers

an exuberant cytokine and chemokine inflammatory response.

To gain additional evidence of bacteremia, we measured a

variety of cytokines and chemokines in serum of DSS-fed

Nlrp3�/� and Casp1�/� mice. In agreement with the increased

bacterial dissemination in Nlrp3�/� and Casp1�/� mice, the

amounts of the chemokines eotaxin, G-CSF, KC, and MCP-1

were all significantly higher in serum of Nlrp3�/� and Casp1�/�

mice relative to DSS-fed wild-type mice (Figures 6B–6E). In addi-

tion, serum concentrations of the proinflammatory cytokines IL-6

and TNF-a were also dramatically higher in Nlrp3�/� and

Casp1�/� mice when compared to wild-type mice (Figures 6F

and 6G).

We also assessed local cytokine and chemokine production

in colon tissue and found these to be consistent with those in

serum. The amounts of KC, eotaxin, G-CSF, MCP-1, and IL-6

were all higher in colons of Nlrp3�/� and Casp1�/� mice relative

to those of DSS-fed wild-type mice (Figure S5B). To characterize

the immune cells responsible for the increased production of

chemokines and cytokines in the colon, we examined the

expression of cell surface markers on mononuclear cells that

infiltrated the lamina propria and submucosa. Significantly

increased numbers of neutrophils and macrophages (F4/80+

cells) were observed in the colon of DSS-fed Nlrp3�/� and



Figure 4. IL-18 Production by the Nlrp3 Inflammasome Is Required for Protection against DSS-Induced Colitis

(A) Wild-type, Pycard�/�, and Casp1�/�mice were fed a 3% DSS solution in drinking water for 5 days, followed by regular drinking water for 2 days. Serum IL-18

concentrations on days 0 (n = 5/group), 3 (n = 5/group), and 7 (n = 10/group) was determined by multiplex assay.

(B–D) At day 7, colons were collected (B) and sections were stained for IL-18 (C, D), and colonic epithelial cells were isolated to determine the concentrations of

mature IL-18 by immunoblotting. Blots were reprobed for b-actin.

(E) Casp1�/�mice (n = 5/group) were fed a 3% DSS solution in drinking water for 5 days, followed by regular drinking water for 2 days. One cohort simultaneously

received a daily injection of 0.5 mg recombinant IL-18, whereas the control group was injected with saline. Body weight change was monitored daily for 7 days.

Data represent means ± SE. **p < 0.01.
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Casp1�/� mice (Figure S5C, left). In contrast, CD3 (T cell) and

CD45R (B cell) staining were not significantly different in wild-

type and inflammasome-deficient mice (Figure S5C, right).
These results suggest that the increased DSS-induced

morbidity and lethality in the absence of Nlrp3 inflammasome

signaling may be caused by commensal overgrowth and
Immunity 32, 379–391, March 26, 2010 ª2010 Elsevier Inc. 385



Figure 5. The Nlrp3 Inflammasome Is Required for Protection against Epithelial Barrier Permeabilization and Epithelial Cell Proliferation

during DSS-Induced Colitis

(A)Wild-type,Nlrp3�/�, andCasp1�/�mice (n= 5/group)were feda 3%DSSsolution indrinkingwater for 5 days, followedby regulardrinkingwater for 2 days.Control

and DSS-fed mice were subsequently fed FITC-dextran, and FITC-dextran amounts in serum were determined 3 hr later. Data represent means ± SE; *p < 0.05.

(B) Control (left) and DSS-fed (right) mice were then injected intraperitoneally with BrdU before colon sections were prepared to visualize BrdU-positive cells.

(C) Quantification of BrdU-positive cells per crypt in colons of untreated and DSS-fed wild-type, Nlrp3�/�, and Casp1�/�mice. 100 crypts/mouse colon of three

mice/genotype were analyzed. Data represent mean ± SE; **p < 0.001.
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bacteremia after the breach of the intestinal barrier. An exagger-

ated immune response to these commensal bacteria may further

exacerbate disease severity. To address the role of commensal

bacteria in the increased colitis severity in inflammasome-defi-

cient mice, we examined whether clinical parameters of DSS-

induced colitis could be ameliorated with antibiotics. Nlrp3�/�

mice were administered a 3% DSS solution alongside a combi-

nation of the selective antibiotics metronidazole, neomycin, and

vancomycin from day 2 on. Disease severity was compared to

Nlrp3�/� mice that were fed a 3% DSS solution without antibi-

otics. A dramatic improvement in the clinical scores of the anti-

biotic-treated arm was observed over Nlrp3�/� mice that did

not receive antibiotics (Figures S5D–S5F). For instance, body

weight loss in the antibiotics-treated arm was around 6%,

whereas the group that was refused antibiotics presented

with a loss of more than 20%. Prominent improvements in other

clinical features including stool consistency and rectal bleeding

were also noted for antibiotics-treated Nlrp3�/� mice. These

marked improvements prompted us to examine the affect of

antibiotics treatment on mortality after administration of a

4% DSS solution. As before, �80% of placebo (PBS)-treated

Nlrp3�/� mice had died 2 weeks after DSS administration.

In contrast, all Nlrp3�/� mice that were coadministered antibi-

otics remained alive by the end of the experiment (data not

shown). These results indicate that overgrowth of colonic micro-

flora contributed significantly to the increased DSS-induced

morbidity and lethality of Nlrp3�/� mice.
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DISCUSSION

We show here that Nlrp3�/� mice were significantly more

susceptible to DSS-induced colitis. Similar to Nlrp3�/� mice,

Pycard�/� and Casp1�/� mice were more sensitive to colitis-

associated body weight loss, diarrhea, rectal bleeding, and

mortality during both the acute and chronic phase of disease,

indicating a key role for the Nlrp3 inflammasome in protection

against DSS-induced colitis. The role of the Nlrp3 inflammasome

in protection against colitis is not limited to the DSS-induced

model because Nlrp3�/� mice also suffered from increased

body weight loss, diarrhea, and reduced colon length in the

acute TNBS-induced colitis model. Oral administration of DSS

and TNBS is directly toxic to the gut and causes crypt destruc-

tion, mucosal erosion, and ulceration. Epithelial damage induces

a localized repair response characterized by increased division

of stem cells at the base of crypts to replace damaged entero-

cytes (Radtke and Clevers, 2005). IL-18 production by the

Nlrp3 inflammasome in colonic epithelial cells was identified as

a crucial mediator of repair of the mucosal barrier and protection

against DSS-induced colitis. Indeed, IL-18 has previously been

associated to repair and restitution of ulcerated epithelium

(Reuter and Pizarro, 2004). Mature IL-18 generated by the

Nlrp3 inflammasome may subsequently bind to the IL-18R

expressed on intestinal epithelial cells and local immune cells

in the gut to exert its functions. Notably, the TLR4-MyD88

signaling axis has also been implicated in maintenance of



Figure 6. Increased Systemic Dissemination of Commensal Microflora and Cytokine Production in Nlrp3�/� and Casp1�/�Mice during DSS-
Induced Colitis

(A) Wild-type, Nlrp3�/�, and Casp1�/�mice (n = 8/group) were fed a 3% DSS solution in drinking water for 5 days, followed by regular drinking water for 2 days.

Bacterial counts in stool, colon, MLN, and liver of DSS-fed wild-type, Nlrp3�/�, and Casp1�/� mice were determined at day 9.

(B–G) Serum amounts of (B) eotaxin, (C) GCSF, (D) KC, (E) MCP-1, (F) IL-6, and (G) TNF-a were measured at days 3 and 7 by multiplex assay (n = 5 mice/group).

Data represent means ± SE. *p < 0.05, **p < 0.01.
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epithelial cell homeostasis in the gut and protection against

DSS-induced colitis (Fukata et al., 2005; Rakoff-Nahoum et al.,

2004). This suggests that MyD88 contributes to epithelial cell
homeostasis in the gut both at the level of TLR4 signaling and

downstream of the IL-18R. In addition to IL-18, the cytokines

IL-11 and IL-22 have been identified as important regulators of
Immunity 32, 379–391, March 26, 2010 ª2010 Elsevier Inc. 387
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gastrointestinal mucosal biology (Keith et al., 1994; Zenewicz

et al., 2008). It remains to be determined whether these cyto-

kines operate in a hierarchical cascade or interact in a network

of parallel pathways to confer protection against destruction of

the mucosal barrier.

Earlier studies with Casp1�/�mice and the caspase-1 inhibitor

pralnacasan suggested a detrimental rather than a protective

role for caspase-1 in DSS-induced colitis (Bauer et al., 2007;

Loher et al., 2004; Siegmund et al., 2001b). However, our obser-

vation that Casp1�/�mice are more susceptible to DSS-induced

colitis is in agreement with a growing body of evidence suggest-

ing a protective role for Nlrp3 inflammasome-mediated IL-18

production during colitis. First, mice lacking the other inflamma-

some components Nlrp3 and ASC were also more susceptible to

DSS-induced colitis. Second, both Il18�/� and Il18r1�/� mice

were shown to display increased susceptibility to DSS-induced

colitis, which was associated with greater lethality and more

severe histopathological changes (Takagi et al., 2003). Third,

Il1r�/�mice also showed increased intestinal damage and histo-

pathology during DSS-induced colitis (Lebeis et al., 2009).

Finally, several previous studies reported the development of

more severe DSS-induced colitis in mice lacking the adaptor

protein MyD88, which is required for the production of the

caspase-1 substrates IL-1b and IL-18, as well as for signaling

downstream of their respective receptors (Araki et al., 2005;

Fukata et al., 2005; Rakoff-Nahoum et al., 2004). Noteworthy,

the results from the gene-deleted mouse models described

above are sometimes in conflict with reports using (bio)chemical

approaches for neutralization of caspase-1 and IL-18. For

instance, experiments in IL-18-deficient mice suggested a bene-

ficial role for IL-18 during DSS-induced colitis (Takagi et al.,

2003), whereas IL-18 neutralization with recombinant IL-18

binding protein (Sivakumar et al., 2002) and IL-18 antibodies

suggested a detrimental role for IL-18 (Siegmund et al., 2001a).

In addition to differences in experimental design, characteristics

inherent to (bio)chemical neutralization and gene-deleted mouse

models may have contributed to the different outcomes. On the

one hand, chemical and biochemical inhibitors are most suited

for therapeutic intervention in patients, although they are unlikely

to achieve complete neutralization of the desired target and

may suffer from pleiotropic effects that could interfere with

disease outcome. On the other hand, gene-targeted deletion in

mice is a surer approach for complete removal of the protein

under study. However, the possibility that gene deletion may

trigger mild developmental defects that go unnoticed but never-

theless may influence the disease phenotype cannot be com-

pletely excluded. Thus, (bio)chemical neutralization and gene-

targeted deletion approaches each have particular advantages

and both should be considered to further our knowledge on

the mechanisms underlying human disease.

EXPERIMENTAL PROCEDURES

Mice

Nlrp3�/�, Pycard�/�, and Casp1�/� mice backcrossed to C57BL/6 back-

ground for at least 10 generations have been described before (Lamkanfi

et al., 2008; Thomas et al., 2009). Mice were housed in a pathogen-free facility

and the animal studies were conducted under protocols approved by St. Jude

Children’s Research Hospital Committee on Use and Care of Animals. All mice

were male 8–10 weeks old and maintained in an SPF facility. All experiments
388 Immunity 32, 379–391, March 26, 2010 ª2010 Elsevier Inc.
were conducted under protocols approved by the St. Jude Children’s research

Hospital Committee on Use and Care of Animals.

Induction of DSS-Induced Colitis

For survival studies, acute colitis was induced with 4% (w/v) DSS (molecular

mass 36–40 kDa; MP Biologicals) dissolved in sterile, distilled water ad libitum

for the experimental days 1–5 followed by normal drinking water until the end

of the experiment (day 14). The DSS solutions were made fresh on day 3. For all

other experimental read-outs, DSS-induced colitis was induced by feeding

mice 3% (w/v) DSS during 5 days, followed by normal drinking water until

the end of the experiment on day 7. For bacterial count determination, mice

continued to receive a 3% DSS solution until day 7 and bacterial numbers

were determined on day 9.

Determination of Clinical Scores

Body weight, stool consistency, and the presence of occult blood were deter-

mined daily up to day 7. The baseline clinical score was determined on day 1.

Scoring for stool consistency and occult blood was done as described previ-

ously (Wirtz et al., 2007). In brief, stool scores were determined as follows: 0,

well-formed pellets; 1, semiformed stools that did not adhere to the anus; 2,

semiformed stools that adhered to the anus; 3, liquid stools that adhered to

the anus. Bleeding scores were determined as follows: 0, no blood as tested

with hemoccult (Beckman Coulter); 1, positive hemoccult; 2, blood traces in

stool visible; 3, gross rectal bleeding.

Histopathology and Immunohistochemistry

After day 7, the entire colon was excised to measure the length of the colon

and the weight of cecum. Colons were washed, fixed in 10% buffered formal-

dehyde, and embedded in paraffin. Tissue sections were stained with hema-

toxylin & eosin (H&E). Histology was scored by a pathologist in a blinded

fashion as a combination of inflammatory cell infiltration (score 0–3) and tissue

damage (score 0–3). The presence of occasional inflammatory cells in the

lamina propria was scored as 0, increased numbers of inflammatory cells in

the lamina propria was assigned score 1, confluence of inflammatory cells

extending into the submucosa was scored as 2, and transmural extension of

the infiltrate was scored as 3. For tissue damage, no mucosal damage was

scored as 0, lymphoepithelial lesions were scored as 1, surface mucosal

erosion or focal ulceration was scored as 2, and extensive mucosal damage

and extension into deeper structures of the bowel wall was scored as 3. The

combined histological score ranged from 0 (no changes) to 6 (extensive infiltra-

tion and tissue damage).

For immunohistochemistry, formalin-fixed paraffin-embedded tissues were

cut into 4 mm section and slides were stained for neutrophil, macrophage,

T cell, and B cell via the immunoperoxidase method with neutrophil, F4/80,

CD3, and CD45R/B220 antibodies, respectively. IL-18 immunostaining was

performed with a rat anti-mouse IL-18 antibody (MBL).

Recombinant IL-18

Recombinant IL-18 (MBL International) was injected intraperitoneally at

a concentration of 0.5 mg per mouse in 100 ml phosphate-buffered saline

(PBS) on days 0, 1, 2, 3, and 4.

Cytokine Measurements

Serum was collected from blood drawn by cardiac puncture at the indicated

time points. To measure the cytokine amounts in colon tissue, a part of colon

was homogenized mechanically in PBS containing 1% NP-40 and complete

protease inhibitor cocktail (Roche). Mouse cytokines and chemokines in serum

and colon homogenate were measured with Luminex (Bio-Rad) and ELISA

(R&D Systems) assays.

Immunoblotting

Tissue homogenates were lysed in lysis buffer solution (150 mM NaCl, 10 mM

Tris [pH 7.4], 5 mM EDTA, 1 mM EGTA, 0.1% Nonidet P-40) supplemented

with a protease inhibitor cocktail tablet (Roche). Samples were clarified,

denatured with SDS buffer, and boiled for 5 min. Proteins were separated by

SDS-PAGE and transferred on to nitrocellulose membranes. The membranes

were immunoblotted with primary antibodies and proteins detected with

appropriate secondary anti-rat antibody conjugated to horseradish
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peroxidase followed by enhanced chemiluminescence. IL-18 antibodies were

from MBL.

Isolation of Colonic Epithelial Cells

Colonic epithelial cells were isolated as described before (Greten et al., 2004).

In brief, colons were dissected, washed with PBS, and cut into small pieces.

Colon segments were incubated in HBSS supplemented with 5 mM EDTA

and 0.5 mM DTT for 30 min at 37�C with gentle shaking. Cells in the superna-

tants were filtered through a 70 mm cell strainer and washed twice. Enrichment

for colonic epithelial cells was determined as the percentage of cells staining

positive for the epithelial cell-specific marker cytokeratin-18. 85%–90% of iso-

lated cells stained positive for cytokeratin-18.

Bacterial Culture

Samples of stool, colon, and liver tissue were collected in 5 ml of a 3% thiogly-

colate solution and homogenized. Different dilutions of the obtained suspen-

sions were plated on blood agar and BHI agar and incubated at 37�C for

48 hr. Bacterial counts were determined by colony-forming assay.

Depletion of Commensal Bacteria

To inhibit overgrowth of commensal bacteria during DSS administration, mice

were treated with selective antibiotics: metronidazole (1g/L; Sigma) for killing

anaerobic bacteria, neomycin (1g/L; Sigma) for killing gram-negative bacteria,

and vancomycin (50 mg/Kg/day; Sigma) for inhibition of gram-positive staph-

ylococci and streptococci. Antibiotics treatment was started at day 2 after DSS

administration and continued until day 9. Metronidazole and neomycin was

added in drinking water, and vancomycin was given by oral gavage once daily.

Bone Marrow Chimeras

Bone marrow transfer was used to create Nlrp3�/� chimera mice wherein the

genetic deficiency of Nlrp3 was confined to either circulating cells (Nlrp3�/� >

WT chimera) or nonhematopoietic tissue (WT > Nlrp3�/�). In brief, bone

marrows were collected from femur and tibia of congenic WT (expressing

CD45.1 leukocyte antigen) or Nlrp3�/� (expressing CD45.2 leukocyte antigen)

donor mice by flushing with HBSS. After several washing steps, cells were

resuspended in PBS at a concentration of 1 3 108/ml. 100 ml of this cell

suspension was injected retro-orbitally in irradiated donor mice. Four chimera

groups were generated WT > WT (WT cells expressing CD45.1 into WT

expressing CD45.2); WT > Nlrp3�/� (WT cells expressing CD45.1 into

Nlrp3�/� expressing CD45.2); Nlrp3�/� > Nlrp3�/� (Nlrp3 expressing CD45.2

cells into Nlrp3�/� expressing CD45.2); and Nlrp3�/� > WT (Nlrp3�/� cells

expressing CD45.2 into WT expressing CD45.1). The use of CD45.1-express-

ing congenic mice facilitated verification of proper reconstitution in the

chimera mice. Bone marrow reconstitution was verified after 5 weeks by stain-

ing for CD45.1 and CD45.2 in blood cells with FITC-conjugated anti-CD45.1

and PE-conjugated anti-CD45.2. 7 weeks after bone marrow transfer, mice

were fed with 3% DSS for 5 days. Body weight change, stool consistency,

and rectal bleeding were monitored daily. At day 7, mice were sacrificed to

collect colon tissue for H&E staining.

In Vivo Intestinal Permeability Measurement

In vivo assay to assess epithelial barrier permeability was performed with an

FITC-labeled Dextran method as described (Furuta et al., 2001). In brief,

food and water were withdrawn and mice were gavaged with permeability

tracer FITC-dextran (Mw 4000; Sigma-Aldrich) at a concentration 60 mg/100 g

body weight. Blood was collected by heart puncture and FITC-dextran amount

in serum was measured with a fluorescence spectrophotometer setup with

emission and excitation wavelengths of, respectively, 490 nm and 520 nm.

FITC-dextran concentration was determined from standard curves generated

by serial dilution of FITC-dextran.

In Situ Intestinal Proliferation Assay

The number of proliferating cells in intestinal epithelium was detected by

immunoperoxidase staining for thymidine analougue 50-bromo-20deoxyuridine

(BrdU) as described (Rakoff-Nahoum et al., 2004). In brief, 1 mg/ml BrdU in

PBS was injected intraperitoneally. 2 hr later, colon tissue was collected and

4 cm of distal colon was fixed in 10% neutral buffered formalin and embedded

in paraffin. Immunohistochemistry was performed with an in situ BrdU staining
kit (BD Bioscience). Tissues were counterstained with hematoxylin.

The number of BrdU-positive cells per intact and well-oriented crypt was

determined.

Statistical Analysis

Data are represented as mean ± SEM. Differences in group survival and

bacteremia were analyzed with the Kaplan-Meier test with Prism5 (GraphPad

Software). In all other cases, statistical significance was determined by

Student’s t test. p < 0.05 was considered statistically significant.

SUPPLEMENTAL INFORMATION
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