Subgraph induced by the set of degree 5 vertices in a contraction critically 5-connected graph

Kiyoshi Ando

Department of Information and Communication Engineering, University of Electro-Communications, Tokyo, Japan

A R T I C L E I N F O

Article history:
Received 29 September 2006
Accepted 5 November 2008
Available online 27 December 2008

Keywords:
Graph
5-connected
Contraction
Degree

A B S T R A C T

An edge of a 5-connected graph is said to be contractible if the contraction of the edge results in a 5-connected graph. A 5-connected graph with no contractible edge is said to be contraction critically 5-connected. Let G be a contraction critically 5-connected graph and let H be a component of the subgraph induced by the set of degree 5 vertices of G. Then it is known that $|V(H)| \geq 4$. We prove that if $|V(H)| = 4$, then $H \cong K_4^*$, where K_4^* stands for the graph obtained from K_4 by deleting one edge. Moreover, we show that either $|N_G(V(H))| = 5$ or $|N_G(V(H))| = 6$ and around H there is one of two specified structures called a K_4^*-configuration and a split K_4^*-configuration.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We deal with finite undirected graphs with neither loops nor multiple edges. For a graph G, let $V(G)$ and $E(G)$ denote the set of vertices of G and the set of edges of G, respectively. For an edge e of G, we denote the set of end vertices of e by $V(e)$. Let $V_k(G)$ be the set of vertices of degree k. Let $V_{\geq k}(G)$ be the set of vertices of degree greater than or equal to k. If there is no ambiguity we write V_k and $V_{\geq k}$ for $V_k(G)$ and $V_{\geq k}(G)$, respectively. We denote the degree of $x \in V(G)$ by $\deg_G(x)$. We denote the minimum degree of G by $\delta(G)$. Let $G[S]$ denote the subgraph induced by $S \subseteq V(G)$. For two graphs G and H, we denote the join of G and H by $G + H$. Let K^*_x denote the graph obtained from K_x by deleting one edge. Hence $K^*_4 \cong 2K_1 + K_2$. Let G be a connected graph. A subset $S \subseteq V(G)$ is said to be a cutset of G, if $G - S$ is not connected. A cutset S is said to be a k-cutset if $|S| = k$.

Let k be an integer such that $k \geq 2$ and let G be a k-connected graph. An edge e of G is said to be k-contractible if the contraction of the edge results in a k-connected graph. An edge which is not k-contractible is called a non-k-contractible edge. If the contraction of $e \in E(G)$ results in a graph with minimum degree $k - 1$, then e is said to be trivially non-contractible. In other words, e is trivially non-contractible if and only if the end vertices of e have a common neighbor of degree k. A k-connected graph with no k-contractible edge is said to be contraction critically k-connected.

It is known that every 3-connected graph of order 5 or more contains a 3-contractible edge (Tutte [9]). The classification of contraction critically 4-connected graphs was obtained by Fontet and, independently, by Martinov.

Theorem A (Fontet [4], Martinov [6]). If G is a 4-connected graph with no 4-contractible edge, then G is either the square of a cycle or the line graph of a cyclically 4-connected 3-regular graph.

Egawa proved the following minimum degree condition for a k-connected graph to have a k-contractible edge.

Theorem B (Egawa [3]). Let $k \geq 2$ be an integer, and let G be a k-connected graph with $\delta(G) \geq \lceil \frac{4k}{3} \rceil$. Then G has a k-contractible edge, unless $2 \leq k \leq 3$ and G is isomorphic to K_{k+1}.
Kriesell extended Egawa’s Theorem and proved the following degree sum condition for a \(k \)-connected graph to have a \(k \)-contractible edge.

Theorem C (Kriesell [5]). Let \(k \geq 2 \) be an integer, and let \(G \) be a non-complete \(k \)-connected graph. If \(\deg_{G}(x) + \deg_{G}(y) \geq \left\lceil \frac{k+1}{2} \right\rceil \) for any pair of distinct vertices \(x, y \) of \(G \), then \(G \) has a \(k \)-contractible edge.

From **Theorem A**, we know that each contraction critically 4-connected graph is 4-regular. When \(k \) is greater than 4, there is a contraction critically \(k \)-connected graph which is not \(k \)-regular. However, from **Theorem B**, we see that the minimum degree of a contraction critically 5-connected graph is 5.

The following theorem says that each contraction critically 5-connected graph has many vertices of degree 5.

Theorem D (Su [8]). Let \(G \) be a 5-connected graph which does not have a 5-contractible edge. Then each vertex of \(G \) has at least two neighbors of degree 5 and thus \(G \) has at least \(\frac{5}{2} |V(G)| \) vertices of degree 5.

Recently, we got a local structure theorem of 5-connected graphs. Before we state the theorem, we need to introduce some specified configurations.

Let \(x \) be a vertex of a 5-connected graph. A configuration which consists of two triangles with nothing in common but \(x \) is called an \(x \)-bowtie. Hence, an \(x \)-bowtie is isomorphic to \(2K_{2} + K_{1} \) whose vertex of degree 4 is \(x \). A \(K_{4}^{−} \) is called a reduced \(x \)-bowtie if one of the vertices of degree 3 is \(x \). If, in each triangle of an \(x \)-bowtie, there is a vertex of degree 5 other than \(x \), then the \(x \)-bowtie is said to be an \(x^{+} \)-bowtie. If a reduced \(x \)-bowtie has at least two vertices of degree 5 other than \(x \), then it is called a reduced \(x^{+} \)-bowtie. Hence, in **Fig. 1**, (1) is an \(x^{+} \)-bowtie if neither \(\{y_{1}, y_{2}\} \cap V_{5}(G) \) nor \(\{z_{1}, z_{2}\} \cap V_{5}(G) \) is empty, and (2) is a reduced \(x^{+} \)-bowtie if \(\{|u_{1}, u_{2}, u_{3}\} \cap V_{5}(G)| \geq 2 \).

Let \(S = \{a_{1}, a_{2}, x, b_{1}, b_{2}\} \) be a 5-cutset of a 5-connected graph \(G \) and let \(A \) be a component of \(G - S \) such that \(V(A) \subset V_{5}(G) \), \(|V(A)| = 4 \) and \(G[V(A)] \cong K_{4}^{−} \), say \(V(A) = \{u_{1}, u_{2}, v_{1}, v_{2}\} \), with edges within \(A \) and between \(V(A) \) and \(S \) exactly as in **Fig. 2**; there may be edges between vertices of \(S \). We call this configuration, \(G[V(A) \cup S], a K_{4}^{−} \)-configuration with center \(x \). Note that \(\{u_{1}, u_{2}, v_{1}, v_{2}\} \subset V_{5}(G) \) and edges in **Fig. 2** other than \(xu_{1} \) and \(xv_{1} \) are all trivially non-contractible. Moreover, we can find two non-trivial 5-cutsets, \(\{u_{1}, u_{2}, x, b_{1}, b_{2}\} \) and \(\{v_{1}, v_{2}, x, a_{1}, a_{2}\} \) which contain \(V(xu_{1}) \) and \(V(xv_{1}) \), respectively. Hence all edges in **Fig. 2** are non-contractible. Finally, we observe that if there is an edge between vertices of \(S \), then it clearly is non-contractible since \(S \) is a 5-cutset of \(G \).

Our local structure theorem of 5-connected graphs is the following.

Theorem E (Ando [1]). Let \(x \) be a vertex of a 5-connected graph \(G \) such that \(x \) is incident with no 5-contractible edge and each neighbor of \(x \) is incident with no 5-contractible edge. If \(G \) has neither an \(x^{+} \)-bowtie nor a reduced \(x^{+} \)-bowtie, then \(G \) has a \(K_{4}^{−} \)-configuration with center \(x \).

Since in each configuration of **Theorem E**, \(x \) has at least two neighbors of degree 5, **Theorem D** is an immediate corollary of **Theorem E**.
Recently the lower bound of the number of degree 5 vertices in a contraction critically 5-connected graph has been improved as follows.

Theorem F (Qin, Yuan and Su [7]). Every 5-connected graph G with no contractible edge has at least $\frac{4}{9}|V(G)|$ vertices of degree 5.

Concerning the lower bound of the number of degree 5 vertices in a contraction critically 5-connected graph, we pose the following problem.

Problem. Determine the smallest constant c so that every 5-connected graph G with no contractible edge has at least $c|V(G)|$ vertices of degree 5.

From **Theorem F** we know that $c \geq \frac{4}{9}$. In Fig. 2, we call $S = \{a_1, a_2, x, b_1, b_2\}$ “the 5-cutset part” of a $K_4^−$-configuration. Take two $K_4^−$-configurations and identify their 5-cutset parts. Join all three vertices a_1, a_2, x and join all three vertices b_1, b_2, x. So the 5-cutset part is the x-bowtie with the two triangles a_2a_1x and b_1b_2x. Then the resulting graph G is contraction critically 5-connected. Since $|V(G)| = 13$ and $|V_5(G)| = 8$, this graph shows that $\frac{8}{13} \geq c$.

To solve the problem, we need to investigate more detailed structure of contraction critically 5-connected graphs. In this paper we prove some result concerning the structure of the subgraph induced by the set of degree 5 vertices of a contraction critically 5-connected graph.

Let G be a contraction critically 5-connected graph. It was shown that for any given graph, there is a contraction critically 5-connected graph G' such that $G'[V_{=5}]$ is isomorphic to that given graph ([2]). Hence, in this sense, there is no restriction on the subgraph induced by the set of more than 5 degree vertices, $G[V_{=5}] = G - V_5$.

From **Theorem F**, we know that a contraction critically 5-connected graph G has many vertices of degree 5. Let G_S be the subgraph of G induced by the set of degree 5 vertices, that is, $G_S = G[V_5]$. Let H be a component of G_S. Then it was shown that $|V(H)| \geq 4$ [7]. We prove that if $|V(H)| = 4$, then $H \cong K_4^−$ and there is one of two specified configurations around H in G. Before we state the result, we need to introduce one more specified configuration in 5-connected graphs. Let $S = \{a_1, a_2, x_1, x_2, b_1, b_2\}$ be a 6-cutset of a 5-connected graph G and let A be a component of $G - S$ such that $V(A) \subset V_5(G)$, $|V(A)| = 4$ and $G[V(A)] \cong K_4^−$, say $V(A) = \{u_1, u_2, v_1, v_2\}$, with edges within A and between $V(A)$ and S exactly as in Fig. 3; there may be edges between vertices of S. We call this configuration, $G[V(A) \cup S]$, a split $K_4^−$-configuration.

Now we can state our result.

Theorem 1. Let G be a contraction critically 5-connected graph. Let H be a component of the subgraph $G[V_5]$. If $|V(H)| = 4$, then $H \cong K_4^−$ and there is either a $K_4^−$-configuration or a split $K_4^−$-configuration which has H as its $K_4^−$-part.

The organization of the paper is as follows. Section 2 contains preliminary results. In Section 3, we give a proof of **Theorem 1**.

2. Preliminaries

In this section we give some more definitions and prove preliminary results.

For a graph G, we write $|G|$ for $|V(G)|$. For a subset $S \subset V(G)$, let $N_G(S) = \cup_{x \in S} N_G(x) - S$. For subgraphs A and B of a graph G, when there is no ambiguity, we write simply A for $V(A)$ and B for $V(B)$. So $N_G(A)$ and $A \cap B$ mean $N_G(V(A))$ and $V(A) \cap V(B)$, respectively. Also for a subgraph A of G and a subset S of $V(G)$, we write $A \cap S$ and $A \cup S$ for $V(A) \cap S$ and $V(A) \cup S$, respectively. For $S \subset V(G)$, let $G - S$ denote the graph obtained from G by deleting the vertices in S together with the edges incident with them; thus $G - S = G[V(G) - S]$. When there is no ambiguity, we write $E(S)$ for $E(G[S])$. For subsets S and T
of \(V(G) \), we denote by \(E_C(S, T) \) the set of edges between \(S \) and \(T \). Namely, \(E_C(S, T) = \{xy \mid x \in S, y \in T\} \). If \(S = \{x\} \), then we simply write \(E_C(x, T) \) instead of \(E_C(\{x\}, T) \).

From now on through this paper, we concern only 5-connected graphs. A subgraph \(A \) of a 5-connected graph \(G \) is called a fragment if \(|N_C(A)| = 5 \) and \(V(G) - (A \cup N_C(A)) \neq \emptyset \). In other words, a fragment \(A \) is a non-empty union of components of \(G - S \) where \(S \) is a 5-cutset of \(G \) such that \(V(G) - (A \cup S) \neq \emptyset \). For a fragment \(A \) of \(G \), we let \(\bar{A} = G - N_C(A) - A \). Then we observe that if \(\bar{A} \) is a fragment of \(G \), then \(\bar{A} \) is also a fragment of \(G \).

For an edge \(e \) of \(G \), a fragment \(A \) is said to be a fragment with respect to \(e \) if \(V(e) \subset N_C(A) \). For \(F \subset E(G) \), \(A \) is said to be a fragment with respect to \(F \) if \(A \) is a fragment with respect to some \(e \in F \). A fragment \(A \) with respect to \(F \) is said to be minimum if there is no fragment \(B \) with respect to \(F \) such that \(|B| < |A| \). A fragment \(A \) with respect to \(F \) is said to be minimal if there is no fragment \(B \) other than \(A \) with respect to \(F \) such that \(B \subset A \).

The following is a simple observation.

Lemma 2.1. Let \(A \) be a fragment of a 5-connected graph \(G \). If there is \(S \subset N_C(A) \) such that \(|A \cap N_C(S)| < |S| \), then \(A = A \cap N_C(S) \). In particular, if there are two vertices \(x, y \in N_C(A) \) such that \(N_C(x, y) \cap A = \{z\} \), then \(A = \{z\} \).

Proof. Assume that \(A \neq A \cap N_C(S) \), which means \(A - A \cap N_C(S) \neq \emptyset \). Then, we observe that \((N_C(A) - S) \cup (A \cap N_C(S))\) separates \(A - A \cap N_C(S) \) from \(A \cup S \). Since \(|A \cap N_C(S)| < |S| \), we also observe that \(|(N_C(A) - S) \cup (A \cap N_C(S))| = |N_C(A)| - |S| + |A \cap N_C(S)| < 5 \). This implies that \(G \) is not 5-connected, which contradicts the assumption that \(G \) is 5-connected, and **Lemma 2.1** is proved. ■

The following lemma states some elementary properties of fragments of a 5-connected graph.

Lemma 2.2. Let \(G \) be a 5-connected graph. Let \(A \) and \(B \) be fragments of \(G \) and let \(S = N_C(A) \) and \(T = N_C(B) \).

| \(B \) | \(\bar{A} \cap B \) | \(S \cap B \) | \(A \cap B \) |
| \hline
| \(T \) | \(\bar{A} \cap T \) | \(S \cap T \) | \(A \cap T \) |
| \hline
| \(\bar{A} \) | \(\bar{A} \cap \bar{B} \) | \(S \cap \bar{B} \) | \(A \cap \bar{B} \) |

Then the following hold.

1. If \(|A \cap T| > |S \cap B| \), then \(\bar{A} \cap B = \emptyset \).
2. If \(|(A \cap T) \cup (S \cap T) \cup (S \cap \bar{B})| \geq 6 \), then \(\bar{A} \cap B = \emptyset \).
3. If \(|(A \cap T) \cup (S \cap T) \cup (S \cap B)| \geq 6 \) and \(|(A \cap T) \cup (S \cap T) \cup (S \cap B)| \geq 6 \), then \(|\bar{A}| = 1 \).

Proof. (1) If \(|A \cap T| > |S \cap B| \), then \(|\bar{A} \cap T| \cup (S \cap T) \cup (S \cap B)| = |T| - |A \cap T| + |S \cap B| < |T| = 5 \). This implies \(\bar{A} \cap B = \emptyset \) since \(G \) is 5-connected.

(2) Assume \(|(A \cap T) \cup (S \cap T) \cup (S \cap \bar{B})| \geq 6 \). Then \(|(A \cap T) \cup (S \cap T) \cup (S \cap B)| = |S| + |T| - |(A \cap T) \cup (S \cap T) \cup (S \cap \bar{B})| \leq 5 + 5 - 6 = 4 \), which implies \(\bar{A} \cap B = \emptyset \) since \(G \) is 5-connected.
Lemma 2.3 [Yuan [10]]. Let x be a vertex of a contraction critically 5-connected graph G. Let A be a fragment with respect to $E(x)$ such that $|A| \geq 2$. Then $N_C(x) \cap (N_C(A) \cup A) \cap V_5 \neq \emptyset$.

Proof. Assume $|A| \leq 1$. We show that $S \cap B \neq \emptyset$. Assume $S \cap B = \emptyset$. Then $|S \cap B| = |S \cap B| + |A \cap T| = |S \cap T| + |A \cap T| \leq |T| = 5$. Hence, if $A \cap T \neq \emptyset$, then $A \cap T$ is a fragment with respect to $E(x)$ since $x, y \in (S \cap T) \cup (A \cap T)$. Since $y \in A \cap T$, we observe that $A \cap B = \emptyset$, which contradicts the minimality of A. This contradiction shows $A \cap T = \emptyset$. On the other hand, since $|A \cap T| \geq 1$, we know that $S \cap B \neq A \cap T$. Hence, Lemma 2.2 assures us that $A \cap T = \emptyset$. Now we know that $B = (A \cap T) \cup (S \cap B) \cup (A \cap B) = \emptyset$, which contradicts the choice of B. This contradiction proves $S \cap B \neq \emptyset$. Since $|B| \leq 1$, we observe that $|B| = |S \cap B| = 1$, say $B = S \cap B = \{z\}$. Then $z \in N_C(x) \cap S \cap V_5$, which contradicts the assumption. This contradiction proves Claim 2.3.1.

If both $|S \cap B| \leq 6$ and $|S \cap \bar{B}| \cap (A \cap T) \geq 6$, then Lemma 2.2 assures us that $|A| \leq 1$, which contradicts the assumption. Hence, without loss of generality we may suppose that $|S \cap B| \leq 5$, which implies $A \cap B = \emptyset$ since A is minimal.

Claim 2.3.2. $A \cap \bar{B} = \emptyset$.

Proof. Assume $A \cap \bar{B} \neq \emptyset$. Then, since A is minimal, we know that $|S \cap \bar{B}| \cup (S \cap T) \cup (A \cap T)| \geq 6$. Thus Lemma 2.2 assures us that $A \cap \bar{B} = \emptyset$. Now we know $A \cap B = \emptyset$ and $A \cap B = \emptyset$, which means $B \cap S = \emptyset$. By Claim 2.3.1, we see that $|B| = |S \cap B| \geq 2$. We show that $A \cap T \leq 1$. Then since $|S \cap B| \geq 2$, we have $A \cap T \leq |S \cap B|$, which implies $A \cap B = \emptyset$. Thus $A = A \cap T$ and $|A| = |A \cap T| \leq 1$, which contradicts the assumption. This is shown that $|A \cap T| \geq 2$. Then, we observe that $|S \cap B| \leq 6$, and $|S \cap \bar{B}| \cap (A \cap T) \geq 6$, then Lemma 2.2 assures us that $|A| \leq 1$, which contradicts the assumption. This contradiction proves Claim 2.3.2.

Claim 2.3.3. $(1) \ |S \cap B| = |S \cap \bar{B}| = 2$, and $S \cap T = \{x\}$, (2) $|A| = 2$.

Proof. (1) Assume $|S \cap B| \leq 1$. By Claim 2.3.2, we know that $A = A \cap T$. Hence $|A \cap T| = |A| \geq 2$. Then, since $|S \cap B| < |A \cap T|$, we have $A \cap B = \emptyset$, which implies $B = S \cap \bar{B}$ and $|B| = |S \cap B| = 1$. This contradicts Claim 2.3.1 and it is shown that $|S \cap B| \geq 2$.

By symmetry, we have $|S \cap B| \geq 2$. Since |S| = 5 and $S \cap T \neq \emptyset$, we can conclude that $|S \cap B| = |S \cap B| = 2$, and $S \cap T = \{x\}$.

(2) Assume $A \cap T = |A| \geq 3$. Then, we observe that both $|S \cap B| \cup (S \cap T) \cup (A \cap T) \geq 6$ and $(S \cap \bar{B}) \cup (S \cap T) \cup (A \cap T) \geq 6$, and hence Lemma 2.2 assures us that $|A| \leq 1$, which contradicts the assumption. This contradiction proves Claim 2.3.3.

By Claims 2.3.2 and 2.3.3, we know that $A = A \cap T$ and $|A| = 2$, say $A = A \cap T = \{y, z\}$. Moreover, by Claim 2.3.3 we know $|S \cap B| = |S \cap B| = 2$, say $S \cap B = \{w, v\}$ and $S \cap B = \{w', v'\}$. Recall $xw \in E(G)$. We show $vz \in E(G)$. Since $A = A \cap T = \{y, z\}$, then $x \notin N_C(z)$, and $x \notin E(G)$. This implies $S \cap B = \emptyset$. Hence, $S \cap B = \emptyset$. Now we observe that $E(G)$ is a fragment with respect to vz and let $R = N_C(C)$.

Claim 2.3.4. (1) $y \in A \cap R$, (2) $|S \cap C| = |S \cap \bar{C}| \leq 2$ and $S \cap R = \{v\}$.

Proof. (1) Assume $y \notin A \cap R$, then without loss of generality we may suppose $y \in A \cap C$. Then $A \cap C = \emptyset$, since $A = \{y, z\}$. Since $y \in V_5 \cap 6$ and $|A| = 2$, we see that $N_C(y) = S \cup \{x\}$, which implies that $S \cap C = \emptyset$. Then, since $z \in A \cap R$, we know that $|S \cap C| < |A \cap R|$, which implies $A \cap C = \emptyset$. Now we have $C = \emptyset$, which contradicts the choice of C. This contradiction proves $y \in A \cap R$.

(2) Assume $|S \cap C| \leq 1$. Then since $|S \cap C| < |A \cap R| = 2$, Lemma 2.2(1) assures us $A \cap C = \emptyset$, which implies that $|C| = |S \cap C| = 1$. Since $S \cap C \subseteq S \cap N_C(x)$, either $S \cap C = \{w\}$ or $S \subseteq \{x\}$. If $S \subseteq \{w\}$, then $w \in N_C(x) \cap S \cap V_5$, which contradicts the assumption. Hence $S \cap C = \{x\}$, which implies $x \in V_5$ and $[y, z, v, w, u] \subset N_C(x)$. Let $N_C(x) = \{y, z, v, w, u\}$. Then, since neither $N_C(x) \cap A$ nor $N_C(x) \cap B$ is empty, $u \in A \cap B$. Hence $N_C(x) \cap (A \cap B) = \emptyset$, which implies $A \cap B = \emptyset$ since $|S \cap B| \cup (S \cap T) \cup (A \cap T) = \{x, v, w\} \cup [x ; y, z] = 5$. Hence $B = S \cap \bar{B} = \{w, v\}$. Since $[y, z] \subset N_C(x)$ and $N_C(x) \cap \cap V_5 = \emptyset$, we know that $y, z \in V_6$, $yz \in E(G)$ and $N_C(y)$. $N_C(z) \supset S$. Furthermore, since $[w, v] \subset N_C(x)$ and $N_C(x) \cap S \cap V_5 = \emptyset$, we know
Lemma 2.3. By is proved. Claim 2.4.3 assures us that \(S \cap C \geq 2 \). Hence by symmetric, we observe that \(|S \cap C| = |S| = 2 \) and \(S \cap T = \{ u \} \).

Now we are in a position to complete the proof of Lemma 2.3. Claim 2.3.4 assures us that \(S \cap R = \{ v \} \), which means that \(x \notin S \cap R \). Hence, without loss of generality, we may suppose that \(x \in S \cap R \). Then since \(xw \in E(G) \) and \(|S \cap C| = |S| = 2 \), we have \(S \cap C = \{ x, w \} \) and \(S \cap R = \{ v \} \). We observe that \(v \in R \cap C \). Since \(B \cap C \neq \emptyset \), \((T \cap C) \cup (T \cap R) \cup (B \cap R) \geq 5 \), which implies \((T \cap C) \cup (T \cap R) \cup (B \cap R) \leq 5 \). Since \(B \cap C \neq \emptyset \), we see that \((T \cap C) \cup (T \cap R) \cup (B \cap R) = 5 \) and hence \(B \cap C \) is a fragment of \(G \). Now we observe that \(N_C((y, z)) = S = \{ x, w, v, v', v'' \} \), since \(w, v \in B \cap C \) and \(x, v \in T \cap R \). Since \(N_C((y, z)) \cap (B \cap C) = \{ w \} \), Lemma 2.1 assures us that \(B \cap C = \{ w \} \), which means \(w \in V_5 \). Hence \(w \in N_C(x) \cap S \cap V_5 \), which contradicts the assumption. This is the final contraction and the proof of Lemma 2.3 is completed.

In the situation of Lemma 2.3, if \(x \) has no neighbors of degree 5 in the fragment \(A \), then we have a stronger conclusion as follows.

Lemma 2.4. Let \(x \) be a vertex of a contraction critically 5-connected graph \(G \). Let \(A \) be a fragment with respect to \(E(x) \) such that \(|A|, |\tilde{A}| \geq 2 \) and \(N_C(x) \cap A \cap V_5 = \emptyset \). Then there is a vertex \(z \) such that (1) \(z \in N_C(x) \cap N_C(A) \cap V_5 \), (2) \(N_C(x) \cap N_C(z) \cap A = \emptyset \) and (3) \(|N_C(z) \cap A| \geq 2 \).

Proof. Let \(A \) be a fragment with respect to \(E(x) \) such that \(|A|, |\tilde{A}| \geq 2 \) and \(N_C(x) \cap A \cap V_5 = \emptyset \). If \(A' \subset A \), then also \(|\tilde{A}'| \geq 2 \) and \(N_C(x) \cap A' \cap V_5 = \emptyset \). Hence we may assume that \(A \) is a minimal fragment with respect to \(E(x) \) such that \(|A| \geq 2 \). Let \(S = N_C(A) \). We call a vertex \(z \in N_C(x) \cap S \) desirable if \(z \in V_5 \), \(N_C(x) \cap N_C(z) \cap A = \emptyset \) and \(|N_C(z) \cap A| \geq 2 \). By way of contradiction, assume that there is no desirable vertex.

Claim 2.4.1. \(|A| \geq 3 \).

Proof. Let \(A \) be a fragment with respect to \(E(x) \) such that \(|A| = 2 \), say \(A = \{ y, y' \} \). Since \(N_C(x) \cap A \cap V_5 = \emptyset \), Lemma 2.3 assures us that \(N_C(x) \cap \tilde{A} \cap V_5 = \emptyset \) say \(z \in N_C(x) \cap \tilde{A} \cap V_5 \). If \(y \notin N_C(z) \), then \(y \in N_C(x) \cap V_5 \), which contradicts the assumption that \(N_C(x) \cap \tilde{A} \cap V_5 = \emptyset \). Hence \(y \in N_C(z) \). Similarly we have \(y' \in N_C(z) \). Hence \(y, y' \subset N_C(z) \), which means \(z \) is a desirable vertex, a contradiction.

Let \(y \in N_C(x) \cap A \). Let \(B \) be a fragment with respect to \(xy \) and let \(T = N_C(B) \).

Claim 2.4.2. Either \(A \cap B = \emptyset \) or \(A \cap \tilde{B} = \emptyset \).

Proof. Suppose neither \(A \cap B = \emptyset \) nor \(A \cap \tilde{B} = \emptyset \). Since \(\{ x, y \} \in (S \cap T) \cup (A \cap T) \) and \(A \) is minimal, either \(|S \cap B| \cup (S \cap T) \cup (A \cap T) |

\geq 6 \) or \(|A \cap B| \leq 1 \). If \(|S \cap B| \cup (S \cap T) \cup (A \cap T) \leq 5 \), then \(|A \cap B| \leq 1 \), say \(A \cap B = \{ y' \} \), then \(y' \in N_C(x) \cap V_5 \), which contradicts the assumption that \(N_C(x) \cap A \cap V_5 = \emptyset \). Hence \(y' \in N_C(z) \). Similarly we have \(y' \in N_C(z) \). Hence \(y, y' \subset N_C(z) \), which means \(z \) is a desirable vertex, a contradiction.

Claim 2.4.3. \(A \cap \tilde{B} \neq \emptyset \).

Proof. Suppose \(A \cap \tilde{B} = \emptyset \), then \(A = A \cap T \). From Claim 2.4.1, we know that \(|A \cap T| = |A| \geq 3 \). By Lemma 2.2(1), neither \(S \cap B \) nor \(S \cap \tilde{B} \) can be empty, we show that either \(|S \cap B| = 1 \) or \(|S \cap \tilde{B}| = 1 \). Suppose neither \(|S \cap B| = 1 \) nor \(|S \cap \tilde{B}| = 1 \). Then, since \(|S| = 5 \) and \(S \cap T \neq \emptyset \), \(|S \cap B| = |S \cap \tilde{B}| = 2 \). Now we observe both \(|S \cap B| = 1 \) or \(|S \cap \tilde{B}| = 1 \). We may assume that \(|S \cap B| = 1 \), say \(S \cap B = \{ z \} \). Then, since \(|S \cap B| < |A \cap T| \), Lemma 2.2 assures us that \(A \cap B = \emptyset \), which means \(B = S \cap B = \{ z \} \). Since \(y \in N_C(x) \cap N_C(z) \cap A \cap T \subset N_C(z) \) and \(|A \cap T| \geq 3 \), \(z \) is a desirable vertex, which contradicts the assumption. This contradiction proves Claim 2.4.3.

Claim 2.4.4. (1) \(|S \cap B| \cup (S \cap T) \cup (A \cap T) | \geq 6 \), (2) \(|S \cap B| = 1 \).

Proof. (1) By Claim 2.4.3, we have \(A \cap \tilde{B} \neq \emptyset \), which implies \(|S \cap B| \cup (S \cap T) \cup (A \cap T) | \geq 5 \). Assume \(|S \cap B| \cup (S \cap T) \cup (A \cap T) | = 5 \). Then the minimality of \(A \) assures us that \(|A \cap B| = 1 \), say \(A \cap B = \{ y' \} \). Then \(y' \in N_C(x) \cap V_5 \), which contradicts the assumption that \(N_C(x) \cap A \cap V_5 = \emptyset \).

(2) Suppose \(|S \cap B| \geq 2 \). Then \(|S \cap B| \cup (S \cap T) \cup (A \cap T) | \geq 6 \). By this together with (1), Lemma 2.2 assures us \(|A| = |A \cap T| \leq 1 \), which contradicts the assumption \(|A| \geq 2 \) and Claim 2.4.4 is proved.

Now it is shown \(|S \cap B| = 1 \), say \(S \cap B = \{ z \} \). Since \(|S \cap B| \cup (S \cap T) \cup (A \cap T) | \geq 6 \), Lemma 2.2 assures us that \(B = S \cap B \) and \(|A \cap T| \geq |S \cap B| + 1 = 2 \). Since \(y \in N_C(x) \cap N_C(z) \cap A \), \(N_C(z) \cap A = |A \cap T| \geq 2 \), we know that \(z \) is a desirable vertex, which contradicts the assumption. This is the final contradiction and the proof of Lemma 2.4 is completed.
3. A proof of Theorem 1

In this section we give a proof of Theorem 1. Let G be a contraction critically 5-connected graph and let H be a component of $G[V_S]$. Then it is known that the minimum degree of H is at least 2 [8,1]. Moreover, it is shown that the maximum degree of H is at least 3 [7]. Hence $|V(H)|$ is at least 4 and if $|V(H)| = 4$, then either $H \cong K_4$ or $H \cong K_5$. Let H be a component of $G[V_S]$ such that $|V(H)| = 4$. A vertex $x \in V(H)$ is called a proper vertex if $H - x \cong K_3$. Thus if $H \cong K_4$, then all four vertices are proper, and if $H \cong K_5$, then two vertices are proper and the other two are not proper. For a proper vertex of $x \in V(H)$, we observe that if $H \cong K_4$, then $|N_G(x) \setminus V(H)| = |E_G(x, V(G) - V(H))| = 2$ and if $H \cong K_5$, then $|N_G(x) \setminus V(H)| = |E_G(x, V(G) - V(H))| = 3$. Let A be a fragment with respect to $E(x)$. Then, if x is proper then $H - x \cong K_3$, which implies that either $A \cap V(H) = \emptyset$ or $A \cap V(H) = \emptyset$. For a proper vertex of $x \in V(H)$, a fragment A is said to be a proper fragment with respect to x if (1) A is a fragment with respect to $E_G(x, V(G) - V(H))$ and (2) $A \cap V(H) = \emptyset$. A fragment A of G is said to be a proper fragment with respect to H if A is a proper fragment with respect to some proper vertex of H.

Let x be a proper vertex of H. Let A be a proper fragment with respect to x. Choose A so that $|A|$ to be as small as possible. Let $S = N_C(A)$.

Claim 3.1. $N_C(x) \cap S \cap V(H) \neq \emptyset$.

Proof. If $|A| = 1$, then since $A \cap V(H) = \emptyset$, we have $|S \cap V(H)| \geq 3$, which implies $N_C(x) \cap S \cap V(H) \neq \emptyset$.

Hence suppose $|A| \geq 2$. Then, Lemma 2.2 assures us that there exists a vertex $x' \in N_C(x) \cap A \cap V_S$. Then $x' \in V_S$ and $xx' \in E(G)$, which means that $x' \in V(H)$. Since A is a proper fragment, we know that $A \cap V(H) = \emptyset$, which implies that $x' \in S$. It is shown that $x' \in N_C(x) \cap S \cap V(H)$. Now Claim 3.1 is proved.

Let $y \in N_C(x) \cap A$. Let B be a fragment with respect to xy and let $T = N_C(B)$.

Claim 3.2. If $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| \leq 5$, then $A \cap B = \emptyset$.

Proof. Assume that $A \cap B \neq \emptyset$. Then $(S \cap B) \cup (S \cap T) \cup (A \cap T)$ is a cutset of G. Since G is 5-connected, we see that $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| = 5$. Since A is proper, we know that $xy \in E_G(x, V(G) - V(H))$. Then, since $x \in S \subseteq B \cup (S \cap T) \cup (A \cap T)$ and $A \cap B \subseteq A$, we see that $A \cap B$ is a proper fragment with respect to x. Furthermore since $y \in A \cap T$, we observe that $|A \cap B| \leq |A|$, which contradicts the minimality of A. Now Claim 3.2 is proved.

Claim 3.3. (1) $S \cap B \neq \emptyset$ and $S \cap \overline{B} \neq \emptyset$, (2) $\overline{A} \cap T \neq \emptyset$, (3) $|A \cap T| \geq 2$.

Proof. (1) Assume that $S \cap B = \emptyset$. Then, since $|S \cap B| < |A \cap T|$, Lemma 2.2 assures us that $\overline{A} \cap B = \emptyset$. Since $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| = |(S \cap B) \cup (S \cap T) \cup (A \cap T)| \leq |T| = 5$, Claim 3.2 assures us that $A \cap B = \emptyset$. Now we have $B = \emptyset$, which contradicts the choice of B. This contradiction shows that $S \cap B \neq \emptyset$. By symmetry, we have $S \cap \overline{B} \neq \emptyset$.

(2) Assume that $\overline{A} \cap T = \emptyset$. Then, since $|A \cap T| < |S \cap B|$, we know that $|A \cap T| < |S \cap B|$. Hence Lemma 2.2 assures us that $\overline{A} \cap B = \emptyset$. Similarily, since $|A \cap T| < |S \cap B|$, we have $A \cap B = \emptyset$, which implies that $\overline{A} = \emptyset$ contradicting the choice of A. This contradiction shows that $\overline{A} \cap T \neq \emptyset$.

(3) Since $y \in A \cap T$, $|A \cap T| \geq 1$. Assume that $|A \cap T| = 1$. Then, since $S \cap B \neq \emptyset$, we observe that $|A \cap T| \leq |S \cap B|$, which implies that $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| \leq 5$. Hence, Claim 3.2 assures us that $A \cap B = \emptyset$. By similar argument, we have $A \cap B = \emptyset$. Hence we have $A = A \cap T$ and $|A| = |A \cap T| = 1$, which means that $A = \{y\}$ and $y \in V_S$. Then, since $y \in V_S$ and $xy \in E(G)$, we have $y \in V(H)$, which contradicts the choice of A to be a proper fragment. This contradiction shows that $|A \cap T| \geq 2$ and now Claim 3.3 is proved.

Claim 3.4. (1) If $|S \cap B| = 1$, then $B = S \cap B$ and $N_C(x) \cap B \cap V(H) \neq \emptyset$.

(2) If neither $|S \cap B| = 1$ nor $|S \cap B| = 2$ and $S \cap T = \{x\}$.

Proof. (1) Suppose $|S \cap B| = 1$, say $S \cap B = \{x'\}$. By Claim 3.3(3), we know that $|A \cap T| \geq 2$. Then, since $|S \cap B| < |A \cap T|$, Lemma 2.2 assures us that $A \cap B = \emptyset$. By Claim 3.2(2), we know that $|A \cap T| \geq 1$. Then, since $|S \cap B| < |A \cap T|$, we have $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| \leq 5$. Hence, by Claim 3.2, we have $A \cap B = \emptyset$. Now we have $A \cap B = A \cap B = \emptyset$, which means $B = S \cap B = \{x'\}$. Then, since $x' \in V_S$ and $xx' \in E(G)$, we see that $x' \in V(H)$. Now (1) is proved.

(2) Assume that neither $|S \cap B| = 1$ nor $|S \cap B| = 1$. From Claim 3.3(1), we also have $|S \cap B| \geq 1$ and $|S \cap \overline{B}| \geq 1$, which implies that $|S \cap B| \geq 2$ and $|S \cap \overline{B}| \geq 2$. Since $|S| = 5$ and $S \cap T \neq \emptyset$, we have $|S \cap B| = |S \cap \overline{B}| = 2$ and $S \cap T = \{x\}$ and Claim 3.4 is proved.

Claim 3.5. $|A \cap T| = 2$.

Proof. Assume that $|A \cap T| \neq 2$. By Claim 3.3(2) and (3), we have $\overline{A} \cap T \neq \emptyset$ and $|A \cap T| \geq 2$, which implies $|\overline{A} \cap T| = |A \cap T| = 1$ and $|A \cap T| = 3$.

We show $|S \cap B| \neq 1$. Assume $|S \cap B| = 1$, say $S \cap B = \{x'\}$. Then Claim 3.4 assures us that $B = S \cap B = \{x'\}$ and $x' \in V(H)$. Since x is a proper vertex, we see that $\overline{B} \cap V(H) = \emptyset$. Hence we have $V(H) \subseteq V(G) - (A \cup \overline{B})$. Since $A \cap B = \emptyset$, $|V(G) - (A \cup \overline{B})| = |\overline{A} \cap T| + |A \cap T| + |S \cap B| = 1 + 1 + 1 = 3$, which contradicts the fact that $|V(H)| = 4$. This contradiction shows that $|S \cap B| \neq 1$. By symmetry, we have $|S \cap B| \neq 1$.

Now we know that neither $|S \cap B| = 1$ nor $|\bar{S} \cap \bar{B}| = 1$. Then from Claim 3.3(2), we know that $|S \cap B| = |\bar{S} \cap \bar{B}| = 2$ and $S \cap T = \{x\}$. Since x is a proper vertex of H and B is a fragment with respect to xy, we observe that either B or \bar{B} is a proper fragment with respect to x. Without loss of generality, we may suppose that B is a proper fragment with respect to x. Since $|S \cap B| = 2$ and $|A \cap T| \geq 3$, we know that $|S \cap B| < |A \cap T|$, which implies that $A \cap \bar{B} = \emptyset$. Thus we have $|B| = |S \cap B| + |A \cap \bar{B}| = |A| - |A \cap T| + |A \cap \bar{B}| = |A|$, which contradicts the minimality of $|A|$. This contradiction proves Claim 3.5.

Claim 3.6. $|N_C(x) \cap A| \neq 1$.

Proof. Assume that $N_C(x) \cap A = \{y\}$. By Claim 3.5, we know $|A \cap T| = 2$, say $A \cap T = \{y, z\}$. Since $N_C(x) \cap A = \{y\}$, note that $xz \notin E(G)$.

At first we show $|A| \geq 3$. Assume $|A| = 2$. Then, $A = A \cap T = \{y, z\}$. Since $|A| = 2$ and $xz \notin E(G)$, we know that $N_C(z) = (S - \{x\}) \cup \{y\}$ and hence $z \in V_S$. Claim 3.1 assures us that $S \cap V(H)$ has a vertex x' other than x. Thus $x' \in V(H)$, $x'z \in E(G)$ and $z \in V_S$, which implies that $z \in V(H)$. This contradicts the fact that A is a proper fragment and it is shown that $|A| \geq 3$.

Next we show that either $|S \cap B| = 1$ or $|S \cap \bar{B}| = 1$. Assume neither $|S \cap B| = 1$ nor $|S \cap \bar{B}| = 1$. Then, by Claim 3.4, we have $|S \cap B| = |S \cap \bar{B}| = 2$ and $S \cap T = \{x\}$. Therefore $|S \cap B| \cup (S \cap T) \cup (A \cap T) = 2 + 1 + 2 = 5$. Hence, by Claim 3.2, we have $A \cap B = \emptyset$. Similarly, we also have $A \cap \bar{B} = \emptyset$. Hence $|A| = |A \cap T| = 2$, which contradicts the previous assertion that $|A| \geq 3$. Now it is shown either $|S \cap B| = 1$ or $|S \cap \bar{B}| = 1$.

Without loss of generality, we may suppose that $|S \cap B| = 1$, say $S \cap B = \{x'\}$. Then Claim 3.4 assures us that $B = S \cap B = \{x'\}$ and $x' \in V(H)$. Since x is a proper vertex and $|x, y| \subseteq T$, either B or \bar{B} is proper. The fact $B \cap V(H) \neq \emptyset$ forces B is a proper fragment of H, which implies $V(H) \subseteq (A \cap T) \cup (S \cap T) \cup (S \cap B)$. Since, then $(|A \cap T| \cup (S \cap T) \cup (S \cap B)) = |T| - |A \cap T| + |S \cap B| = 5 - 2 + 1 + 4 = 4$, we see that $V(H) = (A \cap T) \cup (S \cap T) \cup (S \cap B)$. By Claim 3.2(2), we know that $A \cap T \neq \emptyset$, which implies $|S \cap V(H)| = (|S \cap T| \cup (S \cap B)) = |V(H)| - |A \cap T| \leq 4 - 1 = 3$. Let $A' = A - \{y\}$ and $S' = N_C(A') = (S - \{x\}) \cup \{y\}$. Then, since $e \in V(H)$ and $y \notin V(H)$, $|S'| \cap V(H) = (x', x'' \in V(H))$, which implies $S' \cap V(H) = \{x', x''\}$. Since $x', x'' \in E(G)$, A' is also a fragment with respect to E' such that $A', A' \geq 2$. Moreover, since $A' \cap V(H) = \emptyset$ and $x', x'' \in V(H)$ we have $N_C(x') \cap A' \cap V_S = \emptyset$. Applying Lemma 2.4 with the roles x and A replaced by x' and A', respectively, we see that there is a vertex w such that $w \in N_C(x') \cap S' \cap V_S$ and $|N_C(w) \cap A'| \geq 2$. Since $w \in N_C(x') \cap S' \cap V_S$ and $x' \in V(H)$ we have $w \in S' \cap V(H)$. Then, since $S' \cap V(H) = \{x', x''\}$, the fact $w \in S' \cap V(H)$ implies $w = x'$. However, $|N(x') \cap A'| = |A \cap T - \{y\}| = 2 - 1 = 1$, which means $x' \neq w$. This is a contradiction and the proof of Claim 3.6 is completed.

Claim 3.7. $H \not\cong K_4$.

Proof. Assume $H \cong K_4$. Then, since $|E_C(x, V(G) - V(H))| = 2$, we see that $|N_C(x) \cap S| = |N_C(x) \cap A| = 1$, which contradicts Claim 3.6. This contradiction shows that $H \not\cong K_4$.

By Claim 3.7 it is shown that $H \cong K_4^-$. To complete the proof it remains to show that there is either a K_4-configuration or a split K_4-configuration which has H as its K_4-part. Let $V(H) = \{x_1, x_2, x_3, x_4\}$. Suppose $deg_G(x_1) = deg_G(x_2) = 2$ and $deg_G(x_3) = deg_G(x_4) = 3$. Thus x_1 and x_2 are proper vertices of H. Let A_1 be a minimum proper fragment with respect to x_1 and let $S_1 = N_C(A_1)$. Let $N_C(x_1) \cap (S \cap N) = \{y, y', w\}$. Suppose $w \in N_C(x_1) \cap S$ and $y \in N_C(x_1) \cap A_1$. Let B_1 be a fragment with respect to x_1 and let $T_1 = N_C(B_1)$. Then, by Claim 3.5, we know that $|A_1 \cap T_1| = 2$, say $A_1 \cap T_1 = \{y, z\}$. By Claim 3.6, we also know that $|N_C(x_1) \cap A_1| = 2$, which means $N_C(x_1) \cap A_1 = \{y, y'\}$.

Claim 3.8. Either $A_1 \cap T_1 = N_C(x_3) \cap A_1$ or $A_1 \cap T_1 = N_C(x_4) \cap A_1$.

Proof. At first we consider the case that neither $|S_1 \cap B_1| = 1$ nor $|\bar{S}_1 \cap \bar{B}_1| = 1$. Claim 3.1 assures us the existence of a vertex x' in $N_C(x_1) \cap S \cap V(H)$. Note that $x' \notin \{x_1, x_2\}$ since $N_C(x_1) \cap V(H) = \{x_1, x_2\}$. In this case, by Claim 3.4, we have $|S_1 \cap B_1| = |S_1 \cap \bar{B}_1| = 2$ and $S_1 \cap T_1 = \{x\}$. Moreover we know that $|A_1 \cap T_1| = |A_1 \cap T_1| = 2$ because Claim 3.5 assures us that $|A_1 \cap T_1| = 2$. Hence, since $|S_1 \cap B_1| \cup (S_1 \cap T_1) \cup (A_1 \cap T_1) = |S_1 \cap \bar{B}_1| \cup (S_1 \cap T_1) \cup (A_1 \cap T_1)| = 2 + 1 + 2 = 5$, Claim 3.2 assures us that $A_1 \cap \bar{B}_1 = A_1 \cap \bar{B}_1 = \emptyset$. Now we know that $A_1 = A_1 \cap T_1 = \{y, z\}$. Since $\{x', y'\} \subseteq V_S$, we see that $N_C(y) \cap \{z\} = N_C(z) \cap \{y\} = S$, which means $yx', zx' \in E(G)$. Since $x' \in \{x_3, x_4\}$, we have either $\{y, z\} = N_C(x_3) \cap A_1$ or $\{y, z\} = N_C(x_4) \cap A_1$.

Next we consider the case that either $|S \cap B| = 1$ or $|\bar{S} \cap \bar{B}| = 1$. Without loss of generality assume $|S \cap B| = 1$, say $S_1 \cap B_1 = \{x\}$. By Claim 3.4, we see that $B_1 = S_1 \cap B_1 = \{x\}$ and $x' \in V(H) \cap N_C(x_1)$. Then $B_1 = \{x\}$ means $N_C(x') = T_1$, which implies $N_C(x') \cap A_1 = A_1 \cap T_1$. Since $x' \in V(H) \cap N_C(x_1) = \{x_3, x_4\}$, we have either $N_C(x_3) \cap A_1 = A_1 \cap T_1$ or $N_C(x_4) \cap A_1 = A_1 \cap T_1$. Now Claim 3.8 is proved.

Claim 3.9. $y' = z$.

Proof. Assume \(y' \neq z \). From Claim 3.8, we know that either \(A_1 \cap T_1 = N_C(x_3) \cap A_1 \) or \(A_1 \cap T_1 = N_C(x_4) \cap A_1 \). Without loss of generality, we may suppose that \(A_1 \cap T_1 = N_C(x_3) \cap A_1 \). Then \(x_3 \in S, y \in N_C(x_3) \) and \(y' \neq N_C(x_3) \). Let \(B'_1 \) be a fragment with respect to \(x_1,y' \) and let \(T'_1 = N_C(B'_1) \). Then, applying Claim 3.8 with the role \(T_1 \) replaced by \(T'_1 \), we see that either \(A_1 \cap T'_1 = N_C(x_3) \cap A_1 \) or \(A_1 \cap T'_1 = N_C(x_4) \cap A_1 \). Since \(y' \neq N_C(x_3) \), we know that \(A_1 \cap T'_1 \neq N_C(x_3) \cap A_1 \). Hence we have \(A_1 \cap T'_1 = N_C(x_4) \cap A_1 \), which implies \(x_4 \in S \). Now we know that \(x_3, x_4, w \in S \) and \(y, y' \in A_1 \). Since \(N_C(x_1) = \{x_3, x_4, y, y', w\} \), this implies that \(N_C(x_1) \cap A = \emptyset \), which contradicts the choice of \(A \). This contradiction proves Claim 3.9.

Claim 3.10. \(x_2 \in \tilde{A}_1 \).

Proof. Assume \(x_2 \notin \tilde{A}_1 \). Then, since \(A_1 \) is proper, we have \(x_2 \in S_1 \). By Claim 3.1, we know that \(\{x_3, x_4\} \subseteq S_1 \neq \emptyset \), which implies \(|S \cap V(H)| \geq 3 \) since \(x_1, x_2 \in S_1 \). Since \(\{x_1, y\} \subseteq T_1 \), we observe that either \(B_1 \) or \(B_1' \) is a proper fragment with respect to \(x_1 \). Without loss of generality, we suppose \(B_1 \) is a proper fragment with respect to \(x_1 \). Then, since \(B_1 \cap V(H) = \emptyset \) and \(|S \cap V(H)| \geq 3 \), we observe that \(|S \cap B_1| \leq 2 \). Claim 3.5 assures us \(|A_1 \cap T_1| = 2 \). Hence we see that \(|S \cap B_1| \leq |A_1 \cap T_1| \), which implies \(|A_1 \cap T_1| = 2 \). Since \(\{x_3, x_4\} \subseteq B_1 \), we observe that \(N_C(x_1) \cap (A_1 \cap T_1) = \{x_3, x_4, y, y', w\} \cap (A_1 \cap T_1) = \emptyset \). This together with the fact that \(|(A_1 \cap T_1) \cup (S_1 \cap T_1) \cup (S \cap B_1)| \leq 5 \) implies \(A_1 \cap B_1 = \emptyset \). Then, since \(|S \cap B_1| \leq |A_1 \cap T_1| \), we see that \(|B_1| = |S \cap B_1| + |A_1 \cap B_1| = |A_1 \cap T_1| + |A_1 \cap B_1| | \leq |A_1| \). Since \(B_1 \) is a proper fragment with respect to \(x_1 \), the inequality \(|B_1| \leq |A_1| \) and the minimality of \(A_1 \) assure us that \(B_1 \) is also a minimum proper fragment with respect to \(x_1 \). Then, by Claim 3.6, we see that \(|N_C(x_1) \cap B_1| = 2 \). On the other hand Claim 3.9 assures us that \(|y, y'| \subseteq T_1 \). Hence \(|N_C(x_1) \cap B_1| = |y, y'|, w \subseteq B_1| \leq 1 \), which contradicts the previous assertion. This contradiction proves Claim 3.10.

We proceed with the proof of Theorem 1. From Claims 3.8 and 3.9, we have either \(\{y, y'\} \subset N_C(x_3) \) or \(\{y, y'\} \subset N_C(x_4) \). Without loss of generality we may suppose that \(\{y, y'\} \subset N_C(x_3) \). Then \(N_C(x_3) = \{x_3, x_4, y, y', w\} \). Let \(A_2 \) be a minimum proper fragment with respect to \(x_2 \) and let \(S_2 = N_C(A_2) \). Without loss of generality we may assume that \(w' \notin S_2 \). Applying Claim 3.6 with the roles of \(x_1 \) and \(A_1 \) replaced by \(x_2 \) and \(A_2 \), respectively, we see that \(|N(x_2) \cap A_2| = 2 \). Then, since \(w' \notin S_2 \), we have \(N(x_2) \cap A_2 = \{y, z\} \). Again applying Claims 3.8 and 3.9 with the roles of \(x_1 \) and \(A_1 \) replaced by \(x_2 \) and \(A_2 \), respectively, we have either \(\{z, z'\} \subset N_C(x_3) \) or \(\{z, z'\} \subset N_C(x_4) \). Claim 3.10 assures us that \(x_2 \in \tilde{A}_1 \), which means \(N_C(x_2) \cap \{y, y'\} = \emptyset \). Since \(\{z, z'\} \subset N_C(x_3) \), this implies \(\{y, y'\} \cap \{z, z'\} = \emptyset \). Hence, since \(N_C(x_3) = \{x_1, x_2, x_3, y, y', w\} \) and \(\{y, y'\} \cap \{z, z'\} = \emptyset \), we have \(\{z, z'\} \cap N_C(x_3) = \emptyset \), which forces \(\{z, z'\} \subset N_C(x_2) \). Putting all together we have \(N_C(x_3) - V(H) = \{y, y', w\}, N_C(x_3) - V(H) = \{y, y', w\}, N_C(x_3) - V(H) = \{z, z', w\}, N_C(x_3) - V(H) = \{z, z', w\} \) and \(\{y, y'\} \cap \{z, z'\} = \emptyset \). Hence if \(w = w' \), we have a \(K_4 \)-configuration which has \(H \) as its \(K_4 \)-part, and if \(w \neq w' \) we have a split \(K_4 \)-configuration which has \(H \) as its \(K_4 \)-part. Now the proof of Theorem 1 is completed.

Acknowledgments

The author thanks Professor Egawa for his suggestions. The author also gratefully acknowledges the referees for their many valuable comments.

References

[3] Y. Egawa, Contractible edges in s-connected graphs with minimum degree greater than or equal to \(\frac{n+1}{2} \), Graphs Combin. 7 (1991) 15–21.